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Abstract: Protein secondary structure is the basis of studying the tertiary structure of proteins, drug 

design and development, and the 8-state protein secondary structure can provide more adequate protein 

information than the 3-state structure. Therefore, this paper proposes a novel method WG-ICRN for 

predicting protein 8-state secondary structures. First, we use the Wasserstein generative adversarial 

network (WGAN) to extract protein features in the position-specific scoring matrix (PSSM). The 

extracted features are combined with PSSM into a new feature set of WG-data, which contains richer 

feature information. Then, we use the residual network (ICRN) with Inception to further extract the 

features in WG-data and complete the prediction. Compared with the residual network, ICRN can 

reduce parameter calculations and increase the width of feature extraction to obtain more feature 

information. We evaluated the prediction performance of the model using six datasets. The 

experimental results show that the WGAN has excellent feature extraction capabilities, and ICRN can 

further improve network performance and improve prediction accuracy. Compared with four popular 

models, WG-ICRN achieves better prediction performance. 

Keywords: residual network; Wasserstein generative adversarial network; inception; prediction of 

protein 8-state secondary structures 
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1. Introduction 

Proteins play an extremely important role in our daily activities, with functions such as immunity 

and cell signaling. Their different functions are due to their different structures. Therefore, to fully 

understand the functions of proteins and related research, it is necessary to predict their structure. 

Although the advent of AlphaFold2 [1] has changed the protein prediction landscape, it has achieved 

very reliable results for the prediction of protein tertiary structure [2], as the prediction of secondary 

structure is still of great significance, because the secondary structure will improve the alignment of 

the tertiary structure, thereby affecting the spatial morphology of the protein, so this paper proposes a 

method based on deep learning to predict the secondary structure of proteins. 

Protein secondary structure is the local spatial conformation of amino acid residues in protein 

polypeptide chains, mainly in the form of 3-states (helix (H), chain (E), coil (C)), which can be divided 

into 8-states, namely α-helix (H), helix (G), π-helix (I), β-bridge (B), β-sheet (E), bend (S), turn (T) 

and coil (C) [3–5]. This study was devoted to the 8-state prediction of proteins, which can be more 

informative and more challenging. 

In the 1990s, Burkhard Rost and Chris Sander first used neural networks to predict the secondary 

structure of proteins [6]. In addition to achieving excellent results, this method was pioneered in the 

field of protein structure prediction. Early protein secondary structure prediction used statistical 

methods and heuristic rules [7], such as Support Vector Machine [8], Bayesian classification algorithm, 

Markov model [9], and Feedforward neural network [10,11] that have been applied in the prediction 

of protein secondary structure. With the advent of the post-genomic era, the amount of protein data 

has increased. Owing to the high cost and difficulty of experiments, traditional experimental 

determination methods have been unable to meet the growing demand for protein and structural data 

analyses. Therefore, methods for protein structure prediction have become a hot issue in bioinformatics. 

In the last few years, as deep learning has made tremendous progress in natural language processing, 

machine vision and speech recognition, bioinformatics has also begun to extensively use deep 

learning methods. 

In recent years, many scholars and researchers have achieved excellent results in the field of 8-

state research on protein secondary structure. Busia et al. proposed a protein sequence prediction 

technique, which combined the successful experience of using convolutional neural networks in the 

past and language modeling, and achieved good results [12]. Using the combined synergy of a 

convolutional neural network, residual network and bidirectional recurrent neural network prediction, 

Zhang et al. [13] designed a local block composed of convolutional filters and raw input to capture 

local Sequence Features. Krieger et al. determined estimated class membership probabilities of 

residues in proteins using the nearest neighbor search, which is then fed into another dynamic 

programming algorithm, showing good results on the CASP dataset [14]. Uddin et al. proposed to 

combine the self-attention mechanism with the Deep Inception-Inside-Inception (Deep3I) network to 

track residues between amino acids at different distances through interaction [15]. Kotowski et al. 

proposed a single-sequence-based method called ProteinUnet, which effectively shortens the inference 

time, and improves the training speed [16]. Sonsare and Gunavathi proposed a model consisting of a 

1D-Convnet and an improved recurrent neural network with an improved sequential coin toss 

optimizer, achieving good prediction accuracy on CB513 and CullPDB [17]. 

This paper proposes an 8-state protein secondary structure prediction method named WG-ICRN, 

as it based on WGAN and ResNet with Inception. WG-ICRN extracts the feature information of the 
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protein use WGAN, and then combines this information with PSSM [18] to enhance the features, and 

the combined feature matrix is named WG-data. The increased length and width of WG-data makes 

its feature maps larger in area and richer in feature information, since WG-data was input into the 

ICRN module as input data. ICRN was a transformation of the residual network. Inception was 

introduced into the residual network to replace the convolution layer, and the width of the input data 

feature map was increased through multi-scale convolution to further enrich the features. 

The main contributions of this study are: (1) We use WGAN to extract protein information in 

sliding window processed PSSM, and combine PSSM to build a new feature set with rich protein 

features. (2) The ICRN model combines Inception and the residual network, increasing the width of 

the network through Inception, while the residual network guarantees the depth of the network, 

improving the performance of the network from two aspects. (3) ICRN reduces the number of training 

parameters by using multiple smaller filters to reduce the dimension of the data, so the training time is 

shorter than the residual network, saving system resources. (4) Experimental results show that WG-

ICRN is superior to other popular models in prediction accuracy. 

2. Model structure and related theories 

2.1. Wasserstein generative adversarial network 

Generative adversarial network (GAN) [19] was proposed by Ian Goodfellow in 2014, and 

consists of two parts: generator (G) and discriminator (D). G can generate similar fake data by learning 

the distribution characteristics of real data, while D judges and scores the authenticity of the data. GAN 

has been applied to image denoising and feature extraction [20–22], and has been proved to have good 

properties. GAN also has the problem that the model is difficult to optimize, as the tedious problem 

of G and D parameter optimization is difficult to solve. In recent years, a lot of optimization 

algorithms [23–26], such as Aquila optimizer [27] and the Gazelle optimization algorithm [28], 

provide a direction to solve this difficult problem. But the more critical issue for GAN is this: Owing 

to the approximate optimal D of GAN, the G loss faces the problem of gradient disappearance. The 

WGAN uses the Wasserstein distance, which can alleviate this critical problem, and has the advantage 

of reflecting the distance between two distributions even if they do not have any overlap [29]. 

The specific training process of WGAN is the constant game and confrontation between G and D. 

When training D, the data generated by the previous round of G and real data are directly spliced 

together as x, the fake data corresponded to 0, and the real data corresponds to 1. Then, a score (a 

number from 0 to 1) can be generated through D, x input, and through the loss function composed of 

the score and y, gradient backpropagation can be performed. The training process of D is shown in 

Figure 1(a). When training G, G and D need to be treated as a whole, which is named “D_on_G”. The 

output of this whole system (referred to as the DG system) is still the score. Entering a set of random 

vectors z, we can generate a set of random data in G, and score the generated set of data through D to 

obtain the score, which is the forward process of the DG system. The training process is presented in 

Figure 1(b). 
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(a). The training process of the discriminator (b). The training process of the generator 

Figure 1. The training process WGAN. 

The GAN objective function is as formula (1), where, x and z represent the input real and random 

data, G(z) represents the data generated after G processes the random data z, and D(x) represents the 

probability that the data is the real data. In the most ideal case, G can generate data G(z) that is very 

similar to the real protein data, and it is difficult for D to judge the authenticity of these data, that is, 

D(G(z)) = 0.5. 

 min𝐺max𝐷(D, G) = E𝑥~𝑃dat𝑎(𝑥)[logD(𝑥)] + E𝑧~𝑃𝑧(𝑥) [log (1 − D(G(𝑧)))] (1) 

Objective function (1) to be optimized by the GAN can be divided into 2 parts: Part 1, fix the G and 

optimize the D, then (1) can be rewritten as formula (2), convert it to minimized form as formula (3). 

Part 2, fix the D, optimize the G, which is equivalent to minimizing, as formula (4), so that the argument 

of D does not exceed a fixed constant, just maximize the formula (5). 

 max𝐷E𝑥~𝑃𝑟[logD(𝑥)] + E𝑥~𝑃𝑔[log(1 − D(𝑥))] (2) 

 min𝐷−E𝑥~𝑃𝑟[logD(𝑥)] − E𝑥~𝑃𝑔[log(1 − D(𝑥))] (3) 

 min𝐺E𝑥~𝑃𝑔[log(1 − D(𝑥))] (4) 

 𝐿 = E𝑥~𝑃𝑟[D(𝑥)] − E𝑥~𝑃𝑔[log(D(𝑥))] (5) 

In this experiment, we introduced CNN in WGAN to assist in feature extraction. Local receptive 

fields and weight sharing operations in CNN can realize displacement, scaling and distortion 

invariance. We use ReLU as the activation function of the CNN, which is calculated as Eq. (6). 

 𝐹𝑘
𝑖 = 𝑓(∑ 𝑃ℎ

𝑖−1 ∗ 𝑊𝑘
𝑖

ℎ + 𝑏) (6) 
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Here, 𝑓 is ReLU, which Pℎ
𝑖−1 represents the feature map obtained from the input protein data 

and the convolution kernel of the previous layer, 𝑊𝑘
𝑖 is the convolution kernel of the No. i layer, k is 

the number of convolution kernel, and b is the bias parameter. At the same time, we use gradient 

punishment to improve the stability of the network during WGAN training. The network structure of 

WGAN used in the experiment is shown in Figure 2. 

 

Figure 2. WGAN model diagram. 

2.2. Residual networks (ResNet) 

The network depth is very important for the performance of the model, but, in fact, the deep 

network will face degradation problems, and the accuracy will also decrease. Studies have shown that 

this deep network has the problem of gradient explosion or disappearance, and Residual Networks 

(ResNet) [30] introduces the residual learning to alleviate this problem. Nowadays, ResNet is used in 

computer vision and medical analysis [31,32]. 

The specific process is that for a block structure, where the learned characteristics from when the 

input is X are recorded as H(X), and we hope that the residual F(X) = H(X) － X can be learned, when 

the original characteristics are F(X) ＋ X. Because residual learning is easier than the original feature 

direct learning, when the residual is 0, the block only makes the constant mapping, which makes the 

network performance not decline, but in fact the residual will not be 0, which will also make the block 

learn the new feature on the basis of the input feature, so that it has better performance. Residual learning 

is similar to short-circuit connections, and is structured as shown in Figure 3. 

 

Figure 3. Structure of residual learning. 
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The origin of the residual block structure consists of convolution and pooling before residual 

learning. The origin residual connection method is shown in Figure 4(a). The article [33] has conducted 

a more detailed analysis experiment on the residual structure and obtained the optimal residual learning 

structure, that is, batch normalization and ReLU were performed before convolutional layers, and the 

structure is shown in Figure 4(b). 

  

(a). The origin residual block (b). The residual block used in this experiment 

Figure 4. The residual block structure. 

2.3. Inception 

In 2014, Szegedy et al. proposed the Inception structure for the first time [34]. Inception performs 

convolution operations on the feature map at a certain moment by using convolution kernels of 

different sizes, so as to obtain a new feature map, and then samples the size of the input feature 

according to the feature map of different sizes. It is worth noting that Inception does not change the 

size of the original features, but only enriches the characteristic information of the protein through 

different convolution kernels, making the characteristics diversified. The network structure of 

InceptionV2 is shown in Figure 5. 

 

Figure 5. The network structure of InceptionV2. 
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2.4. The proposed ICRN model 

In this experiment, we use the improved Inception module instead of the first convolutional layer 

and maxpooling layer in the ResNet model, and the improved Inception module informs the WG-data 

to extract learning at different scales through convolutional kernels of different sizes, which enriches 

the feature information and improves the prediction accuracy of protein secondary structure prediction. 

Improved Inception module structure is shown in Figure 6. 

 

Figure 6. The improved Inception module structure. 

In this paper, we use ICRN-N to represent the improved ResNet of different depths, and N refers 

to the number of network layers with privileged values, that is, only convolutional layers, as fully 

connected layers and pooled layers are included. We set the number of layers with weights of 10, 18 

and 34 as the experimental model, and the structures of ICRN-10, ICRN-18, and ICRN-34 are 

shown in Table 1, respectively. 

Table 1. ICRN structure at different depths. 

Layer name ICRN-10 ICRN-18 ICRN-34 

 

Inception Block 
[

1 × 1
3 × 3
3 × 3
3 × 3

]    [
1 × 1
3 × 3
3 × 3

]    [
Max pool
1 × 1

] 

Residuals-Block-1 [
3 × 3,64
3 × 3,64

] × 2 [
3 × 3,64
3 × 3,64

] × 2 [
3 × 3,64
3 × 3,64

] × 3 

Residuals-Block-2 [
3 × 3,128
3 × 3,128

] × 2 [
3 × 3,128
3 × 3,128

] × 2 [
3 × 3,128
3 × 3,128

] × 4 

Residuals-Block-3 / [
3 × 3,256
3 × 3,256

] × 2 [
3 × 3,256
3 × 3,256

] × 6 

Residuals-Block-4 / [
3 × 3,512
3 × 3,512

] × 2 [
3 × 3,512
3 × 3,512

] × 3 

Average pool, fully connected, softmax 
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2.5. WG-ICRN networks structure 

The structure of WG-ICRN is shown in Figure 7, and it can be seen that our network model is 

mainly divided into the WGAN and ICRN modules. Firstly, a protein was processed into PSSMS with 

size of 20 × L, where 20 is the feature dimension, and L represents the protein length. Since the lengths 

of different proteins were different, sliding Windows (The length is W) were used to cut PSSMS. The 

processed data would be used as the learning model of WGAN, and key features would be extracted 

through the confrontation of G and D. We use several convolutional layers to assist G and D networks; 

G networks use Leaky ReLU as the activation function, due to the large number of iterations, and to 

prevent overfitting, we use Dropout in G networks. We Concatenated the final data (Si-data) generated 

by D and the PSSM processed by sliding window into a matrix of 40 × W, named WG-data. 

 

Figure 7. WG-ICRN networks structure. 

The ICRN module consists of two parts, namely Inception block and residual block. The 

improved Inception will replace the first convolution layer with a size of 7 × 7, and the max pooling 

layer with a size of 3 × 3 in this model. The improved Inception can achieve the same convolution 

effect by using three layers of 3 × 3 convolution layers with fewer training parameters, which will 

save training time. At the same time, the multi-scale convolution model in Inception can extract 

feature maps of different sizes, which, when combined together, will increase the richness of features 

to some extent. 

After two feature enhancements, the residual block in ICRN will conduct the final training on the 

data. We respectively use the residual network of different depths to test the data. At the end of the 

network, we adopt an average pooling layer to replace the flattening of the matrix features, which 

reduces the number of parameters. 

Finally, in the output layer of the model, we use the fully connected layer and softmax layer to 

output the final prediction results and calculate the prediction accuracy through the evaluation criteria. 
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3. Experiment results 

3.1. Datasets and features 

The main public datasets used in this study are the CullPDB [35] dataset and the datasets [36–41] 

CASP10, CASP11, CASP12, CASP13, CASP14 and CB513. The CullPDB dataset contains 12,288 

proteins. These datasets show that the similarity of the data was less than 25%. In this study, the 

repeated protein dataset CullPDB was removed as the training set, with a total of 11650 proteins. For 

the CASP10-14, and CB513 datasets, there were 99, 81, 19, 22, 24 and 513 protein chains, respectively. 

The number of protein sequences in datasets is listed in Table 2. 

Table 2. Statistical data in datasets. 

Datasets Number of proteins 

CullPDB 11650 

CASP10 99 

CASP11 81 

CASP12 19 

CASP13 22 

CASP14 24 

CB513 513 

Position-Specific Scoring Matrix (PSSM) is rich in biological evolution information, which greatly 

improves the accuracy of protein secondary structure prediction. It is a widely used feature for 

information. The PSSM of this experiment was generated by multiple sequence alignment of proteins 

in the NR database, setting the PSI-BLAST [42] parameter threshold to 0.001 and 3 iterations. 

3.2.  Evaluation criteria 

Q8 and SOV are evaluation criteria for evaluating protein prediction performance from different 

perspectives. Q8 is the ratio of the number of correctly predicted amino acids to all amino acids. It can 

be expressed by formula (7), and S is the total number of amino acids. 

 𝑄8 =  
𝑆𝐻+𝑆𝐸+𝑆𝐺+𝑆𝐵+𝑆𝐼+𝑆𝑆+𝑆𝑇+𝑆𝐶

𝑆
× 100 (7) 

Among them, SH, SE, SG, SB, SI, SS, ST and SC are the numbers of correctly predicted α-helices, beta-

sheets, β bridges, 310 helices, π helices, turns, β-turns and random coils, respectively, and S is the total 

number of amino acids. The secondary structure accuracy of a state is calculated as formula (8). 

 𝑄𝑗 =
𝑆𝑗

𝑁𝑗
, 𝑗 ∈ {𝐻, 𝐸, 𝐺, 𝐵, 𝐼, 𝑆, 𝑇, 𝐶} (8) 

SOV [43] is a measure based on the ratio of overlapping segments. Assuming that all observed 

structural fragments are labeled Sob, all predicted fragments are labeled Spr, and So is a fragment with 

the same state as Sob and Spr, and for any pair of fragments in So, the actual length is minov (Sob, Spr), 
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where at least one residue has a total length of maxov (Sob, Spr). The SOV calculation formula as 

formula (9). 

 𝑆𝑂𝑉 =
100

𝑁𝑆𝑂𝑉
∑ [

𝑚𝑖𝑛𝑜𝑣(𝑆𝑜𝑏,𝑆𝑝𝑟)+𝜎(𝑆𝑜𝑏,𝑆𝑝𝑟)

𝑚𝑎𝑥𝑜𝑣(𝑆𝑜𝑏,𝑆𝑝𝑟)
𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝑜𝑏)]𝑆𝑜  (9) 

Among them, 𝜎(𝑆𝑜𝑏, 𝑆𝑝𝑟) allows the change of the observed fragment boundary in the protein 

structure, which is defined by the formula (10). 

 𝜎(𝑆𝑜𝑏, 𝑆𝑝𝑟) = 𝑚𝑖𝑛

{
 
 

 
 
(𝑚𝑎𝑥𝑜𝑣(𝑆𝑜𝑏, 𝑆𝑝𝑟) − 𝑚𝑖𝑛𝑜𝑣(𝑆𝑜𝑏, 𝑆𝑝𝑟))

𝑚𝑖𝑛𝑜𝑣(𝑆𝑜𝑏, 𝑆𝑝𝑟)

𝑖𝑛𝑡[𝑙𝑒𝑛(𝑆𝑜𝑏)]/2

𝑖𝑛𝑡[𝑙𝑒𝑛(𝑆𝑝𝑟)]/2 }
 
 

 
 

 (10) 

3.3. Experimental results and parameter influence 

The experiment in this paper was done with the processor Intel(R) Xeon(R) Glod 5118, and the 

graphics card RTX2080Ti and the system Linux. Firstly, we tested the influence of the number of CNN 

convolutional layers on the WGAN feature extraction ability. The size of the convolution kernel was set 

to 3  3  64, and different convolutional layers were set to 1, 2, 3, 4 and 5, and tested on CASP11-14. 

As can be seen from Table 3, when the number of convolutional layers is 3, the data generated by G 

are closer to the real data. 

Table 3. Effect of the number of convolutional layers on Q8. 

Layers CASP11 CASP12 CASP13 CASP14 

1 68.26 68.85 67.21 68.36 

2 71.27 70.63 67.76 69.41 

3 72.55 71.81 69.88 70.29 

4 71.71 71.23 68.73 68.22 

5 70.33 69.46 67.24 67.61 

Because the number of iterations of the generator and discriminator will also affect the feature 

extraction ability of the WGAN, this study tested the influence of different iterations on the experiment, 

in which 3 convolutional layers are set, and the parameters of the convolution kernel are set to 3  3  64, 

3  3  128 and 3  3  256, and the experimental results under different iterations are shown in Figure 8.  

As shown in Figure 7, the best effect is achieved when the number of iterations is 20,000, that is, 

the features extracted by G are the most realistic and effective. After more than 20,000 iterations, D’s 

ability to judge the authenticity of the generated data decreases to the point where there is a large error 

between the simulated and real features. 

To test the influence of the length of sliding window on the experimental results, we selected 

13, 15, 17, 19 and 21 for Q8 prediction. The experimental results are shown in Table 4, which shows 

that when the sliding window is 19, the experimental results are the best. 
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Figure 8. Q8 accuracy with different iterations. 

Table 4. Q8 accuracy under different length of sliding windows. 

Sliding window CASP11 CASP12 CASP13 CASP14 

13 67.47 68.16 65.88 65.20 

15 68.09 69.27 66.67 67.41 

17 70.66 70.24 68.18 69.13 

19 71.55 70.81 68.88 69.29 

21 70.29 70.41 68.42 68.94 

Using different depths of ResNet, we tested CASP11-14, and obtained the experimental results 

shown in Figure 9. It can be seen that WG-ICRN-18 has the highest accuracy, because the dimension 

of WG-data is not high, and when the number of layers is too deep, part of the data will be lost, which 

causes a decrease in accuracy. In addition, we calculate the SOV and Qj (𝑗 ∈ {H, E, G, B, I, S, T, C}) of 

each test set under the WG-ICRN method, and the results are shown in Table 5. 

 

Figure 9. Q8 accuracy under WG-ICRN at different depths. 
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Table 5. Q8 and SOV accuracy in the datasets. 

Dataset CASP10 CASP11 CASP12 CASP13 CASP14 CB513 

SOV 70.98 69.37 68.83 67.41 66.39 73.91 

Q8 73.32 71.55 70.81 68.88 69.29 75.56 

QG 52.72 55.32 47.90 36.56 33.51 37.71 

QH 92.66 85,74 87.43 93.2 89.75 92.25 

QI 0 0 0 0 0 0 

QT 62.21 49.47 56.78 57.31 45.29 53.67 

QB 9.81 19.30 7.25 8.30 3.88 7.68 

QE 88.80 82.15 77.76 84.37 76.79 80.44 

QS 53.88 43.68 48.90 34.74 13.33 25.39 

QC 68.12 62.91 67.38 70.71 68.54 71.37 

This paper divides CullPDB into five parts for five-fold cross-validation, four as training sets and 

one as test, and the results of cross-validation are shown in Table 6. 

Table 6. Q8 under five-fold cross-validation. 

 1 2 3 4 5 Average 

Q8 72.72 73.18 73.43 72.61 71.36 72.66 

We did ablation experiments to demonstrate the importance of each structure. We used five 

network models to test CASP11-14, and the experimental results are presented in Table 7. Thus, WG-

ICRN is the model proposed in this paper, WG-Res is combining WGAN and ResNet and WG-CNN 

is a network model combining WGAN and CNN, where the three methods input data adopts WG-data, 

and the network model structure of CNN uses 3 convolutional layers: 3 × 3 × 64, 3 × 3 × 128 and 3 × 

3 × 256. ResNet is a residual network model based on the best ResNet-18, CNN is using a 3-layer 

convolutional neural network, a structure is 3 × 3 × 64, 3 × 3 × 128, and 3 × 3 × 256. The input data for 

ResNet and CNN were PSSM. In addition, we calculated the average training time of each of the 11650 

proteins in the CullPDB dataset for the 5 methods. These results are shown in Table 7. 

Table 7. Comparison of results from ablation experiments. 

 CASP11 CASP12 CASP13 CASP14 
Training time 

(s) 

WG-ICRN 71.55 70.81 68.88 69.29 21.9 

WG-Res 71.43 70.67 68.83 69.17 22.4 

WG-CNN 70.47 68.79 67.33 68.24 21.7 

ResNet 68.76 67.84 65.57 66.19 9.8 

CNN 66.62 65.29 63.69 64.71 9.6 
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By comparing the experimental results of the five methods in the table, it can be seen that, when 

the input data is the same PSSM, the prediction accuracy of ResNet is higher than that of CNN, because 

the deeper number of network layers makes training more adequate and increases training time, but 

the efficiency of ResNet is still better than that of CNN. WGAN extracted features significantly 

improves the prediction accuracy of Q8, and greatly increases the training time because of the 

increased size of the training data. Our proposed ICRN model reduces the time complexity by 

introducing Inception and extracts horizontal multi-scale feature fusion, which reduces the training 

time and improves the prediction accuracy compared with ResNet. 

3.4. Comparison with other methods 

Furthermore, we compared other models with our proposed method. Common with WG-ICRN 

is that these methods are improvements or hybrid models of CNN, and among them is, 

DeepACLSTM [44], which combines asymmetric convolution (ACNN) and bidirectional long short-

term memory neural network (BiLSTM), 1D-Inception [45] Taking inspiration from InceptionV3 to 

extract features from 1D sequences using several parallel convolutions, DCRNN [46] uses an end-to-

end model with multi-scale CNN and stacked bidirectional GRU. CNN_BIGRU [47] used CNN and 

bidirectional gated recurrent units to prediction. We re-run the code of the above method on the same 

computer, and the training set uses the same as WG-Res, which has been screened by data, and contains 

a total of 11,650 proteins. The experimental results are shown in Table 8. By comparison, it can be 

seen that WG-ICRN has excellent performance in predicting the secondary structure of protein 8 states, 

because of the deep layers advantages of ResNet, and, in addition, the matrix will contain richer feature 

information than the one-dimensional sequence, so the experimental results as input data will be better. 

Table 8. Q8 accuracy comparison of five methods. 

Method CASP10 CASP11 CASP12 CASP13 CASP14 CB513 

DeepACLSTM 73.09 71.49 70.35 68.91 68.81 75.51 

1D-Inception 71.86 70.07 69.78 67.51 68.3 74.68 

DCRNN 72.11 70.50 69.41 68.05 68.87 74.85 

CNN_BIGRU 71.87 70.94 69.67 67.83 68.69 75.54 

WG-ICRN 73.32 71.55 70.81 68.88 69.29 75.56 

4. Conclusions and future works 

The prediction of protein secondary structure is important work to comprehensively understand 

and explore the diverse functions and spatial structure of proteins. This paper combines WGAN and 

ICRN, for the first time, to propose a novel protein 8-state secondary structure prediction method, WG-

ICRN. In WG-ICRN, WGAN can extract protein features in amino acid sequences, and then we 

combine PSSM with the extracted features into a new feature matrix WG-data that contains more 

protein feature information. We also use ICRN to further extract the residue interactions in WG-data 

and complete the prediction. We introduced the improved Inception module into ResNet and proposed 

the ICRN model, which cannot only reduce parameter calculation and improve efficiency, but also 

increase network width to improve network performance. We evaluate the proposed model on six 

datasets CASP10-14 and CB513. Experimental results show that the prediction performance of WG-
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ICRN is better than the four other popular methods. In addition, this paper also proves that WGAN 

has a powerful feature extraction ability, and the ICRN model can handle protein data more 

comprehensively, and the combination of the two has achieved remarkable results. However, it is 

difficult for WGAN to achieve the balance between generator and discriminator, which also makes 

training more tedious and time-consuming. In addition, secondary structure prediction is also slightly 

affected by residues in the global range, but WG-ICRN mainly focuses on local features and ignores 

long-range features. In future work, we will continue to optimize the feature extraction technique and 

fully utilize different feature information of protein sequences to improve prediction performance. 

Availability 

The codes and datasets for this work are at https://github.com/ShunLi999/WG-ICRN.git 
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