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Abstract: Semi-rigid asphalt pavement has a wide range of application cases and data bases, and
rutting is a typical failure mode of semi-rigid asphalt pavement. The establishment of an accurate
rutting depth prediction model is of great significance to pavement design and maintenance. However,
due to the lack of perfect theoretical system and systematic research data, the existing rutting prediction
model of semi-rigid asphalt pavement is not accurate. In this paper, machine learning and mechanical-
empirical model are combined to study the feature selection affecting the rutting evolution and rutting
depth model of semi-rigid asphalt pavement. First, the particle swarm optimization random forest
model is used to select the important features that affect the evolution of rutting depth. Second, the R-F
model based on important features is proposed for the first time, which is compared with modification
of rutting model in the Chinese Specifications for Design of Highway Asphalt Pavement (JTG D50-
2017) and R-B model based on the improved Burgers model. The results show that the R-F model has
more accurate prediction ability and better generalization ability, and it does not need complex data
preprocessing and noise reduction. Here, the machine learning method is introduced to analyze the
data characteristics, and the R-F rutting depth prediction model framework is innovatively proposed,
which greatly improves the applicability and accuracy of the existing model framework.
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1. Introduction

Under the international background of carbon peak and carbon neutralization, the research, design
and construction of green, low carbon, long-life pavement is extremely urgent. It has become an urgent
requirement for the development of transportation industry to develop long-life pavement technology
and ensure the service performance of asphalt pavement in the whole life cycle. However, the current
asphalt pavement technology is faced with such basic problems as insufficient data mining, imperfect
mathematical theory support, low reliability of relevant design models, and large error in design life
estimation. It is urgent to strengthen the research on core issues and break through the bottleneck in
this field. Since the completion of Beijing Tianjin Tangshan Expressway in the 1980s, semi-rigid base
course materials have gradually become the main road materials in China due to their high bearing
capacity, deformation resistance, good frost resistance and the outstanding characteristics of using
local materials. So far, semi-rigid base asphalt pavement is still the most important asphalt pavement
structure in China. Therefore, the scientific research of semi-rigid pavement is particularly important.

With the increase of semi-rigid asphalt pavement running time, with the rapid growth of traffic
volume, the increase of the proportion of heavy vehicles, serious overloading, the typical damage
phenomenon of semi-rigid pavement continues to increase. Rutting is a kind of damage form of semi-
rigid asphalt pavement, which is a permanent indentation of wheels under the combined action of
repeated driving load and climate [1]. It is shown as a longitudinal strip groove along the driving
wheel track. In serious cases, prominent deformation will occur on both sides of the rutting, leading
to deterioration of the pavement performance. The detection and prediction of pavement rutting can
provide important information for decision-makers, and it is of great significance to the structural
design, maintenance and repair of asphalt pavement [2, 3].

Over the years, scholars have carried out extensive research on the development of asphalt pave-
ment rutting prediction models and proposed various models to characterize and predict the evolution
process of asphalt pavement rutting depth [4]. The research on asphalt rutting has a long history in the
world. At the 3rd International Conference on Asphalt Pavement Structure Design in 1972, Barksdale
and Romain proposed the layer strain method to predict ruts on flexible pavement [5]. At the 6th In-
ternational Conference on Asphalt Pavement Structure Design in 1987, Eckmann’s research combined
dynamic creep test and layer strain method to predict the ruts of full scale test road, and the predicted
model showed good agreement with the field measurement results [6]. Eisenmann and Hilmer in-
vestigated the effects of wheel load and tire pressure on the amount of rutting in asphalt pavement.
They performed full scale tests using different wheel load, tire pressure and wheel sets, then directly
measured the amount of rutting, and analyzed the effects of different test conditions on the amount
of rutting using decay analysis method. In 2000, Tarvey concluded that the shear characteristics of
asphalt roads were nonlinear through experiments on the frequency surface of asphalt roads. In 2006,
At the 10th International Conference on Asphalt Pavement Design, Humvey and Monisith conducted
an experimental study on rutting of asphalt pavement under different wheel loads, wheel pressures and
temperatures; obtained the profile of the experimental section, showing obvious shear deformation at
the edge of the wheel track; and established a correct rutting prediction method according to the test to
evaluate the shear performance of the mixture [7]. In the condition of high temperature, asphalt mixture
shows three kinds of properties, adhesive, elastic and plastic, and it is easier to produce unrecoverable
permanent deformation.
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Some scholars have studied the relevant models between pavement structure and performance
based on mechanical constitutive models, such as the viscoelastic model [8–10], viscoelastic-plastic
model [11], viscoelastic-plastic damage model [12], etc. However, how to accurately establish the
model and determine the constitutive parameters has been a difficult problem [13]. In the research
of empirical model framework, some scholars mainly focus on indicators and mechanical framework,
supplement the influence factors such as traffic load [14] and temperature [15], and modify the me-
chanical model [16, 17]. Relevant scholars have studied the research process of rut prediction model
for flexible pavement [18]. However, due to the lack of data and discontinuity, the empirical model
framework cannot systematically represent the characteristics of asphalt pavement. At the same time,
due to the lack of systematic combination of mechanical research and mathematical model research,
the construction of empirical models is limited.

In the world, many countries have carried out full-scale track research to study long-life pavement,
and obtained key data for asphalt pavement evolution model research by shortening the loading cycle.
The AASHO test track built in the United States in 1959 supported the creation of the world famous
MEPDG design method [19]. Since 1984, France has carried out a large number of accelerated pave-
ment loading tests relying on the Nantes Ring Road to continuously verify and improve the French
pavement design methods [20]. In the early 1970s, South Africa conducted research on semi-rigid
base asphalt pavement structure through large-scale outdoor accelerated loading test, and achieved re-
search results that are still influential in the world [21]. At the end of 2015, the first full-scale track in
China, RIOHTRACK, was completed in the Beijing Highway Traffic Test Field [22]. This track basi-
cally covers all pavement structure types of high-grade asphalt pavement at home and abroad, which
is mainly used to study the rutting deformation evolution law of main asphalt pavement structure and
materials and provides key data support for this study.

Different types of pavement structures have different evolution rules of service performance, so we
need to determine the performance design model for different types of structures. It is very important
to find and build an optimized model frame with high applicability for all pavement structures. On
the basis of the optimized evolution model, it is the main technical route to determine the critical state
through the experimental data of the track.

On the basis of machine learning and mechanical-empirical model research, this paper carried out
research and verification on the full-scale track data in Beijing, and innovatively proposed the R-F
rutting prediction model framework suitable for semi-rigid asphalt pavement. The particle swarm
optimization random forest model is used to select the most important features that affect the evolution
of rutting depth. The R-F model based on important features is proposed for the first time, and is
compared with the modification of rutting model in the Chinese Specifications for Design of Highway
Asphalt Pavement (JTG D50-2017) and R-B model based on the improved Burgers model.

The rest of this paper is organized as follows. Section 2 presents the rutting depth model based
on the RIOHTrack track, including data set sources, feature selection of the random forest algorithm
based on particle swarm optimization and the rutting depth model framework. The main results and
discussion of model fitting are given in Section 3. Section 4 gives the brief conclusion of this paper.
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2. Model construction

2.1. Full-scale track test

Pavement performance is a multi-factor long-term evolution process [23]. It is an extremely time-
consuming project to analyze the performance using the real road operation data. Therefore, the ac-
celerated loading test is an effective test method to simulate the real road operation. It can accelerate
the road performance by increasing the test load of vehicles, and simulate the long-term performance
of the road structure at a lower cost and in a shorter time. The RIOHTRACK accelerated loading test
track was completed in China in November 2015, and it is the first full-size test platform for long-life
asphalt pavement in the world, aiming to verify the serviceability design model of long-life asphalt
pavement. The total length of the track is 2039 meters, which is a closed curve consisting of multiple
straight lines and circular curves. It is arranged symmetrically in a north-south direction. A total of
25 different asphalt pavement structures (including 19 main test pavement structures and 6 anti rutting
pavement structures) and 13 typical cement concrete pavement structures have been built on the RIO-
HTRACK track. RIOHTRACK is very representative of various pavement structures, covering no less
than 90% of pavement types commonly used in asphalt highways in China. Among them, 19 main test
pavement structures are divided into six different types: thin asphalt concrete semi-rigid base structure
STR1-STR3, common semi-rigid base structure STR6-STR9, rigid composite base structure STR4 and
STR5, inverted structure STR10 and STR12, thick asphalt concrete base structure STR11 and STR13-
STR17 and full depth asphalt concrete structure STR18 and STR19. The detailed structural thickness
and material information of 19 main test pavement structures are shown in Figure 1 [24].

Figure 1. The total thickness of the pavement structure varies from 68 to 100 cm. A total
of 21 kinds of asphalt mixture surface and base material, 5 kinds of cement stabilization
material and 1 kind of graded gravel base material are combined to form 19 kinds of pavement
structure with wide stiffness domain base material.
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RIOHTRACK full-scale track loading test was started in November 2016. Four 10 wheel Steyr
heavy trucks were used to drive at the speed of 40–60 km/h, and the axle load of loaded vehicles was
16t per axle. Track performance detection includes two ways: One is real-time monitoring, and the
other is periodic detection. Real-time monitoring includes 24 h acquisition of stress-strain information
within the structure with a frequency value of 2000 Hz, induction vehicle axle load monitoring and
structure internal and external environment monitoring. Periodic testing includes but is not limited to
structural bearing capacity, surface function, damage and serviceability testing. Based on massive data
collection and analysis, the evolution law of pavement performance is characterized, as well as the
significant differences of performance between typical asphalt pavement structures.

RIOHTRACK full-scale track is located in Beijing, with an average temperature of -4.6 ◦C in the
coldest month and 25.8 ◦C in the hottest month. The temperature data of pavement structure in RI-
OHTRACK track is selected as the basic data for analysis. The structure and layout depth of the
temperature sensor are shown in Figure 2.

Figure 2. The internal temperature of RIOHTRACK pavement structure is detected by tem-
perature sensors of different depths. The shallowest measuring point is 4 cm away from the
road table, and the deepest measuring point is 250 cm away from the road table. The temper-
ature acquisition frequency is 10 min. The accuracy of the sensor is 0.15 ◦C, using a PT100
platinum resistance temperature sensor with a measurement range of -50 –100◦C.

2.2. Analysis of relevant characteristics of asphalt pavement

According to the mechanical properties of asphalt mixture and the research experience of existing
models, there are many factors related to permanent deformation of asphalt pavement, including tem-
perature, humidity, load, axial load, radiation, pressure and so on. However, how to select the key
features related to rutting depth is particularly important for further model construction and perfor-
mance prediction.

In order to improve the generalization ability of the model and reduce the computational complexity,
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this paper extends the rutting feature selection method by selecting subsets of existing features without
feature transformation.

In essence, feature selection has two requirements: One is the objective function, and the other is
the search strategy. Objective functions generally fall into two categories: filters and wrappers. The
corresponding methods are called filter-based feature selection and wrapper-based feature selection. In
this paper, we choose the random forest classification model based on Gini coefficient as the packag-
ing of the objective function, and we use the search strategy of particle swarm optimization to select
features. Among them, the relevant objective functions and search strategies are as follows.

2.2.1. Objective function

In the wrapper of this model, the objective function is set as classifier mode, and the classifier is set
as random forest classification model. The objective function of this project is set as Figure 3:

Figure 3. Objective function.

The random forest has put back sampling to solve the lack of universality of the wrapper, and the
particle swarm optimization search strategy to solve the problem of slow execution speed.

Random forest. The random forest adopts the resampling technique, which selects k samples
from the original N training samples set again repeatedly, generates a new training sample subset,
then generates N classification trees according to the sample subset and finally forms a random forest
[25]. Its essence is the improvement and promotion of the decision tree algorithm. It bundles several
decision trees together, each dependent on a relatively independent subset of the sample. Random
forest integrates multiple decision trees through the idea of ensemble learning. Among all the current
classification and regression algorithms, random forest has higher accuracy. It also runs efficiently on
large data sets and can handle input samples with high dimensional characteristics without reducing the
data’s low dimensions [26]. It can evaluate the importance of each feature in the classification problem
and obtain the unbiased estimation of the internal generation error in the generation process. For the
default value, good results can also be obtained.

Mathematical Biosciences and Engineering Volume 20, Issue 5, 8124–8145.
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The super parameters in the random forest model mainly include the number n of decision trees and
the number m of attribute feature subsets, which run through the construction process of the random
forest model. Subjective selection or traditional ergodic parameter selection methods inevitably affect
the efficiency and accuracy of the model. In this paper, the particle swarm optimization strategy is
introduced to solve the parameter optimization problem of the model by simulating the movement
process of the biological population.

The Gini coefficient. This paper calculates the impurity of nodes by Gini coefficient to measure the
importance of features [27]. The Gini coefficient is the probability that a randomly selected sample in
the sample set will be misclassified. The smaller the Gini index is, the smaller the probability that the
selected samples in the set will be mistaken, that is to say, the higher the purity of the set; conversely,
the more impure the set is. When all the samples in the set are of one class, the Gini index is 0, that
is, all the values in the child nodes belong to the same type of classification. At this time, the value
of the Gini coefficient is the minimum, and the purity of the child nodes is the highest. If there are k
classes in the decision tree, and the probability that the sample belongs to the kth class is pk, then the
Gini coefficient of the probability distribution of the class is

Gini(p) =
K∑

k=1

pk(1 − pk) = 1 −
K∑

k=1

p2
k . (2.1)

When we traverse each segmentation point of each feature of data set D, feature A = a is used to
divide D into two parts. One part is called D1, that is, the sample set satisfying A = a, and the other
part is called D2, that is, the sample set not satisfying A = a. Then, under the condition of feature
segmentation A = a, the Gini coefficient of D is

Gini(D, A) =
|D1|

|D|
Gini(D1) +

|D2|

|D|
Gini(D2). (2.2)

where Gini(D) represents the uncertainty of set D, and Gini(D, A) represents the uncertainty of set D
after A = a segmentation.

The random forest iterates all possible segmentation points of the feature subset of the decision tree
to find the feature segmentation point with the smallest Gini coefficient, and it divides the data set into
two subsets until the stopping condition is met.

2.2.2. Search strategy

Assuming that the best subset of N features is selected, the number of feasible combinations is
2N . The algorithm that exhausts all the original features needs a powerful search strategy to guide the
feature selection process, because it needs to explore all possible combination spaces [28].

Particle swarm optimization algorithm. Particle swarm optimization algorithm is a swarm intelli-
gence algorithm that simulates the foraging behavior of birds to solve optimization problems [29]. The
algorithm searches the feasible solution value of the region around the particle, and it then calculates
the fitness by replacing the fitness function. The speed and direction of the particle iteration process
are adjusted by comparing the fitness. In the adjustment process, the global influence degree and the
particle’s own influence degree are controlled by controlling the size of the learning factor.
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In the actual training process, the decision tree scale and attribute feature subset in the random
forest model were taken as the attributes of particles in the particle swarm optimization algorithm, and
the Gini coefficient was used as the fitness function to train the model repeatedly and calculate the
classification accuracy of the model to evaluate the classification effect of the model.

The specific training process of the selection algorithm based on relevant features is as the following
steps:

Step 1: Put back sampling on the data set, and take the selected samples as the training set D and
the unselected samples as the validation set Y;

Step 2: Initialize parameters, including particle attributes (number of decision trees T , feature at-
tributes N), number of iterations nmaxgen, learning factor c1, c2, inertia coefficient w, etc;

Step 3: Combined with the random forest classifier, the average classification accuracy of the model
was calculated by cross-validation, and the Gini coefficient of the random forest was calculated;

Step 4: Compare the fitness value of the particles obtained under the current number of iterations,
and update the particle attributes, motion direction and velocity. kg represents the current evolutionary
algebra, the position of the particle in the solution space is expressed as Xi, and the velocity is expressed
as Vi;

Vkg+1
i = w(t)Vkg

i + c1r1(Pkg
i − Xkg

i ) + c2r2(BestS kg − Xkg
i ), (2.3)

Xkg+1
i = Xkg

i + Vkg
i . (2.4)

Step 5: Save the particle attribute with the highest fitness value of the current iteration as the optimal
particle, stop the iteration when the maximum number of iterations is reached, and output the particle
attribute T , N and classifier index.

2.3. The construction of rutting prediction model framework of semi-rigid asphalt pavement

The rutting prediction of asphalt pavement is a difficult and key problem in asphalt pavement re-
search. The mechanical properties, functional properties, long-term performance attenuation laws and
damage characteristics of different pavement structure combinations are quite different, which should
be considered in the pavement structure combination. The comprehensive design of subgrade and pave-
ment also requires that the subgrade has sufficient bearing capacity and suitable dry and wet conditions,
so that the combination of pavement structures can adapt to the subgrade bearing capacity, humidity
conditions and soil types. Therefore, our rutting prediction model needs to fully consider the relevant
mechanics, experience, functions and specification requirements. This section introduces three rutting
models for semi-rigid asphalt pavement structure: R-F model, R-B model based on modified Burgers
model and the modification of the rutting model in JTG D50-2017, where R-F is short for Rutting from
Feature Selection, and R-B model is short for Rutting from Burgers.

2.3.1. R-F model framework

Rutting depth is the nonlinear deformation of asphalt pavement, which is the result of the coupling
between the features. Based on the analysis of the main features of machine learning, the random
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forest features based on particle swarm optimization are selected under different structures, and the
accumulated axial load is emphasized to fit the rut.

According to the pavement performance observation data obtained from the RIOHTRACK full-
scale track accelerated loading test, the importance values of 10 characteristic indicators that affect
the rutting depth change are obtained by using the feature selection method introduced in subsection
2.2, as shown in Figure 4. Among 10 characteristic indicators that affect the rutting depth change,
the influencing factors whose characteristic importance index exceeds 0.15 mainly include the number
of axle load and the pavement structure. Therefore, for a semi-rigid asphalt pavement with a specific
pavement structure, we mainly consider the impact of cumulative axle load times on the rutting depth
of semi-rigid asphalt pavement.

Figure 4. The importance value of 10 features associated with rutting of asphalt pavement
is obtained by the improved random forest algorithm and based on the semi-rigid pavement
data of RIOHTRACK full-scale track. The sum of the above feature values is 1.00.

According to the performance data analysis of asphalt pavement, different function forms of various
characteristic variables are studied and analyzed. Based on the data of exponential empirical model
framework and RIOHTRACK full-scale track, through a large amount of data analysis and simulation,
the R-F model framework is proposed.

The R-F model framework describes the rutting depth of semi-rigid asphalt pavement through the
nonlinear transformation of the cumulative number of axle load actions, whose type is a power func-
tion, and the specific expression is shown in Eq (2.5):

Mathematical Biosciences and Engineering Volume 20, Issue 5, 8124–8145.
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RD =
b∑

k=1

(akNk
s ). (2.5)

where RD is the rutting depth (unit: 0.1 mm); Ns is the cumulative number of axial loads taken as
logarithm; b, ak are the regression coefficients of the prediction model.

After a lot of calculation and analysis, the model framework has the advantages of few parameters,
convenient calculation and high fitting accuracy. It is applicable to predicting rutting and related en-
vironmental conditions of semi-rigid asphalt pavement on RIOHTRACK full-scale track, and it has
strong applicability and generalization ability, which is proved in the following sections.

For further comparative analysis and validation, two other model frameworks are described be-
low. Their prototype has already achieved good results in different areas and has been improved and
optimized here.

This section innovatively proposes the R-F model framework for rutting depth prediction of semi-
rigid asphalt pavement. In the next section, we will show that compared with the improved mechanical-
empirical R-B model framework and the modification of the rutting model in JTG D50-2017, the pro-
posed R-F model framework has shown surprising results in the rutting research of semi-rigid asphalt
pavement. It is verified by using RIOHTRACK full-scale track accelerated loading test data.

2.3.2. R-B model framework

Asphalt structural materials, including asphalt, sand and other materials, have highly nonlinear
characteristics, with temperature and humidity correlation, so there are specific requirements for the
construction of pavement models, including mechanical constitutive model, mathematical model, arti-
ficial intelligence model. As the main comparison model, the improved Burgers constitutive model was
selected. This paper selects the improved Burgers model structure, mainly from the Burgers constitu-
tive model, to supplement the plastic components, better reflecting the evolution of asphalt pavement in
different stages of the physical characteristics of elasticity, viscoelasticity, viscoelastic-plastic [30,31].

The Burgers model is a widely applicable mechanical constitutive model, which is a four-element
model derived from the series of Maxwell model and Kelvin model and belongs to the linear vis-
coelastic model. The Maxwell model is composed of an elastic element with elastic modulus E1 and
a dashpot element with viscosity coefficient η1 in series. The Kelvin model is composed of an elastic
element with elastic modulus E2 and a dashpot element with viscosity coefficient η2 in parallel [32].

Figure 5. Six-element nonlinear viscoelastic-plastic model.

The improved Burgers model, which is called R-B model in this paper, is a nonlinear viscoelastic
plastic model formed by the nonlinear viscoplastic unit and Burgers model in series, and it can well
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describe the accelerated creep stage of asphalt mixture. When η0 ≤ ηs, the model degenerates into
the Burgers model, and the creep deceleration and constant velocity stages of asphalt mixture can be
described. When η0 > ηs, the mode is a nonlinear viscoelastic-plastic model, which can describe the
creep acceleration stage of asphalt mixture. According to the data, the yield stress limit σs of asphalt
is 0.05 MPa.

The nonlinear viscoelastic-plastic model is shown in Figure 5. The creep equation of the nonlinear
viscoelastic-plastic model is obtained as follows:

RD =
σ

E1
+
σ

η1
+
σ

E2
(1 − e(−E2/η2t)) + Γ(σ − σs)/η3tn. (2.6)

Among them,

Γ(σ − σs) =

 0, σ ≤ σs

σ − σs, σ > σs
(2.7)

where RD is rutting depth, 0.1 mm, σ is the constant stress, σs is the yield stress, E1 and E2 are the
moduli of elasticity, η1, η2 and η3 are the coefficients of viscosity, and n is the creep index (reflecting
the accelerated creep rate of the asphalt mixture).

Based on the Burgers model, plastic components are added to the model to meet the fitting re-
quirements of the rut evolution process of asphalt pavement, making the model more appropriate to
the actual evolution situation. Meanwhile, taking into account the temperature sensitivity of asphalt
materials, correction coefficients eaT and ebT are introduced for elastic deformation and viscous defor-
mation, respectively. That is,

RD =
σ

eaT E1
+
σ

ebTη1
+
σ

eaT E2
(1 − e

−
eaT E2
ebT η2

t
) +
Γ(σ − σs)

ebTη3
tn. (2.8)

Asphalt mixture is a typical temperature-sensitive viscoelastic-plastic material [33]. The constitu-
tive equation of the model above describes how the deformation of asphalt mixture mainly changes
with time. There is no representative variable of temperature, which cannot directly reflect the effect of
temperature on deformation. Therefore, the correction coefficient of the environmental temperature on
the elastic deformation characteristics of asphalt mixture is set as eaT , and the correction coefficient of
the viscous deformation characteristics of asphalt mixture is set as ebT . The time variable is replaced
by the number of axial loads with high sensitivity, Ns/10000. Based on the above analysis, the frame
structure of mechanical-empirical model for predicting rutting depth of semi-rigid asphalt pavement is
as follows:

RD = 100[
1

eaT E1
+

Ns/10000
ebTη1

+
1

eaT E2
(1 − e

−
eaT E2
ebT η2 (Ns/10000)) +

Γ(σ − σs)
100ebTη3

(Ns/10000)n]. (2.9)

where
RD – rutting depth;
T – ambient temperature;
Ns – cumulative times of standard axle load;
E1 – elastic modulus of Kelvin model in the predicted model;
E2 – elastic modulus of Maxwell model in the prediction model;
η1 – viscosity coefficient of Kelvin model in the predicted model;
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η2 – viscosity coefficient of Maxwell model in the prediction model;
η3 – viscosity coefficient of the viscoplastic component in the prediction model;
a, b – regression coefficients of the predictive model.

2.3.3. Modification of rutting model in JTG D50-2017

The current asphalt pavement design specification in China is the Specifications for Design of High-
way Asphalt Pavement (JTG D50-2017), which was approved by the Ministry of Transport of the
People’s Republic of China and issued in September 2017 as the industrial standard of highway engi-
neering. According to the analysis of RIOHTRACK full-scale track data, this specification is closer to
the actual situation of asphalt pavement in China than the international standard, so the rutting depth
model in the 2017 version of the specification is used as the basic framework of rutting depth model in
our study.

According to the requirements of JTG D50-2017, asphalt pavement materials should be designed
and material design parameters determined on the basis of technical and economic demonstration ac-
cording to highway grade, traffic load grade, climatic conditions, functional requirements of each struc-
tural layer and local material characteristics. The requirements of raw material properties and mixture
composition properties of each structural layer shall be in accordance with the relevant provisions of
current specifications JTG F40 and JTG/T F20, and the shall be determined in combination with en-
gineering characteristics and local experience. The determination of springback modulus of subgrade
top surface should conform to relevant provisions of current specification JTG D30.

According to the rut depth prediction model introduced in JTG D50-2017, the permanent deforma-
tion of asphalt mixture in different layers was obtained through rut test under standard conditions. The
permanent deformation of each layer and the total permanent deformation of asphalt mixture layer are
calculated according to the following formula:

Ra =
∑

Rai, (2.10)

Rai = 2.31 × 10−8kRiTpe f
2.93Pi

1.8Ne3
0.48(hi/h0)Roi. (2.11)

where
Ra – permanent deformation of asphalt mixture layer (mm);
Rai – permanent deformation of the i th layer (mm);
n – number of layers;
Tpe f – equivalent temperature of permanent deformation of asphalt mixture layer;
Ne3 – the cumulative action times of equivalent design axle load on the design lane during the design

service life or the period from the opening to the first rut maintenance;
hi – the ith layer thickness (mm);
h0 – thickness of rutting test specimen (mm);
Roi – When the test temperature of ith layered asphalt mixture is 60 degrees, the pressure is 0.7

MPa, and the loading times is 2520 times, the permanent deformation of rutting test (mm);
kRi – comprehensive correction coefficient;
Pi – vertical compressive stress on the top surface of the ith layer of asphalt mixture was calculated

according to the elastic layered system theory.
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For the semi-rigid asphalt pavement structure of RIOHTRACK full-scale track, the value of hi/h0

is adjusted to 1, the comprehensive correction coefficient kRiis adjusted to 1, and the regression coeffi-
cients a, b, c and d are introduced. The modified rutting depth frame model is shown in Eq (2.12):

R = a!‘Tpe f
bPi

cNe3
dRoi. (2.12)

Based on Burgers improved R-B model and JTG D50-2017 design specification framework, this
section innovatively proposes an applicability model based on rut prediction of semi-rigid asphalt
pavement, and further verifies it through loop data. Both models have achieved good results under
the actual measurement data.

3. Results and discussion

This paper mainly studies the rutting evolution law of semi-rigid asphalt pavement, so the semi-
rigid asphalt pavement structures STR1-STR3 and STR6-STR9 in the RIOHTRACK track are selected
for research, and the data cycle is 2017–2020. The data of semi-rigid pavement structures STR1-
STR3 and STR6-STR9 used are actually collected without complex data processing. Take STR9 data
as an example, as shown in Figure 6. It can be seen from the figure that there is no obvious linear
relationship between rutting depth and each boundary data. In different structural forms, bending area
shows obvious time dependence. With the increase of time and cumulative loading times, the rutting
depth rises in the overall impact.

Figure 6. Related data of semi-rigid asphalt pavement STR9. It can be seen that the rutting
depth shows a trend of oscillation rising, and there is a nonlinear relationship between the
rutting depth and each boundary data.
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Based on the above observation data and through feature selection, this section obtains the model
manifestations of different orbits under the three model frameworks, a total of 21, which are not ex-
panded here. Among the three model frameworks, the R-F model is the most standardized and has
the best effect, R-B model is the most complex, R-2017 model is the simplest, and its accuracy is also
affected.

Through the established R-F, R-B and R-2017 regression models, the measured full-scale track data
were used to obtain the following regression results through data simulation and calculation:

Table 1. The correlation coefficient of each pavement structure obtained based on different
rutting depth prediction models and the average correlation coefficient R-avg of all semi-rigid
pavement structures, where the closer the value is to 1, the better the regression effect.

Model/Track STR1 STR2 STR3 STR6 STR7 STR8 STR9 R-avg
R-F 0.964 0.964 0.960 0.939 0.959 0.963 0.948 0.957
R-B 0.945 0.860 0.910 0.908 0.947 0.953 0.933 0.922
R-2017 0.927 0.944 0.901 0.878 0.938 0.949 0.905 0.920

It can be seen from Table 1 that the regression coefficient of R-F model is balanced. For each
semi-rigid pavement structure, without complex data processing and noise reduction, the correlation
coefficient based on R-F model is higher than that based on R-B model and R-2017 model. In addition,
the average correlation coefficient R-avg of R-F model framework for all semi-rigid pavement struc-
tures in the RIOHTRACK track is 0.957, which is higher than that of the other two model frameworks.
Therefore, the R-F model has strong generalization ability, and has high accuracy and versatility for
predicting rutting depth of semi-rigid asphalt pavement.

Taking STR9 data as an example, combined with the above model frameworks in Section 2, through
nonlinear regression calculation and calculation, the model forms of different contents under the three
model frameworks are obtained. The details are as follows:

RDR−F = −39979.174 + 25744.635Ns − 4797.309Ns2 + 14.954Ns3 + 2.174Ns4+

32.283Ns5 − 7.215Ns6 + 0.598Ns7 − 0.0176Ns8. (3.1)

RDR−B = 100[
1

e−0.00329T !‘E1
+

Ns/10000
e−0.00256T !‘η1

+
1

e−0.00329T !‘E2
(1 − e

−
e−0.00329T !‘E2
e−0.00256T !‘η2 (Ns/10000))+

Γ(σ − σs)
100e−0.00256Tη3

(Ns/10000)n]. (3.2)

RDR−2017 = 0.0616Tpe f
0Pi

0Ne3
3.5915. (3.3)

The following are the parametric statistics of the three models R-F, R-B and R-2017 for the nonlin-
ear regression of STR9 data. It can be seen that all the statistical indicators of R-F are better than R-B
model, and those of the R-B model are better than R-2017 model to a certain extent.
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Table 2. Statistical results of STR9 data under three model frameworks: RMS E-Root
Mean Square Error, S S E-The sum of squares error, R-multiple correlation coefficient, DC-
Determination factor, Chi − square and F − S tatistic Coefficient. From the perspective of
each index, R-F model framework is better than R-B model framework and R-2017 model
framework.

Model/Statistics RMS E S S E R DC Chi − S quare F − S tatistic
R-F 5.177 2358.756 0.948 0.894 29.757 682.104
R-B 6.050 3221.630 0.933 0.855 39.910 507.949
R-2017 12.754 14314.032 0.905 0.357 134.291 374.013

It can be seen from the above results that the correlation coefficients of the three model frameworks
on STR9 data are all greater than 0.92, among which the R-F model has the best effect. R-F model
framework can be applied to 7 structural data of semi-rigid asphalt pavement, which has good univer-
sality and is a good result of exploration. The measured data can still achieve good results if applied
directly to the above model framework without processing. The research results of the article have the
value of further deepening.

According to the model expression form based on the test data of RIOHTRACK full-scale track,
the rutting change of semi-rigid asphalt pavement STR9 has a significant nonlinear correlation with the
number of axle load, but it has little relationship with temperature. Through the below presentation,
it can be clearly seen that among the three model frameworks, R-F model has the best fitting effect
and good smoothness, which is conducive to further research in various different scenarios. The fitting
curve and residual figure are shown in Figures 7–9.

The data of the full-scale track show the strong correlation between rutting and load data, and the
weak correlation between rutting and other factors. There are several reasons for this conclusion. First,
the cycle and form of loop loading lead to the inherent evolution law, which needs further detailed re-
search. Second, due to the environmental factors where the loop is located, some boundary thresholds
have not been triggered, and there is no correlation in data. Third, due to the influence of construc-
tion quality and sensor accuracy, there is some distortion in the collected data, which requires further
correction and processing of the data.

Model research is affected by such possible factors as inaccurate transmission of measured data and
weak model robustness caused by a single data source. In order to further improve research results, it
is necessary to further improve data analysis and preprocessing, and add data of different dimensions,
geology, axial load and other conditions for verification and research.
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Figure 7. Performance of R-F model frame obtained by fitting the data of semi-rigid asphalt
pavement structure STR9: (a) The blue curve represents the actual data, and the red curve
represents the fitted nonlinear curve. (b) The green represents the actual data, and the red
curve is the fitted nonlinear curve. (c) Residual diagram of the fitting curve, and the uniform
distribution indicates that the fitting effect is better.
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（c） 

Figure 8. Performance of R-B model frame obtained by fitting the data of semi-rigid asphalt
pavement structure STR9: (a) The blue curve represents the actual data, and the red curve
represents the fitted nonlinear curve. (b) The green data represents the actual data, and the
red curve is the fitted nonlinear curve. (c) Residual diagram of the fitted curve.
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Figure 9. Performance of R-2017 model obtained by fitting the data of semi-rigid asphalt
pavement structure STR9: (a) The blue curve represents the actual data, and the red curve
represents the fitted nonlinear curve. (b) The green data represents the actual data, and the
red curve is the fitted nonlinear curve. (c) Residual diagram of the fitted curve.
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4. Conclusions

The main research objective of this paper is to build an explicit rutting prediction model for semi-
rigid asphalt pavement. This paper innovatively proposes the R-F rutting model framework. Through
model research and data analysis, the R-F rutting model framework can show a good fitting effect on
the data without deep processing and noise reduction, and the performance is balanced in all sections
of semi-rigid asphalt pavement. The application effect of R-F rutting model framework is better than
the modified Burgers model framework and the modification of Chinese JTG D50-2017.

The R-F rutting model framework reflects the advantages of fewer characteristic variables and stan-
dardized structure, which is easily be popularized and improved. Compared with other constitutive
models and mechanical-empirical models, this model framework also has the advantage of easy pa-
rameter fitting, and it has higher practical value in the case of rough and incomplete data.

Through the research in this paper, it can be inferred that under the comprehensive environmental
conditions of the RIOHTRACK full-scale track, the correlation between rutting depth and temperature
factors is small, or the temperature needs to reach a certain threshold to affect the rutting evolution
of semi-rigid asphalt pavement. Based on the basic framework of R-F model and the works of pre-
decessors [34, 35], the author will further carry out research, demonstration and improvement under
other space-time pavement environment conditions, and the auxiliary study of R-F model is considered
through time series analysis. The influence of semi-rigid base on the rutting evolution will be further
discussed. Data errors are reflected in measurement, transmission and noise, which have an important
impact on research. The denoising and exception processing of data are complicated and will also be
further studied in the follow-up work.
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