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Abstract: Silicate minerals make up the majority of the earth’s crust and account for almost 92 percent
of the total. Silicate sheets, often known as silicate networks, are characterised as definite connectivity
parallel designs. A key idea in studying different generalised classes of graphs in terms of planarity is
the face of the graph. It plays a significant role in the embedding of graphs as well. Face index is a
recently created parameter that is based on the data from a graph’s faces. The current draft is utilizing
a newly established face index, to study different silicate networks. It consists of a generalized chain of
silicate, silicate sheet, silicate network, carbon sheet, polyhedron generalized sheet, and also triangular
honeycomb network. This study will help to understand the structural properties of chemical networks
because the face index is more generalized than vertex degree based topological descriptors.

Keywords: silicate networks; polyhedron generalized sheet; triangular honeycomb network; carbon
sheet; face index; topological index

1. Introduction

To exemplify the phenomena of compounds scientifically, researchers utilize the contraption of
the diagrammatic hypothesis, it is a well-known branch of geometrical science named graph theory.
This division of numerical science provides its services in different fields of sciences. The particular
example in networking [1], from electronics [2], and for the polymer industry, we refer to see [3].
Particularly in chemical graph theory, this division has extra ordinary assistance to study giant and
microscope-able chemical compounds. For such a study, researchers made some transformation rules
to transfer a chemical compound to a discrete pattern of shapes (graph). Like, an atom represents as a
vertex and the covalent bonding between atoms symbolized as edges. Such transformation is known as
molecular graph theory. A major importance of this alteration is that the hydrogen atoms are omitted.
Some chemical structures and compounds conversion are presented in [4–6].

In cheminformatics, the topological index gains attraction due to its implementations. Various
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topological indices help to estimate a bio-activity and physicochemical characteristics of a chemical
compound. Some interesting and useful topological indices for various chemical compounds are
studied in [3, 7, 8]. A topological index modeled a molecular graph or a chemical compound into a
numerical value. Since 1947, topological index implemented in chemistry [9], biology [10], and
information science [11, 12]. Sombor index and degree-related properties of simplicial networks [13],
Nordhaus–Gaddum-type results for the Steiner Gutman index of graphs [14], Lower bounds for
Gaussian Estrada index of graphs [15], On the sum and spread of reciprocal distance Laplacian
eigenvalues of graphs in terms of Harary index [16], the expected values for the Gutman index,
Schultz index, and some Sombor indices of a random cyclooctane chain [17–19], bounds on the
partition dimension of convex polytopes [20, 21], computing and analyzing the normalized Laplacian
spectrum and spanning tree of the strong prism of the dicyclobutadieno derivative of linear
phenylenes [22], on the generalized adjacency, Laplacian and signless Laplacian spectra of the
weighted edge corona networks [23, 24], Zagreb indices and multiplicative Zagreb indices of Eulerian
graphs [25], Minimizing Kirchhoff index among graphs with a given vertex bipartiteness, [26],
asymptotic Laplacian energy like invariant of lattices [27]. Few interesting studies regarding the
chemical graph theory can be found in [28–32].

Recently, the researchers of [33] introduced a topological descriptor and called the face index.
Moreover, the idea of computing structure-boiling point and energy of a structure, motivated them to
introduced this parameter without heavy computation. They computed these parameters for different
models compare the results with previous literature and found approximate solutions with
comparatively less computations. This is all the blessings of face index of a graph. The major
concepts of this research work are elaborated in the given below definitions.

Figure 1. An example of face degree.

Definition 1.1. [33] Let a graph G = (V(G), E(G), F(G)) having face, edge and vertex sets notation
with F(G), E(G),V(G), respectively. It is mandatory that the graph is connected, simple and planar. If
e from the edge set E(G), is one of those edges which surrounds a face, then the face f from the face
set F(G), is incident to the edge e. Likewise, if a vertex α from the vertex set V(G) is at the end of those
incident edges, then a face f is incident to that vertex. This face-vertex incident relation is symbolized
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here by the notation α ∼ f . The face degree of f in G is described as d( f ) =
∑
α∼ f d (α), which are

elaborated in the Figure 1.

Definition 1.2. [33] The face index FI (G) , for a graph G, is formulated as

FI (G) =
∑

f∈F(G)

d( f ) =
∑

α∼ f , f∈F(G)

d (α).

In the Figure 1, we can see that there are two faces with degree 4, exactly two with five count and
four with count of 6. Moreover, there is an external face with count of face degree 28, which is the
count of vertices.

As the information given above that the face index is quite new and introduced in the year 2020,
so there is not so much literature is available. A few recent studies on this topic are summarized
here. A chemical compound of silicon carbides is elaborated with such novel definition in [34]. Some
carbon nanotubes are discussed in [35]. Except for the face index, there are distance and degree-based
graphical descriptors available in the literature. For example, distance-based descriptors of phenylene
nanotube are studied in [36], and in [37] titania nanotubes are discussed with the same concept. Star
networks are studied in [38], with the concept of degree-based descriptors. Bounds on the descriptors
of some generalized graphs are discussed in [39]. General Sierpinski graph is discussed in [40], in
terms of different topological descriptor aspects. The study of hyaluronic acid-doxorubicin ar found
in [41], with the same concept of the index. The curvilinear regression model of the topological index
for the COVID-19 treatment is discussed in [42]. For further reading and interesting advancements
of topological indices, polynomials of zero-divisor structures are found in [43], zero divisor graph of
commutative rings [44], swapped networks modeled by optical transpose interconnection system [45],
metal trihalides network [46], some novel drugs used in the cancer treatment [47], para-line graph
of Remdesivir used in the prevention of corona virus [48], tightest nonadjacently configured stable
pentagonal structure of carbon nanocones [49]. In order to address a novel preventive category (P) in
the HIV system known as the HIPV mathematical model, the goal of this study is to offer a design of
a Morlet wavelet neural network (MWNN) [50].

In the next section, we discussed the newly developed face index or face-based index for different
chemical compounds. Silicate network, triangular honeycomb network, carbon sheet, polyhedron
generalized sheet, and generalized chain of silicate network are studied with the concept of the
face-based index. Given that the face index is more versatile than vertex degree-based topological
descriptors, this study will aid in understanding the structural characteristics of chemical networks.
Only the difficulty authors will face to compute the face degree of a generalized network or structure,
because it is more generalized version and taking degree based partition of edges into this umbrella of
face index.

2. Results on the face index of chemical networks

Silicates are formed when metal carbonates or metal oxides react with sand. The S iO4, which has
a tetrahedron structure, is the fundamental chemical unit of silicates. The central vertex of the S iO4

tetrahedron is occupied by silicon ions, while the end vertices are occupied by oxygen ions [51–53]. A
silicate sheet is made up of rings of tetrahedrons that are joined together in a two-dimensional plane by
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oxygen ions from one ring to the other to form a sheet-like structure. The silicate network S Ln symbol,
where n represents the total number of hexagons occurring between the borderline and center of the
silicate network S Ln. The silicate network of dimension one is depicted in Figure 2. It contain total
3n (5n + 1) vertices are 36n2 edges. Moreover, the result required is detailed are available in Table 1.

Theorem 2.1. Let S Ln be the silicate network of dimension n ≥ 1. Then the face index of S Ln is

FI (S Ln) = 126n2 + 720n + 558.

Proof. Consider S Ln the graph of silicate network with dimension n. Suppose fi denotes the faces of
graph S Ln having degree i. that is, d( fi) =

∑
α∼ fi d (α) = i and | fi| denotes the number of faces with

degree i. The graph S Ln contains three types of internal faces f12, f15, f36, and single external face
which is usually denoted by f∞.

If S Ln has one dimension then sum of degree of vertices incident to the external face is 144 and when
S Ln has two dimension then sum of degree of incident vertices to the external face is 204 whenever
S Ln has three dimension then sum of degree of incident vertices to the external face is 264. Similarly,
S Ln has n−dimension then sum of degree of incident vertices to the external face is 60n + 84.

The number of internal faces with degree in each dimension is mentioned in Table 1.

Figure 2. A silicate network S L1
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Table 1. The number of f12, f15 and f36 in each dimension.

Dimension | f12| | f15| | f36|

1 24 48 7
2 32 94 14
3 40 152 23
4 48 222 34
5 56 304 47
6 64 398 62
7 72 504 79
8 80 622 98
. . . .
. . . .
. . . .
n 8n + 16 6n2 + 28n + 14 n2 + 4n + 2

By using the definition of face index FI we have

FI (S Ln) =
∑

α∼ f∈F(S Ln)

d (α)

=
∑

α∼ f12∈F(S Ln)

d (α) +
∑

α∼ f15∈F(S Ln)

d (α) +
∑

α∼ f36∈F(S Ln)

d (α) +
∑

α∼ f∞∈F(S Ln)

d (α)

=| f12|(12) + | f15|(15) + | f36|(36) + (60n + 84)
=(8n + 16)(12) + (6n2 + 28n + 14)(15) + (n2 + 4n + 2)(36) + 60n + 84
=126n2 + 72n + 558.

Hence, this is our required result. □

A chain silicate network of dimension (m, n) is symbolized as CS L (m, n) which is made by
arranging (m, n) tetrahedron molecules linearly. A chain silicate network of dimension (m, n) with
m, n ≥ 1 where m denotes the number of rows and each row has n number of tetrahedrons. The
following theorem formulates the face index FI for chain silicate network.

Theorem 2.2. Let CS L (m, n) be the chain of silicate network of dimension m, n ≥ 1. Then the face
index FI of the graph CS L (m, n) is

FI (CS L (m, n)) =



48n − 12 if m = 1, n ≥ 1;
96m − 12 if n = 1, m ≥ 2;
168m − 60 if n = 2,m ≥ 2;
45m − 9n + 36mn − 42 if both m, n are even
45m − 9n + 36mn − 21 otherwise.

Proof. Let CS L (m, n) be the graph of chain silicate network of dimension (m, n) with m, n ≥ 1 where m
represents the number of rows and n is the number of tetrahedrons in each row. A graph CS L (m, n) for
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m = 1 contains three type of internal faces f9, f12 and f15 with one external face f∞.While for m ≥ 2,
it has four type of internal faces f9, f12, f15 and f36 with one external face f∞.We want to evaluate the
algorithm of face index FI for chain silicate network. We will discuss it in two different cases.

Case 1: When CS L (m, n) has one row (m = 1) with n number of tetrahedrons as shown in the
Figure 3.
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Figure 3. Chain silicate network CS L (m, n) with particular value of m = 1.
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Figure 4. Chain silicate network CS L (m, n).

The graph has three type of internal faces f9, f12 and f15 with one external face f∞. The sum of
degree of incident vertices to the external face is 9n and number of faces are | f9| = 2, | f12| = 2n and
| f15| = n − 2. Now the face index FI of the graph CS L (m, n) is given by

FI (CS L (m, n)) =
∑

α∼ f∈F(CS L(m,n))

d (α)

=
∑

α∼ f9∈F(CS L(m,n))

d (α) +
∑

α∼ f12∈F(CS L(m,n))

d (α) +
∑

α∼ f15∈F(CS L(m,n))

d (α)

+
∑

α∼ f∞∈F(CS L(m,n))

d (α)

=| f9|(9) + | f12|(12) + | f15|(15) + (9n)
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=(2)(9) + (2n)(12) + (n − 2)(15) + 9n

=48n − 12.

Case 2: When CS L (m, n) has more than one rows (m , 1) with n number of tetrahedrons in each
row as shown in the Figure 4.

The graph has four type of internal faces f9, f12, f15 and f36 with one external face f∞. The sum of
degree of incident vertices to the external face is

∑
α∼ f∞∈F(CS L(m,n))

d (α) =


18m if n = 1, m ≥ 1;
27m if n = 2, m ≥ 1;
30m + 15n − 30 if both m, n are even
30m + 15n − 33 otherwise.

The number of faces are | f9|, | f12|, f15 and | f36| are given by

| f9| =

2 if m is odd
3 + (−1)n if m is even.

| f12| =

2(2m + n − 1) if m is odd
4(⌊n+1

2 ⌋ + 2m − 1) if m is even

| f15| =(3m − 2)n − m

| f36| =

(m−1
2 )(n − 1) if m is odd

(2n+(−1)n−1
4 )(m−2

2 )n if m is even.

Now the face index FI of the graph CS L (m, n) is given by

FI (CS L (m, n)) =
∑

α∼ f∈F(CS L(m,n))

d (α)

=
∑

α∼ f9∈F(CS L(m,n))

d (α) +
∑

α∼ f12∈F(CS L(m,n))

d (α) +
∑

α∼ f15∈F(CS L(m,n))

d (α)

+
∑

α∼ f36∈F(CS L(m,n))

d (α) +
∑

α∼ f∞∈F(CS L(m,n))

d (α)

=| f9|(9) + | f12|(12) + | f15|(15) + | f36|(36) +
∑

α∼ f∞∈F(CS L(m,n))

d (α).

After some mathematical simplifications, we can get

FI (CS L (m, n)) =



48n − 12 if m = 1
96m − 12 if n = 1,∀ m

168m − 60 if n = 2,∀ m

45m − 9n + 36mn − 42 if both m, n are even
45m − 9n + 36mn − 21 otherwise.

□
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There are three regular plane tessellations known to exist, each constituted from the same type of
regular polygon: triangular, square, and hexagonal. The triangular tessellation is used to define the
hexagonal network, which is extensively studied in [54]. A dimensioned hexagonal network T Hk has
3k2 − 3k + 1 vertices and 9k2 − 15k + 6 edges, where k is the number of vertices on one side of the
hexagon. It has 2k − 2 diameter. There are six vertices of degree three that are referred to as corner
vertices. Moreover, the result required detailed are available in the Table 2.

Theorem 2.3. Let T Hk be the triangular honeycomb network of dimension k ≥ 1. Then the face index
of graph T Hk is

FI (T Hk) = 324k2 − 336k + 102.

Proof. Consider T Hk be a graph of triangular honeycomb network. The graph T H1 has one internal
and only one external face while graph T Hk with k ≥ 2, contains four types of internal faces f12, f14,

f17, and f18 with one external face f∞.

For T H1 the sum of degree of incident vertices to the external face is 18 and in T H2 the sum of
degree of incident vertices to the external face is 66. Whenever the graph T H3, the sum of degree of
incident vertices to the external face is 114. Similarly, for T Hk has n−dimension then sum of degree of
incident vertices to the external face is 48k − 30.

The number of internal faces with degree in each dimension is given in Table 2.

Figure 5. Triangular honeycomb network with dimension k = 3.
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Table 2. The number of f12, f14, f17 and f18 in each dimension.

Dimension | f12| | f14| | f17| | f18|

1 6 0 0 0
2 6 12 12 12
3 6 24 24 60
4 6 36 36 144
5 6 48 48 264
6 6 60 60 420
7 6 72 72 612
8 6 84 84 840
. . . . .
. . . . .
. . . . .
k 6 12(k − 1) 12(k − 1) 18k2 − 42k + 24

By using the definition of face index FI we have

FI (T Hk) =
∑

α∼ f∈F(T Hk)

d (α)

=
∑

α∼ f12∈F(T Hk)

d (α) +
∑

α∼ f14∈F(T Hk)

d (α) +
∑

α∼ f17∈F(T Hk)

d (α)

+
∑

α∼ f18∈F(T Hk)

d (α) +
∑

α∼ f∞∈F(T Hk)

d (α)

=| f12|(12) + | f14|(14) + | f17|(17) + | f18|(18) + (48k − 30)
=(6)(12) + (12(k − 1))(14) + (12(k − 1))(17) + (18k2 − 42k + 24)(18) + 48k − 30
=324k2 − 336k + 102.

Hence, this is our required result. □

Given carbon sheet in the Figure 6, is made by grid of hexagons. There are few types of carbon
sheets are given in [55, 56]. The carbon sheet is symbolize as HCS m,n, where n represents the total
number of vertical hexagons and m denotes the horizontal hexagons. It contain total 4mn+2 (n + m)−1
vertices and 6nm + 2m + n − 2 edges. Moreover, the result required detailed are available in Tables 3
and 4.

Theorem 2.4. Let HCS m,n be the carbon sheet of dimension (m, n) and m, n ≥ 2. Then the face index
of HCS m,n is

FI
(
HCS m,n

)
=

70n + 2 if m = 2
36mn − 14 − 2 (n − 4m) if m ≥ 3.

Proof. Consider HCS m,n be the carbon sheet of dimension (m, n) and m, n ≥ 2. Let fi denotes the faces
of graph HCS m,n having degree i, which is d( fi) =

∑
α∼ fi d (α) = i, and | fi| denotes the number of faces

with degree i. A graph HCS m,n for a particular value of m = 2 contains three types of internal faces
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f15, f16, f17 and f18 with one external face f∞.While for the generalize values of m ≥ 3, it contain four
types of internal faces f15, f16 and f17 with one external face f∞ in usual manner. For the face index of
generalize nanotube, we will divide into two cases on the values of m.

Case 1: When HCS m,n has one row or HCS 2,n.

A graph HCS m,n for a this particular value of m = 2 contains three types of internal faces | f15| = 3,
| f16| = 2 (n − 1) and | f18| = n − 1 with one external face f∞. For the face index of carbon sheet, details
are given in the Table 3. Now the face index FI of the graph NT2,n is given by

FI
(
HCS 2,n

)
=

∑
α∼ f∈F(HCS 2,n)

d (α)

=
∑

α∼ f15∈F(HCS 2,n)
d (α) +

∑
α∼ f16∈F(HCS 2,n)

d (α)+

∑
α∼ f18∈F(HCS 2,n)

d (α) +
∑

α∼ f∞∈F(HCS 2,n)
d (α)

=| f15|(15) + | f16|(16) + | f18|(18) + 20n + 7.
=3(15) + 2 (n − 1) (16) + (n − 1) (18) + 20n + 7.
=70n + 2.

Table 3. The number of f15, f16, and f18 in each dimension.

Dimension m | f15| | f16| | f18| | f∞|
2 3 2 (n − 1) n − 1 20n + 7

Table 4. The number of f15, f16, f17, f18, and f∞ in each dimension.

Dimension m | f15| | f16| | f17| | f18| | f∞|
2 3 2 (n − 1) 0 n − 1 20n + 7
3 2 2n 1 3 (n − 1) 20n + 17
4 2 2n 3 5 (n − 1) 20n + 27
5 2 2n 5 7 (n − 1) 20n + 37
6 2 2n 7 9 (n − 1) 20n + 47
. . . . . .
. . . . . .
. . . . . .
m 2 2n 2m − 5 2mn − 2m − 3n + 3 20n + 10m − 13

Case 2: When HCS m,n has m ≥ 3 rows.
A graph HCS m,n for generalize values of m ≥ 3 contains four types of internal faces | f15| = 2,

| f16| = 2n, | f17| = 2m − 5 and | f18| = 2mn − 2m − 3n + 3 with one external face f∞. For the face index
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of carbon sheet, details are given in the Table 4. Now the face index FI of the graph NTm,n is given by

FI
(
HCS m,n

)
=

∑
α∼ f∈F(HCS m,n)

d (α)

=
∑

α∼ f15∈F(HCS m,n)
d (α) +

∑
α∼ f16∈F(HCS m,n)

d (α) +
∑

α∼ f17∈F(HCS m,n)
d (α)

+
∑

α∼ f18∈F(HCS m,n)
d (α) +

∑
α∼ f∞∈F(HCS m,n)

d (α)

=| f15|(15) + | f16|(16) + | f17|(17) + | f18|(18) + 20n + 10m − 13.
=36mn − 2n + 8m − 14.

□

1 3 5 n

1

2

m

Figure 6. Carbon Sheet HCS m,n.

Figure 7. Polyhedron generalized sheet of C∗28 for m = n = 1, or PHS 1,1.

Mathematical Biosciences and Engineering Volume 20, Issue 5, 8031–8048.



8042

Given structure of polyhedron generalized sheet of C∗28 in the Figure 7, is made by generalizing a
C∗28 polyhedron structure which is shown in the Figure 8. This particular structure of C∗28 polyhedron
are given in [57]. The polyhedron generalized sheet of C∗28 is as symbolize PHS m,n, where n represents
the total number of vertical C∗28 polyhedrons and m denotes the horizontal C∗28 polyhedrons. It contain
total 23nm + 3n + 2m vertices and 33nm + n + m edges. Moreover, the result required detailed are
available in Tables 3 and 5.

Theorem 2.5. Let PHS m,n be the polyhedron generalized sheet of C∗28 of dimension (m, n) and m, n ≥ 1.
Then the face index of PHS m,n is

FI
(
PHS m,n

)
= 210mn − 2 (3m + 5n) .

Proof. Consider PHS m,n be the polyhedron generalized sheet of C∗28 of dimension (m, n) and m, n ≥ 1.
Let fi denotes the faces of graph PHS m,n having degree i, which is d( fi) =

∑
α∼ fi d (α) = i, and | fi|

denotes the number of faces with degree i. A graph PHS m,n for the generalize values of m, n ≥ 1, it
contain seven types of internal faces f14, f15, f16, f17, f18, f20 and f35 with one external face f∞ in usual
manner. For the face index of polyhedron generalized sheet, details are given in the Table 5.

Table 5. The number of f14, f15, f16, f17, f18, f20, and f35 in each dimension.

m | f14| | f15| | f16| | f17| | f18| | f20| | f35|

1 2n + 1 2 4n − 2 0 0 2n − 1 0
2 2n + 2 2 8n − 2 2 2n − 2 4n − 2 2n − 1
3 2n + 3 2 12n − 2 4 4n − 4 6n − 3 4n − 2
. . . . . . . .
. . . . . . . .
. . . . . . . .
m 2n + m 2 4mn − 2 2m − 2 2mn − 2 (m + n) + 2 2mn − m 2mn − (m + 2n) + 1

□

A graph PHS m,n for generalize values of m, n ≥ 1 contains seven types of internal faces | f14| =

2n +m, | f15| = 2, | f16| = 4nm − 2, | f17| = 2 (m − 1) , | f18| = 2nm − 2 (m + n) + 2, | f20| = 2nm − 2mn −m,
and | f35| = 2mn −m − 2n + 1 with one external face f∞. Now the face index FI of the graph PHS m,n is
given by

FI
(
PHS m,n

)
=

∑
α∼ f∈F(PHS m,n)

d (α)

=
∑

α∼ f14∈F(PHS m,n)
d (α) +

∑
α∼ f15∈F(PHS m,n)

d (α) +
∑

α∼ f16∈F(PHS m,n)
d (α)

+
∑

α∼ f17∈F(PHS m,n)
d (α) +

∑
α∼ f18∈F(PHS m,n)

d (α) +
∑

α∼ f20∈F(PHS m,n)
d (α)

+
∑

α∼ f35∈F(PHS m,n)
d (α) +

∑
α∼ f∞∈F(PHS m,n)

d (α)
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=| f14|(14) + | f15|(15) + | f16|(16) + | f17|(17) + | f18|(18) + | f20|(20) + | f35|(35)
+ 37m + 68n − 35.
=210mn − 6m − 10n.

1 2 n

1

2

m

Figure 8. Polyhedron generalized sheet of C∗28 or PHS m,n.

3. Conclusions

With the advancement of technology, types of equipment and apparatuses of studying different
chemical compounds are evolved. But topological descriptors or indices are still preferable and useful
tools to develop numerical science of compounds. Therefore, from time to time new topological
indices are introduced to study different chemical compounds deeply. In this study, we discussed a
newly developed tool of some silicate type networks and generalized sheets, carbon sheet, polyhedron
generalized sheet, with the face index concept. It provides numerical values of these networks based
on the information of faces. It also helps to study physicochemical characteristics based on the faces
of silicate networks.
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