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Abstract: Currently, machine learning methods have been utilized to realize the early detection of 
Parkinson’s disease (PD) by using voice signals. Because the vocal system of each person is unique, 
and the same person’s pronunciation can be different at different times, the training samples used in 
machine learning become very different from the speech signal of the patient to be diagnosed, 
frequently resulting in poor diagnostic performance. On this account, this paper presents a new 
intelligent personalized diagnosis method (PDM) for Parkinson’s disease. The method was designed 
to begin with constructing new training data by assigning the best classifier to each training sample 
composed of features from the speech signals of patients. Subsequently, a meta-classifier was trained 
on the new training data. Finally, for the signal of each test patient, the method used the meta-classifier 
to select the most appropriate classifier, followed by adopting the selected classifier to classify the 
signal so that the more accurate diagnosis result of the test patient can be obtained. The novelty of the 
proposed method is that the proposed method uses different classifiers to perform the diagnosis of PD 
for diversified patients, whereas the current method uses the same classifier to diagnose all patients to 
be tested. Results of a large number of experiments show that PDM not only improves the performance 
but also exceeds the existing methods in speed. 
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1. Introduction  

Parkinson’s disease (PD) affects a large number of people’s lives for a long time by social isolation 
and financial burdens, for it is not easily cured [1]. Although drugs can significantly alleviate symptoms of 
the disease at early stages, it is very difficult to evaluate the severity of PD accurately. Moreover, it usually 
takes several days to diagnose the patient through the complete evaluation of symptoms, leading to the 
decrease of diagnosis accuracy. In addition, it is inconvenient to monitor patients with PD in the 
hospital, consuming more medical resources and increasing medical costs. With such a background, it 
is necessary to develop an intelligent device to facilitate the diagnosis and prediction of PD anytime 
and anywhere [2]. Once a person has the risk for PD, he then goes to the hospital for the diagnosis and 
treatment. Lots of symptoms of PD can be observed at early stages through physical signals [3,4], 
including voice [5,6], gait [7,8], handwriting [9], electroencephalography (EEG) [10], magnetic 
resonance imaging (MRI) [11] and facial expressions [12], apart from the multi-models in 
consideration [13]. These signals can be captured by lots of sensors and analyzed by machine learning 
methods automatically [14,15]. Among them, the voice signals are very significant for the early 
diagnosis [16], for the vocal impairment of a patient is easily identified at the beginning and generally 
continues many years before the diagnosis of PD is determined eventually. Patients often show a lot 
of vocal symptoms such as disfluencies and monotonous voices, as well as inaccurate consonant 
articulation [17]. In addition, the measurement method of PD is noninvasive, simple and easy to 
use [18]. As a result, the voice signals have been widely applied to recognize and track symptoms 
of PD through speech features and machine learning methods [19,20]. These features are extracted 
by feature engineering to improve the diagnosis accuracy [21–23] and afterward refined by using 
feature selection methods like filter and wrapper [24], popular relief feature selection method and 
particle swarm optimization algorithm. Based on the determined features, many machine learning 
methods are applicable [25], including neural networks (NN), softmax, naive Bayes classifier (NBC), 
support vector machine (SVM), decision trees (DT), linear discriminant analysis (LDA) and quadratic 
discriminant analysis (QDA). It has been demonstrated that PD is able to be well predicted by the 
ensemble methods [26] like random forest (RF), AdaBoost and bagging methods [27]. Furthermore, 
these machine learning methods can be integrated [28], while feature selection and classification 
mechanisms can also be combined [29–33]. 

Although deep neural networks have been frequently utilized for the diagnosis of PD with better 
results [34,35], they work on the condition that the captured voice signals have a larger size [36]. For 
example, convolutional neural networks can learn features from the raw data, doing well in such 
situations. However, when there are not enough training data available, they become less effective, which 
often occurs in medical fields [37]. This case very much applies to the diagnosis of PD, in which the 
labeled samples are insufficient. This is due to the fact that specialized knowledge is required to label 
samples, costing a lot of labor and time. Another serious problem is the disaster of dimension, as the 
voice signals are high-dimensional [38]. Theoretically, as the number of features increases, the number 
of speech signals required to produce a reliable statistical conclusion increases exponentially. However, 
it is hard to obtain a large number of speech signals in practice. Considering the above situation, it 
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is a great challenge to create nice predictive models using machine learning methods when there is 
little training data but with many features. In biomedical settings, this is a typical scenario [39], in 
which both feature selection [40] and the transfer learning [41,42] have been tried to solve the problem, 
yet the effects are limited. Specifically, the deep learning methods usually cannot obtain the ideal effect 
on the limited training data. In such a circumstance, extracting features through feature engineering 
and designing a better machine learning diagnosis method for PD is still the best choice. The existent 
machine learning methods for PD are generally trained to obtain the model. Subsequently, the same 
model is applied to classify test samples, easily leading to poor performance in diagnosis. This is 
inconsistent with the fact that humans dynamically change their methods based on the current test 
samples [43]. This is because the vocal system of each person is different at different times, and the 
training speech signals used in machine learning may be very different from the patient’s speech in the 
clinical diagnosis [44], resulting in the inaccurate diagnosis. Among the other reasons are the subject 
gender, the voice environment and patient’s condition. Furthermore, the captured training data may be 
different from those in the clinical diagnosis. Thus, the diagnosis abilities of machine learning methods 
are different even when applied to the same test sample. It is however a fact that clinical diagnosis and 
machine-based diagnosis are complementary to each other. It has been discovered that a classifier 
works well for some test samples, but it erroneously classifies the others. Particularly, when a pair of 
classifiers are utilized to categorize test speech signals, their classification results may become 
completely opposite. In this situation, it is reasonable to dynamically select the suitable classifier for 
the given test patient with PD so as to perform the personalized diagnosis. In this paper, a new 
personalized diagnosis method (PDM) for Parkinson’s disease is proposed. For the voice signals of a 
given patient, PDM first uses a Bayesian learning method to analyze the situation of the patient from 
the global perspective and then selects the most appropriate diagnosis method to diagnose the patient 
with PD. The proposed method is different from the currently used methods for PD in that it directly 
endows each training signal with the classifier name as labels to train a meta-classifier, which in turn 
is used to select a suitable diagnosis method for testing patients. 

2. Methods 

PDM was trained using lots of voice signals of the previously diagnosed patients and healthy 
people, and it was then applied to predict the test patients by speech signals.  

2.1. Framework of Parkinson’s disease diagnosis 

PD easily leads to muscle deformation and failure to create distinguished pronunciation, leading 
to the variation of speech signals. Based on this point, the features of a patient’s natural speech signals 
can be utilized to monitor the developmental progress of PD. The general framework is shown in 
Figure 1, involving the data acquisition for the voice signals, preprocessing method, feature extraction 
and the classifier for the classification of PD. When the voice signals of the patient are captured, they 
are used to extract features, and then the disease is predicted using the machine learning technique. 
This paper emphasizes designing the machine learning method suitable for predicting PD disease, 
based on the large number of the voice signal samples. 
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Figure 1. Framework of Parkinson’s disease diagnosis. 

2.1.1. Voice signal preprocessing 

Voice tasks refer to the method of collecting patient voice signals. The voice signals can be 
obtained through the dialogue between the doctor and the patient as well as the given text that a patient 
reads, by virtue of various devices like smart phones [45]. Subsequently, these signals are processed, 
including removing the noise outside the effective frequency range for PD. As the maximum amplitude 
is not useful for PD and may vary from person to person, the voice signal is normalized. Furthermore, 
more complex preprocessing methods can be used to separate voiced signals and unvoiced signals as 
well as to remove outliers, in order to improve the quality of voice signals. In addition, the machine 
learning method needs a large number of such processed voice signals which are captured from the 
clinical data, and each signal is annotated with a tag by doctors. The tag is one when the speech signal 
is from patients diagnosed with PD. The tag is zero for the voice signal of a healthy person. Due to the 
large amount of training data being hard to prepare manually, any machine learning method is prone 
to over-fitting. In such a case, the data augmentation method can be used to increase the number of 
voice signals, which has been validated in the previous work. 

2.1.2. Feature extraction 

Features of each voice signal are extracted as the input of the machine learning method to perform 
the diagnosis of PD. These features can be handcrafted or learned from a large number of voice signals 
through deep learning methods. In the previous studies, most of the features are handcrafted, including 
fundamental frequency, jitter, shimmer, Mel-Frequency Cepstral Coefficients, etc. These features are 
then applied to identify the cases of PD when they are combined with an advanced classifier. However, 
these features heavily rely on the human experience and professional knowledge. Due to the 
uncertainty of the human experience and the limitation of professional knowledge, the designed 
features are often incomplete and even contradictory with each other. The ideal features should be 
relevant to the classification problem, while the relationship between these features should be 
irrelevant and orthogonal in the feature space. The features that can be combined from other features 
are redundant, such that they should be removed. Simultaneously, these features should be consistent 
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to ensure that the noisy features have been removed. In such circumstances, efficient feature selection 
methods should be applied to select the suitable ones. 

Apart from the above, since deep neural networks are most beneficial to deal with images, the 
voice signal of patients can be transformed to image data using short-time Fourier transform [46], in 
which both time and frequency information of signals are preserved. Subsequently, deep neural 
networks can be applied to extract features from the image of speech. However, these methods 
require a larger number of training data. When few training data are available, their extracted features 
easily make the model over-fit the training data, leading to bad generalization ability. It is much 
expected that the model can automatically learn features well even if there is only a small number 
of training samples. As a result, transfer learning can be used to solve this issue by obtaining features 
from other domains [47]. 

2.1.3. Machine learning method for classification 

After features of the speech signals were extracted, a couple of machine learning approaches were 
selected and then trained to identify PD. Generally, the best machine learning method should be 
selected, which is most useful to classify an individual person into healthy or a patient with PD. From 
previous research, there are various machine learning methods, such as NN, RF and SVM. Although 
the performance of the machine learning method might vary with the selected data sets and extracted 
features, RF and SVM were proven to provide the optimal results [48], while NBC performs well with 
reduced features [49]. However, when classes cannot be separated linearly in the feature space, a non-
linear mapping function should be applied to transform features to the higher dimensional space, e.g., 
by the kernel techniques. 

2.2. PDM 

In practice, various doctors diagnose the same person in different ways, leading to different results, 
i.e., partly correct and partly wrong. In such case, the best doctor should be selected to diagnose the 
person. However, the existent methods for PD are designed such that one machine learning method 
was trained and then used to classify all persons, which easily leads to some incorrect classification. 
To address the dilemma, PDM was proposed for Parkinson’s disease, as illustrated in Figure 2. This 
method was different from the ensemble technique for PD. In principle, the latter averaged all 
ensemble classifiers so that it was more stable to identify patients with PD. However, the ensemble 
technique reduced the ability of the best classifier in the ensemble. Theoretically, it is inferior to the 
best classifier. Additionally, it is unlike the model selection technique. The latter seeks the best 
classifier across all test samples as opposed to only one at a time. Because each doctor has unique 
strengths, it is believed that each patient has a particular ideal doctor to identify PD, where the progress 
of PD may be different from person to person. Thus, PDM determines the most appropriate classifier 
for each test patient, instead of using the same classifier to classify all test patients with PD. In our 
method, a new training set, D x , c  , should be created, where x   is the training sample 
composed of features from the patient speech signal, and c  is the tag as the best classifier to classify 
x . Subsequently, a meta-classifier is trained on this new training set and then used to choose the best 
classifier for each test patient. 
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Figure 2. Flowchart of PDM for Parkinson’s disease on the voice signal. 

2.2.1. Create classifiers 

PDM used lots of candidate classifiers to simulate the different doctors. It first selected the 
optimal classifier from the candidate ones through patients’ speech signals and then used the system 
to perform the diagnosis of PD. Thus, all candidate classifiers should be powerful and complementary, 
so as to form a diversity to correctly classify all kinds of testing patients. To date, there have been 
many methods available to generate candidate classifiers. Therefore, we can directly adopt the method 
of generating base classifiers in ensemble learning. For example, for the same machine learning 
method, classifiers with different performances can be created by selecting different training subsets. 
Particle swarm optimization method can be used to select an optimized training subset for each 
candidate classifier that is optimal for identifying PD. The advantages are that a large number of 
candidate classifiers can be generated easily. However, these created classifiers may become easily 
similar, resulting in poor diversity. The other method uses heterogeneous machine learning methods to 
create candidate classifiers, with its superiority in maintaining the diversity easily. Our method used 
this method to create the candidate classifiers to perform the diagnosis of PD. 
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2.2.2. Labeling each voice sample with the classifier name 

Let X = {x |x ∈ R   be the training data composed of n-dimensional feature vectors from 
speech signals of both patients with PD and healthy persons, Y = {y |y ∈ 0,1  be the matching label 
set and C c  be composed of classifiers. The classifier c  can be used to categorize each voice 
signal feature vector x  and then measure the probability that x  can be correctly classified by c . 
We use the k-fold cross validation method to determine the training subset from the whole data. That 
is, feature vectors in (k−1) folds are applied to form the training subset, on which each classifier is 
trained to classify all data. If the feature vector is classified correctly, this classifier is suitable to 
perform the diagnosis of PD, so that this feature vector is labeled by the name of the classifier. 
According to the k-fold cross-validation method, the whole data are decomposed as follows: 

X ∪ X , X ∩ X ϕ, |X | |X |        (1) 

 Y ∪ Y , |Y | |X | (2) 

Suppose that the classifier c  is trained on the subset X , and its decision function is defined by 

 f
, ⊂ : X → Y  (3) 

The prior probability that the classifier c  can correctly classify any patient in the training data 
can be computed as follows, where 1|f , x y  indicates that if x  is correctly classified, 
the value is 1, and else it is zero. 

 P c ∑  ∑  | | 1 ∣ f , x y  (4) 

Similarly, the prior probability that the classifier c  can correctly perform the diagnosis of PD 
for x  is computed by 

 P x ∣∣ c ∑  1 ∣ f , x y  (5) 

However, our goal is to choose the optimal classifier for the test patient. That is, P c |x  is 
required, which is the probability that each classifier should be chosen for the test patient. Subsequently, 
the classifier with the biggest probability is selected to classify each test patient. P c |x  can be 
computed according to the Bayesian theorem: 

 P c |x ∣
 (6) 

As the test patient x  is the same for all classifiers, P x  can be omitted. This is consistent 
with the assumption that NBC makes. Subsequently, the classifier name is tagged to each training 
speech signal so as to create a new training data set D, where the probability of the selected classifier 

is bigger than the given threshold θ. 
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 D x , c ∣ x ∈ X, c ∈ C, P c ∣ x θ  (7) 

 S ⋃  | | D  (8) 

 D x, c ∣ x ∈ S, c arg maxP c ∣ x  (9) 

2.2.3. Selecting the classifier for the test sample 

Once D is constructed, with samples labeled with the classifier names, a meta-classifier, φ, is 
trained on D so as to obtain a new decision function: 

hφ, : X → 2           (10) 

c arg maxP c ∈ hφ, x         (11) 

Subsequently, the classifier c selected by the meta-classifier can be applied to perform the 
diagnosis for the test patient x. 

3. Experiments and results 

Experiments on two benchmark data sets were conducted to validate the proposed system by 
using the most used classifiers. Despite the fact that the validation can use a variety of evaluation 
indicators, the accuracy was often taken as the indicator, the indicator in our experiments. Additionally, 
the confusion matrix was used. 

3.1. Data sets 

Parkinson’s Disease Classification Data Set (D1) [50]. The data were composed of two classes, 754 
features and 756 samples, among which 192 were from patients with PD. The sets’ features included 
features of time frequency, vocal fold features, features of tunable Q-factor wavelet transform (TQWT), 
Mel-Frequency Cepstral Coefficients, features by wavelet transform and so on. 

Oxford Parkinson’s Disease Detection Data set (D2) [51]. The data include the unified 
Parkinson’s disease rating scale (UPDRS) for evaluating the symptoms severity of the patients with 
PD. In order to perform the classification, we constructed new data with two classes from this data. 
One class was composed of patients with the symptom severity less than 0.5, having 3154 samples, 
and the remaining 2721 samples constituted the other class. As a result, the newly constructed data had 
two classes and 5875 samples with 18 features. 

3.2. Comparison of different classifiers for PD 

In previous work, lots of classifiers have been applied to recognize patients with PD. In this 
section, some experiments were conducted to validate these classifiers for the recognition of PD and 
then choose candidate classifiers from them for PDM, in which all classifiers use their default 
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parameters. As shown in Tables 1 and 2, RF obtained the best performance on two data sets and also 
had the smaller standard deviation, indicating that it is very stable. This is consistent with the previous 
research. Furthermore, RF significantly outperforms DT, because it is composed of lots of DT. By 
comparison, SVM and NN worked better on different data, respectively. Simultaneously, SVM 
generally worked better on the limited data, so it was taken as the meta-classifier in PDM that arranged 
the classifier for each patient to be tested. 

Table 1. Experimental results of different classifiers on D1. 

Method Accuracy 

Softmax 0.8651 ± 0.0112 

LDA 0.6574 ± 0.0365 

QDA 0.4500 ± 0.2486 

NBC 0.7460 ± 0.0034 

DT 0.8174 ± 0.0307 

RF 0.8809 ± 0.0172 

AdaBoost 0.7923 ± 0.0388 

SVM 0.7434 ± 0.0020 

NN 0.8598 ± 0.0340 

Table 2. Experimental results of different classifiers on D2. 

Methods Accuracy 

Softmax 0.6306 ± 0.0074 

LDA 0.6363 ± 0.0049 

QDA 0.6106 ± 0.0141 

NBC 0.6165 ± 0.0212 

DT 0.9154 ± 0.0062 

RF 0.9260 ± 0.0079 

AdaBoost 0.6381 ± 0.0107 

SVM 0.8945 ± 0.0021 

NN 0.6929 ± 0.0098 

3.3. Comparison of proposed method with different candidate classifiers for the performance 

As demonstrated above, RF worked best among all classifiers. DT is also nice but simpler. DT 
has been widely used for the classification, as it can be constructed easily with higher efficiency. It is 
readable and descriptive, so it is very useful for the diagnosis of PD. In practice, DT also worked fast, 
as the maximum calculation times of each prediction did not exceed the depth of the decision tree. RF 
was a method that used the concept of ensemble learning to integrate various decision trees, handling 
a large number of input features without variable deletion and working effectively on the larger training 
data. Also, it could estimate the importance of variables for the classification. Furthermore, the 
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accuracy of RT kept constant when lots of data were missing. Accordingly, both DT and RF were 
selected as candidate classifiers for PDM. They were compared via experiments so as to validate the 
proposed PDM. As shown in Table 3, PDM outperforms both RF and DT in accuracy on any data 
measurement. Although RF was composed of lots of DT, DT was a good complement to RF, classifying 
the same patient by virtue of different abilities. 

Table 3. Experimental results of PDM on Parkinson’s disease data sets. 

Database Method Accuracy 

D1 

 

RF 0.8678 ± 0.0283 

DT 0.7910 ± 0.0353 

PDM 0.8770 ± 0.0334 

D2 

 

RF 0.9232 ± 0.0111 

DT 0.9244 ± 0.0100 

PDM 0.9275 ± 0.0109 

However, due to the imbalance of data, for the performance analysis of a classifier, accuracy is a 
poor performance indicator. A classifier that has been trained with the unbalanced data will typically 
predict a class that belongs to the majority and disregard the minority. In such a case, the confusion 
matrix can be used to make the comparison in a more fair way. In the field of machine learning, the 
confusion matrix is a specific matrix used to present the visualization effect of classification performance, 
whose columns represent the predicted values and rows represent the actual classes. By using the 
confusion matrix, we can easily indicate whether different classes are confused. The confusion matrix, 
which is a two-row and two-column table in the prediction analysis, is made up of false positives, false 
negatives, true positives, and true negatives. The matrix allowed us to do more analysis such as the 
precision and recall, not just limited to the accuracy. For example, if there were 564 healthy samples 
but only 192 samples with Parkinson’s disease in a data set, some classifiers may be more likely to 
predict all samples as healthy ones. As illustrated in Tables 4 to 9, PDM not only outperformed RF and 
DT by accuracy on the two data but also obtained better results from the viewpoint of the confusion 
matrix. In a word, PDM classifies the patients with PD more accurately. 

Table 4. Confusion matrix of DT on data D1. 

predicted→ Parkinson              ∼Parkinson 

Parkinson 108                     84 

∼Parkinson 74                      490 
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Table 5. Confusion matrix of RF on data D1. 

predicted→ Parkinson              ∼Parkinson 

Parkinson 107                     85 

∼Parkinson 15                      549 

Table 6. Confusion matrix of PDM on data D1. 

predicted→ Parkinson              ∼Parkinson 

Parkinson 116                     76 

∼Parkinson 17                      547 

Table 7. Confusion matrix of DT on data D2. 

predicted→ Parkinson              ∼Parkinson 

Parkinson 2914                    240 

∼Parkinson 211                     2510 

Table 8. Confusion matrix of RF on data D2. 

predicted→ Parkinson              ∼Parkinson 

Parkinson 2927                    227 

∼Parkinson 217                     2504 

Table 9. Confusion matrix of PDM on data D2. 

predicted→ Parkinson              ∼Parkinson 

Parkinson 2939                    215 

∼Parkinson 211                     2510 
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3.4. Comparison of proposed method with different candidate classifiers for the applications 

Lots of systems have been applied to identify PD at the early stage, reducing the uncomfortable 
clinical check and the strain of doctors. The typical system is a smartphone app, which uses multi-
modal fusion to supply useful diagnosis recommendations for PD patients. The system captures 
speech signals from sensors installed on the smartphone [52]. In such applications, the speed and 
simplicity of machine learning methods for PD become more important. Among all compared 
classifiers, NBC and DT have been validated in recognizing PD in speed. They can be easily installed 
in the smartphone. In this section, they are selected as candidate classifiers for experiments. NBC 
can achieve good results even in many complex situations, despite its simple ideas and simplistic 
assumptions. NN have been applied to recognize PD [53], generally referring to the simple feed 
forward neural network. It has strong nonlinear mapping ability. Thus, NBC, DT, and NN were 
selected as candidate classifiers for PDM and then compared through experiments. Table 10 shows 
that PDM outperformed all compared methods on any data in terms of the accuracy and the standard 
deviation. It is also illustrated that DT is really complementary to NBC and NN, for they had different 
abilities to classify voice samples of PD. Simultaneously, PDM was more stable, as it obtained a lesser 
standard deviation. 

Table 10. Experimental results of PDM on Parkinson’s disease. 

Database Methods Accuracy 

D1 

 

NBC 0.7447 ± 0.0072 

DT 0.8121 ± 0.0286 

PDM 0.8703 ± 0.0156 

D2 

 

NN 0.6917 ± 0.0069 

DT 0.9220 ± 0.0070 

PDM 0.9220 ± 0.0059 

In addition, these methods were compared by means of the confusion matrix. Table 11 to Table 13 
reveal that NBC worked much worse on data D1. Although its overall accuracy was 0.7447 with the 
standard deviation 0.0072, it classified almost all samples into the healthy persons, including patients 
with Parkinson’s disease. That is, it failed to recognize PD correctly. By comparison, PDM worked best 
on the whole, surpassing both NBC and DT on data D1. However, it was still influenced by NBC, 
leading to some classification errors. This illustrates that PDM heavily depended on its candidate 
classifiers, which should be selected carefully. Simultaneously, Tables 14 to 16 suggest that NN did 
not work well on data D2. Although PDM and DT obtained the same accuracy, PDM obtained the 
better results from the viewpoint of the confusion matrix and the smaller standard deviation. It is more 
stable than DT on D2. 
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Table 11. Confusion matrix of NBC on D1. 

predicted→ Parkinson              ∼Parkinson 

Parkinson 1                       191 

∼Parkinson 2                       562 

Table 12. Confusion matrix of DT on D1. 

predicted→ Parkinson              ∼Parkinson 

Parkinson 126                     66 

∼Parkinson 76                      488 

Table 13. Confusion matrix of PDM on D1. 

predicted→ Parkinson              ∼Parkinson 

Parkinson 103                     89 

∼Parkinson 9                       555 

Table 14. confusion matrix of NN on data D2. 

predicted→ Parkinson              ∼Parkinson 

Parkinson 2492                    662 

∼Parkinson 1149                    1572 

Table 15. Confusion matrix of DT on data D2. 

predicted→ Parkinson              ∼Parkinson 

Parkinson 2912                    242 

∼Parkinson 216                     2505 
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Table 16. Confusion matrix of PDM on data D2. 

predicted→ Parkinson              ∼Parkinson 

Parkinson 2923                    231 

∼Parkinson 227                     2494 

4. Conclusions 

Parkinson’s disease should be diagnosed and treated as early as possible in order to delay the 
process of neurodegeneration. This paper presents a new personalized diagnosis method for 
Parkinson’s disease. The novelty of our method is that it can use different classifiers to perform the 
diagnosis of PD from patient to patient, whereas the current method always uses the same classifier to 
perform the diagnosis for all test patients. Particularly, the method to create a meta-classifier is also 
proposed, by which the appropriate classifier can be automatically selected for each test patient. The 
proposed method reveals its advantage in that it can select simple diagnostic methods as candidate 
ones, superior to some complicated methods such as ensemble methods in both performance and 
efficiency. This method is more suitable for running in portable devices such as smart phones, so that 
each person can diagnose himself any time and then treat himself as early as possible. In our method 
for PD, the candidate classifiers are very crucial, as they should be not only simple but also 
complementary. Simultaneously, this paper only considers the diagnosis method, without considering 
the feature extraction method. As a matter of fact, the feature extraction is highly related to the 
diagnosis method and hence should be considered at the same time. All these issues are to be further 
explored in the future. 
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