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Abstract: Public health education is pivotal in the management and control of infectious and non-
infectious diseases. This manuscript presents and analyses a nonlinear fractional model of tungiasis
dynamics with the impact of public health education for the first time. The human population is split
into five classes depending on their disease status. The infected population is split into two subgroups;
infected but unaware and infected but aware. The model focuses on the impacts of public health ed-
ucation, contact and treatment contact on tungiasis transmission dynamics. Notably, public health
education is important for containing as well as reducing disease outbreaks in communities. The Ca-
puto fractional derivative is utilised in defining the model governing equations. Model equilibrium
points existence and stability are investigated using simple matrix algebra. Model analysis shows that
tungiasis is contained when the reproduction number is less than unity. Otherwise, if it is greater than
unity, the disease persists and spread in the population. The generalised Adams-Bashforth-Moulton
approach is utilised in solving the derived tungiasis model numerically. The impacts of public health
education, treatment and contact rate on overall disease dynamics are discussed through numerical
simulations. From the simulations, we see that for given fractional order, public health education and
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treatment increase the quality of life plus reduce equilibrium numbers of tungiasis-infected individu-
als. We observe that population classes converge quicker to their steady states when α is increased.
Thus, we can conclude that the derivative order α captures the role of experience or knowledge that
individuals have on the disease’s history.

Keywords: Tungiasis; Caputo fractional derivative; public health education; treatment; Adams-
Bashforth-Moulton method

1. Introduction

Mathematical modeling and analysis can provide us with information about the characteristics of
important phenomena and processes that arise in real-world situations, as well as predict possible
outcomes. The study of mathematical models describing infectious diseases, in particular, has become
one of the most powerful and effective approaches to analyzing [1], understanding [2], and predicting
transmission mechanisms as well as infectious disease characteristics [3–5] Tungiasis is a parasitic skin
disease caused by female sand flea Tunga penetrans also known as the jigger flea, an insect that lives
mostly in dry sand or soil, and is found mostly in tropical and sub-tropical regions [6]. Jigger fleas
generally attack feet or hands by making a burrow through the skin of humans or a variety of mammals
that serves as reservoir hosts. While in the skin of the host, the impregnated female parasite continues
to feed on blood by inserting its proboscis into dermal capillaries, releases her eggs and eventually
dies [7]. Tungiasis can be transmitted by the infestation of human or animal reservoirs. Mammalian
species that can act as reservoirs include cats, dogs, rats, bovines and pigs [8]. Mostly, the infection can
be transmitted in the absence of animal reservoirs. This happens inside houses and classrooms without
paved or sealed floors when skin touches floors or soil wherein adult sand fleas have developed [8].

Unlike other diseases which attract attention and funding, not much is known about the effects
of tungiasis due to minimal investigation into its dynamics and lack of awareness [9]. During the
66th World Health Assembly in May 2013, a resolution to intensify and consolidate measures against
neglected tropical diseases like tungiasis was agreed upon by the World Health Organization and its
member states. The resolution contained in [10], resolves to plan investments and implement ways
of improving the health and social well-being of the communities affected by these diseases. The
burden of Tungiasis is mostly felt in rural communities and resource-poor urban neighbourhoods. In
the Americas alone, it is estimated that more than 20 million people are at risk. If not attended to,
Tungiasis disfigure and mutilate the feet. This then results in loss of morbidity, which has an adverse
effect on the quality of life and on family economics if the affected person is the breadwinner.

There are currently no known effective drugs for the treatment of tungiasis [9]. The current treat-
ment involves identifying the parasite and mechanically removing it with a sharp-pointed sterile ob-
ject like pins or needles, then applying an antiseptic dressing on the lesion. Tungiasis can also be
effectively treated in medical facilities by surgically extracting submerged fleas under sterile condi-
tions [11]. Using repellents, anti-inflammatory creams, applying anti-parasitic agents topically, and
using disinfectants like potassium permanganate to wash affected areas are other techniques to deter
sand fleas [7, 11]. Moreover, there have been several attempts to verify the use of medicated lotion
or ointments in the treatment of tungiasis. Heukelbach et. al. [12] showed that topical ivermectin,
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metrifonate or thiabendazole can each significantly reduce the number of lesions caused by embed-
ded sand fleas. However, they identified that more research is required to ascertain the optimal doses
and administration of these medicines. The importance of maintaining good personal cleanliness and
wearing shoes in preventing jigger infection cannot be overstated. Children and the elderly need to
be well-cared for, and low-income areas need to have access to cheap basic amenities and healthcare
facilities [11].

Exploring existing mathematical models on Tungiasis, we found that few mathematical models have
been used to understand the disease transmission dynamics and various ways to control the epidemic.
These models are integer-order models. Researchers have presented models incorporating hygiene as a
control strategy and treatments [13], optimal control and Jigger flea reservoirs [14], public health edu-
cation [11], and impact of protection [15] to model the Tungiasis. In the study by Muehlen et. al. [16],
illiteracy was found to correlate with high tungiasis infestation. Hence, the impact of an educational
campaign will be highly important in reducing the transmission dynamics of the disease. Public health
education targeted to people with precarious living conditions in rural areas and in shanty towns may
be a useful approach to curbing disease spread. Public health education is pivotal in the management
and control of infectious and non-infectious diseases. This manuscript presents and analyses a nonlin-
ear fractional model of tungiasis propagation dynamics with the impact of public health education for
the first time.

Of late, fractional calculus has been employed for numerous problems in engineering and science.
Valuable monographs of fractional differential equations (FDE) and their utilisation are discussed in
[17–19]. Fractional Caputo derivative has been used to model various infectious and non-infectious
diseases to predict the different types of disease transmission dynamics and possible control strategies
(see for example [20–22]) and many others. The appropriate capture of real-life dynamics at any
time is one of the main reasons researchers opt to use fractional operators. Also, dealing with FDE
systems allows us to model real-life circumstances incorporating history, memory and heredity. Hence,
FDE gives us more realistic ways of describing disease dynamics because they capture complicated
behavioural patterns of these biological systems. There are other fractional derivative definitions such
as Riemann-Liouville fractional derivative, Caputo–Fabrizio derivative, Atangana-Baleanu fractional
derivative, and many more. These derivative operators have additional properties compared to the
Caputo derivative used in this study.

In literature, there are not many mathematical models using the fractional derivative to predict or
model the spread of tungiasis in the human population. This, to a large extent, is influenced by the
fact that tungiasis is also a neglected disease according to WHO [11]. In this study, we use the Ca-
puto fractional derivative to model tungiasis dynamics. We are motivated by the fact that following
studies in literature, modelling disease dynamics using fractional derivatives is moreover fitting and
intuitive. We describe the model using the Caputo derivative because of its ease of implementation
as well as the property that for constants, the Caputo derivative is zero. Another attribute of the Ca-
puto operator is that, in deriving the model, it allows using standard initial conditions described as
derivatives of integer order [23]. We first show that the fractional model governing equations have
non-negative bounded and distinctive solutions. Steady-state existence and stability are investigated
on the basis of the basic reproduction number. The tungiasis FDE model is solved by using the gen-
eralised Adams–Bashforth-Moulton mechanism. The obtained results indicated that investigating the
disease dynamics in fractional order provides additional insights into tungiasis propagation. In partic-
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ular, we discuss how public health education, treatment and the contact rate between individuals affect
overall disease propagation in the population.

The manuscript is organised as follows: Section 2 provides basics and preliminaries of the Caputo
fractional derivative. Development of the model is presented in Section 3. Model properties such as its
positivity, boundedness, steady states and stability are discussed in Section 4. In Section 5, the gener-
alised Adams-Bashforth-Moulton method is implemented in the developed fractional model. Section
6 presents a discussion of the numerical results obtained to corroborate the analytical investigation.
Lastly, Section 7 provides a conclusion of the findings of the present investigation.

2. Fractional order basic concepts

Definition 1. The fractional integral of order α > 0 of a function x ∈ C([0, b],R+), where b > 0, is
given by [24–27]

Iαx(t) =
1

Γ(α)

∫ t

0
(t − τ)α−1x(τ) dτ, t > 0. (2.1)

Definition 2. Suppose x ∈ C1([0, b],R+), where b > 0. The Caputo fractional derivative of order α > 0
of x(t) is given by [18, 23, 25]

CDα
t x(t) = In−αDnx(t) =


1

Γ(n − α)

∫ t

0
(t − τ)n−α−1 dn

dτn x(τ) dτ, n − 1 < α < n,(
d
dt

)n

x(t), α = n,
(2.2)

where n is a positive integer.

Operator CDα
t satisfies the following properties:

(i). CDα
t Iαx(t) = x(t)

(ii). Iα CDα
t x(t) = x(t) −

n−1∑
ϑ=0

x(ϑ)(a)
ϑ!

(t − a)ϑ, t > a.

For 0 < α ≤ 1, the Caputo fractional derivative (2.2) of order α > 0 reduces to

CDα
t x(t) =

1
Γ(1 − α)

∫ t

0
(t − τ)−αx′(τ) dτ. (2.3)

Next, we implement definition (2.3) to the non-linear tungiasis model.

3. Model formulation

The human population is divided into five sub-populations according to their disease status: suscep-
tible population (S (t)), infected people but are unaware that they are infected (Iu(t)), infected people
and know that they are infected (Ia(t)), treated population (T (t)) and recovered population (R(t)) such
that

N(t) = S (t) + Iu(t) + Ia(t) + T (t) + R(t). (3.1)
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The model considers tungiasis dynamics, which is predominantly transmitted by sand fleas. People
enter the susceptible sub-population by recruitment, π, either by birth or immigration. β is the contact
rate, µ is the natural mortality rate, ν is the recovery rate due to treatment, γ is treatment waning φ
is progression rate from educated to infectious class, ε is the literacy level on tungiasis dynamics, ω
is the treatment rate, and du and da are the disease induced death rate [28]. The incidence rate is
defined as the number of new cases generated per unit time during the disease dynamics [29, 30]. In
mathematical modeling, the incidence is known for playing an essential role in driving the infection
during an epidemic. Numerous other studies have used a bilinear incidence rate to study disease models
(see [32,33]). The bilinear incidence implies that the number of new cases per time becomes saturated
within the total population. To bypass this complexity, we combine the bilinear and the saturation
incidence function, which we define to be ωIa

1+ωIa
in our model, as it gives a better insight into the

dynamics of the disease progression and reduction in disease incidence rate [29,30]. The state variables
and parameters are summarized in Table 1. Figure 1 provides a graphical representation of tungiasis
dynamics.

Table 1. Model state variable and parameter descriptions.

State variables Description Units
S(t) susceptible to jigger infestation people per time
Iu(t) individuals infected with jigger but unaware people per time
Ia(t) infected individuals with jigger and aware people per time
T(t) treated individuals people per time
R(t) individuals who recovered from jigger infestation people per time

Parameters Description Units
π recruitment rate Individual per time
β contact rate per time
µ natural mortality rate per time
ν recovery rate from treatment per time
γ progression rate of recovered to susceptible per time
φ rate of progression from Ia to Ib class per time
ε literacy level per time
ω treatment rate per time

du, da disease-induced death rate per time

The model assumptions are:

1. We assume that infected individuals undergo a treatment course before they recover [13] i.e. no
natural recovery.

2. Define θ = 1 − ε, where ε is the literacy level on Tungiasis dynamics. In essence, θ can be
viewed as the ignorance level to educational campaigns carried out by health officials to educate
people about Tungiasis transmission dynamics. Hence, as more people get educated on the disease
dynamics, ε increases and thus θ decreases, which in turn reduces the number of people flowing
to class Ia.
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Figure 1. Transmission diagram of tungiasis with saturated treatment.

The combination of the model diagram Figure 1, Table 1, model description and assumptions yields
the following system of non-linear ODEs:

dS
dt

= π − θβS Iu − βS Ia + γR − µS

dIu

dt
= θβS Iu − φIu − (µ + du)Iu

dIa

dt
= βS Ia + φIu −

ωIa

1 + ωIa
− (µ + da)Ia

dT
dt

=
ωIa

1 + ωIa
− (µ + ν)T

dR
dt

= νT − (µ + γ)R


, (3.2)

subject to

S (0) = S 0 ≥ 0, Iu(0) = Iu0 ≥ 0, Ia(0) = Ia0 ≥ 0, T (0) = T0 ≥ 0, R(0) = R0 ≥ 0. (3.3)

Tungiasis model (3.2) is then converted into an FDE model of order α given by

CDα
t S (t) = π − βS Ia − βθS Iu + γR − µS

CDα
t Iu(t) = βθS Iu − (µ + φ + du)Iu

CDα
t Ia(t) = βS Ia + φIu −

ωIa

1 + ωIa
− (µ + da)Ia

CDα
t T (t) =

ωIa

1 + ωIa
− (µ + ν)T

CDα
t R(t) = νT − (µ + γ)R


, (3.4)

where 0 < α ≤ 1. Since model (3.2) traces the human beings, all variables and parameters are positive
for all t. In the following sections, we explore the dynamics of model (3.4).
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4. Model analysis

4.1. Positivity of solutions

Let Φ =
{
x(t) ∈ R5

+ : x(t) ≥ 0
}

and x(t) = [S (t), Iu(t), Ia(t),T (t),R(t)]T . To show that the model
solutions are positive, recall the following theorem and consider the corollary below.

Lemma 1 (Generalized Mean Value Theorem [24, 34]). Suppose that x(t) ∈ C[a, b] and the Caputo
derivative CDα

t x(t) ∈ C(a, b] for 0 < α ≤ 1, then we have

x(t) = x(a) +
1

Γ(α)
CDα

t x(ξ)(t − a)α (4.1)

with 0 ≤ ξ ≤ t for t ∈ (a, b].

Corollary 1. Suppose x(t) ∈ C[0, b] and the Caputo derivative CDα
t x(t) ∈ C(0, b] for 0 < α ≤ 1. From

Lemma 1, if CDα
t x(t) ≥ 0 for t ∈ (0, b), then the function x(t) is non-decreasing and if CDα

t x(t) ≤ 0
for t ∈ (0, b), then the function x(t) is non-increasing for all t ∈ [0, b] [24].

Proof. The proof to the Corollary follows from Lemma 1. �

Theorem 1. Let (S , Iu, Ia,T,R) be a solution of system (3.4) subject to initial conditions (3.3) on t > 0,
and the closed set Φ =

{
(S , Iu, Ia,T,R) ∈ R5

+ : 0 < N(t) ≤ π
µ

}
. The set Φ is positively invariant plus

attracting for the dynamics described by the system (3.4).

Proof. According to Theorem 3.1 and Remark 3.2 by Lin [35], we can ascertain the solution of system
(3.4) subject to initial conditions (3.3) on (0,∞). The solution exists and is distinctive. Thereafter, we
have shown that Φ is positively invariant. From (3.4), we have that

CDα
t S (t)

∣∣∣
S =0

= π + αR > 0, CDα
t Iu(t)

∣∣∣
Iu=0

= 0, CDα
t Ia(t)

∣∣∣
Ia=0

= φIu ≥ 0,

CDα
t T (t)

∣∣∣
T=0

=
ωIa

1 + ωIa
≥ 0, CDα

t R(t)
∣∣∣
R=0

= νT ≥ 0.

The solution will remain in Φ according to Corollary 1. Φ is attracting because the vector field gravi-
tates into Φ at each hyperplane bounding the non-negative orthant. From the model system (3.4), the
entire human population dynamics are governed by

CDα
t N(t) = π − µN − duIu − daIa. (4.2)

It then follows from Eq. (4.2) that
CDα

t N(t) ≤ π − µN. (4.3)

Hence,
lim
t→∞

Sup N ≤
π

µ
. (4.4)

Thus, by Lemma 1, solutions of (3.4) are all in Φ =
{
(S , Iu, Ia,T,R) ∈ R5

+ : 0 < N(t) ≤ π
µ

}
. This

means that N(t) is bounded by π
µ

.
�
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4.2. Model steady state

Particularly, disease models have a disease-free equilibrium (DFE) plus an endemic equilibrium
(EE) (at least). Their stability is expressed in terms of the reproduction number. To find these equi-
librium points, set the derivatives of (3.4) to zero. This gives a disease-free steady state (E∗0) given
as

E∗0 =
(
S 0, Iu0 , Ia0 ,T0,R0

)
=

(
π

µ
, 0, 0, 0, 0

)
. (4.5)

The endemic equilibrium (E∗1) is

E∗1 =
(
S ∗, Iu

∗, Ia
∗,T ∗,R∗

)
, (4.6)

where

S ∗ =
Q0

βθ
,

Iu
∗ = −

Ia
∗ω

(
α(µQ2Q0 − βθν) + βIa

∗Q3Q2Q0 + µ2Q2Q0

)
− πβθQ3(Ia

∗ω + 1)Q2 + Q3Q2Q0(βIa
∗ + µ)

βθQ3(Ia
∗ω + 1)Q2Q0

,

T ∗ =
ωIa

∗

Q2(1 + ωIa
∗)
, (4.7)

R∗ =
νωIa

∗

Q3(1 + ωIa
∗)Q2

,

with Q0 = (µ + φ + du), Q1 = (µ + da), Q2 = (µ + ν) and Q3 = (µ + γ).

4.3. Model basic reproduction number

The Tungiasis basic reproduction number, which is the average number of humans that can be
infected by an infectious individual, is thus calculated using the methodology in [31] as follows. Con-
sidering the transfer and the transition matrix, we have that

F =


βθπ

µ
0 0

0
βπ

µ
0

0 0 0

 and V =


Q0 0 0
−φ ω + Q1 0
0 −ω Q2

 .
Therefore, the Tungiasis basic reproduction number represented by Rt is the spectral radius of the

next generation matrix generated by computing FV−1. Hence,

Rt = ρ(FV−1) = max
{
Rt1,Rt2

}
.

where

Rt1 =
βπθ

µQ0
and Rt2 =

βπ

µ(ω + Q1)
.
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4.4. Local stability of the model

Theorem 1. The Tungiasis model (3.4) is locally asymptotically stable (LAS) at E∗0 whenever Rt < 1
and unstable otherwise.

Proof. Evaluating the Jacobian matrix of system (3.4) gives the following matrix

JE∗0 =



−µ
−βθπ

µ

−βπ

µ
0 α

0
βθπ

µ
− Q0 0 0 0

0 φ
βπ

µ
− ω − Q1 0 0

0 0 ω −Q2 0
0 0 0 ν −Q3


, (4.8)

�

Matrix (4.8) has five distinct negative eigenvalues given by −µ, −Q2, −Q3, −Q0

(
1 − Rt1

)
, and

−(ω + Q1)(1 − Rt2). Hence, the local stability of E∗0 is established if Rt1 < 1 and Rt2 < 1, i.e, E∗0 is
asymptotically stable since Rt1,Rt2 ⊂ Rt.

5. Numerical scheme

Naik et al. [23] gives a brief description of the generalised Adams-Bashford-Moulton method. We
use this method to solve model the nonlinear model (3.4) numerically. We utilize Matlab R2019b [36]
and Wolfram 9.0 [37] for the codes and simulations.

5.1. Adams-Bashforth-Moulton scheme

We first briefly describe the generalised Adam-Bashforth-Moulton technique utilised in solving the
model (3.4). Consider

CDα
t x(t) = f (t, x(t)), 0 ≤ t ≤ T, (5.1)

subject to
x j(0) = x j

0, j = 0, 1, 2, . . . [α] − 1. (5.2)

From property (ii.) and the fractional integral definition, as defined earlier, operate Eq. (5.1) with
this integral operator setting the lower limit a = 0. To obtain solution x(t), solve the equation:

x(t) =

[α]−1∑
j=0

x j
0

j!
t j +

1
Γ(α)

∫ t

0
(t − τ)α−1 f (τ, x(τ)) dτ. (5.3)

Set the step-size h = T
N so that tn = nh and n = 0, 1, 2, . . . ,N ∈ Z+ for 0 ≤ t ≤ T . The Adams-

Bashforth-Moulton scheme is utilised to integrate Eq. (5.3) (see [18, 23]). Equation (5.3) is then
discretized as

xh(tn+1) =

[α]−1∑
j=0

x j
0

j!
t j
n+1 +

hα

Γ(α + 2)
f (tn+1, x

p
h(tn+1)) +

hα

Γ(α + 2)

n∑
q=0

aq,n+1 f (tq, xh(tq)), (5.4)
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where

aq,n+1 =


nα+1 − (n − α)(n + α)α, if q = 0,
(n − q + 2)α+1 + (n − q)α+1 − 2(n − q + 1)α+1, if 0 < q ≤ n,
1, if q = n + 1,

(5.5)

and the prediction xp
h(tn+1) is given by

xp
h(tn+1) =

[α]−1∑
j=0

x j
0

j!
t j
n+1 +

1
Γ(α)

n∑
q=0

bq,n+1 f (tq, xh(tq)), (5.6)

where

bq,n+1 =
hα

α
((n + 1 − q)α − (n − q)α) . (5.7)

Since xh(tp) approximates x(tp), the error estimate is

max
q=0,1,2,...,m

|x(tp) − xh(tp)| = O(hp), (5.8)

with p = min(2, 1 + α).

5.2. Application to the tungiasis model

We then use the technique described above to numerically solve (3.4). From Eq. (5.4), the scheme
for (3.4) is

S (tn+1) = S 0 +
hα

Γ(α + 2)
fS

(
tn+1, S p(tn+1), I p

u (tn+1), I p
a (tn+1),T p(tn+1),Rp(tn+1)

)
+

hα

Γ(α + 2)

n∑
q=0

aq,n+1 fS

(
tq, S (tq), Iu(tq), Ia(tq),T (tq),R(tq)

)
,

Iu(tn+1) = Iu0 +
hα

Γ(α + 2)
fIu

(
tn+1, S p(tn+1), I p

u (tn+1), I p
a (tn+1),T p(tn+1),Rp(tn+1)

)
+

hα

Γ(α + 2)

n∑
q=0

aq,n+1 fIu

(
tq, S (tq), Iu(tq), Ia(tq),T (tq),R(tq)

)
,

Ia(tn+1) = Ia0 +
hα

Γ(α + 2)
fIa

(
tn+1, S p(tn+1), I p

u (tn+1), I p
a (tn+1),T p(tn+1),Rp(tn+1)

)
+

hα

Γ(α + 2)

n∑
q=0

aq,n+1 fIa

(
tq, S (tq), Iu(tq), Ia(tq),T (tq),R(tq)

)
,

T (tn+1) = T0 +
hα

Γ(α + 2)
fT

(
tn+1, S p(tn+1), I p

u (tn+1), I p
a (tn+1),T p(tn+1),Rp(tn+1)

)
+

hα

Γ(α + 2)

n∑
q=0

aq,n+1 fT

(
tq, S (tq), Iu(tq), Ia(tq),T (tq),R(tq)

)
,

R(tn+1) = R0 +
hα

Γ(α + 2)
fR

(
tn+1, S p(tn+1), I p

u (tn+1), I p
a (tn+1),T p(tn+1),Rp(tn+1)

)
Mathematical Biosciences and Engineering Volume 20, Issue 5, 7696–7720.
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+
hα

Γ(α + 2)

n∑
q=0

aq,n+1 fR

(
tq, S (tq), Iu(tq), Ia(tq),T (tq),R(tq)

)
,

where

S p(tn+1) = S 0 +
1

Γ(α)

n∑
q=0

bq,n+1 fS

(
tq, S (tq), Iu(tq), Ia(tq),T (tq),R(tq)

)
,

I p
u (tn+1) = Iu0 +

1
Γ(α)

n∑
q=0

bq,n+1 fIu

(
tq, S (tq), Iu(tq), Ia(tq),T (tq),R(tq)

)
,

I p
a (tn+1) = Ia0 +

1
Γ(α)

n∑
q=0

bq,n+1 fIa

(
tq, S (tq), Iu(tq), Ia(tq),T (tq),R(tq)

)
,

T p(tn+1) = T0 +
1

Γ(α)

n∑
q=0

bq,n+1 fT

(
tq, S (tq), Iu(tq), Ia(tq),T (tq),R(tq)

)
,

Rp(tn+1) = R0 +
1

Γ(α)

n∑
q=0

bq,n+1 fR

(
tq, S (tq), Iu(tq), Ia(tq),T (tq),R(tq)

)
.

Furthermore, the functions fi

(
tq, S (tq), Iu(tq), Ia(tq),T (tq),R(tq)

)
, i = S , Iu, Ia,T,R are computed as

follows

fS

(
tq, S (tq), Iu(tq), Ia(tq),T (tq),R(tq)

)
= π − βS Ia − βθS Iu + γR − µS , (5.9)

fIu

(
tq, S (tq), Iu(tq), Ia(tq),T (tq),R(tq)

)
= βθS Iu − (µ + φ + du)Iu, (5.10)

fIa

(
tq, S (tq), Iu(tq), Ia(tq),T (tq),R(tq)

)
= βS Ia + φIu −

ωIa

1 + ωIa
− (µ + da)Ia, (5.11)

fT

(
tq, S (tq), Iu(tq), Ia(tq),T (tq),R(tq)

)
=

ωIa

1 + ωIa
− (µ + ν)T, (5.12)

fR

(
tq, S (tq), Iu(tq), Ia(tq),T (tq),R(tq)

)
= νT − (µ + γ)R. (5.13)

Likewise, the functions

fS
(
tn+1, S p(tn+1), I p

u (tn+1), I p
a (tn+1),T p(tn+1),Rp(tn+1)

)
,

fIu

(
tn+1, S p(tn+1), I p

u (tn+1), I p
a (tn+1),T p(tn+1),Rp(tn+1)

)
,

fIa

(
tn+1, S p(tn+1), I p

u (tn+1), I p
a (tn+1),T p(tn+1),Rp(tn+1)

)
,

fT
(
tn+1, S p(tn+1), I p

u (tn+1), I p
a (tn+1),T p(tn+1),Rp(tn+1)

)
,

fR
(
tn+1, S p(tn+1), I p

u (tn+1), I p
a (tn+1),T p(tn+1),Rp(tn+1)

)
,

are computed from Eq. (5.9)-(5.13), respectively, at the points tn+1 for n = 1, 2, 3, . . .m. We thus
present numerical simulation in the next section.

6. Numerical analysis

6.1. Model simulation

Here, we parameterise the model using the available published literature. Our parameterisation uses
the historical emergence of tungiasis in sub-Saharan Africa. The parameter values, at which the model
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is in its endemic state, are summarised in Table 3.

Table 2. The initial data numerical simulation.

S (0) Iu(0) Ia(0) T (0) R(0)
900 300 120 20 5

Table 3. Model parameter values used for numerical simulations.

Symbol Value Source Symbol Value Source
π 4.4 × 10−3 [11] γ 4.27 × 10−1 [11]
β 1.4989 × 10−2 [11] φ 0.001
µ 1.6 × 10−2 [11] θ 1.431 × 10−2 [11]
ν 0.05 da 4.2 × 10−2 [11]
ω 0.01 du 6.2 × 10−2 Estimated

Using the initial data in Table 2 and the parameters in Table 3, we obtain trajectories for the frac-
tional model (3.4) as illustrated in Figure 2. Considering 0 ≤ t ≤ 100 and initial values as described in
Table 2, we give plots of the sub-populations for various fractional orders α. From the values in Table
1, we have Rt1 = 0.0007356 < 1, Rt2 = 0.0699499 < 1 and subsequently R0 < 1, implying that tungia-
sis eventually die out even with no intervention in place. Theoretically, if R0 > 1, then tungiasis will
persist in the population until the introduction of intervention strategies to reduce R0. The fractional
order α considered varies from α = 0.75 to α = 1 as depicted in Figure 2. When α = 1, we have the
classical integer order model.

The graphs demonstrate that fractional order significantly affects the dynamical behaviour of all the
sub-populations. The memory effect of the model system grows as α decreases from 1 to 0.75. Over
time, the amount of educated and infected people increases when α decreases from 1 to 0.75. In a
general sense, low education levels on tungiasis and its transmission dynamics thereof result in a delay
in identifying tungiasis-exposed people, a rise in the tungiasis undiagnosed individuals, accelerated
progression of the disease in the population, as well as a rise in individuals eventually diagnosed with
the disease. Conversely, being educated on tungiasis transmission dynamics trigger the susceptibles
to take precautionary measures such as a change in behaviour and regular application of a repellent
based on coconut oil to reduce the probability of infection. This consequently results in minimal
infection growth in society. We may then conclude from Figure 2 that the derivative order α doubles
as a precautionary measure in the fight against infection propagation.

Worth noting is that each sub-population projection maintains the same trend when α is varied,
although their actual values are moderately different. In Figure 2a, we observe that the S (t) curves are
decreasing over time and converge to equilibrium point S 0 = 0.271605. Figures 2b-2e indicate that all
Iu(t), Ia(t), T (t) and R(t) decrease with time and finally converge to the equilibrium point (Iu0 , Ia0 ,T0,R0)
= (0,0,0,0). Furthermore, the existence of attractors for different fractional order α are given in Figure 3
for the case R0 < 1. Figure 3 indicates that each population class exists and enters a state of remaining
unchanged indefinitely.

In summary, we see from Figure 2 and 3 that population classes converge quicker to their steady
states when α is increased. Figure 2 indicates the numerical solution converging to the DFE E∗0 =
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Figure 2. Projections of tungiasis model (3.4) for different α using parameters in Table 1. We
observe that population classes converge quicker to their steady states when α is increased.

(0.271605, 0, 0, 0, 0). This displays a positive outcome that the cases of Tungiasis-infected individuals
tend to zero as t → ∞. Thus, we can conclude that the derivative order α captures the role of experience
or knowledge that individuals have on the disease’s history. The obtained approximate results confirm
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that FDEs provide plentiful dynamics and tend to better express biological systems when compared to
their integer model versions. As a result, the presence of the fractional order α makes our results more
logical than perhaps what integer order-only models would present.

(a) (b)

(c) (d)

Figure 3. Existence of attractors for different fractional order α in model (3.4). We observe
decreasing the α does not impact the dynamics of the system.

6.2. Impact of public health education

The impact of public health education is quantified by simulating the different sub-populations for
different values of θ. Recall that θ = 1 − ε. If ε is quantifies literacy on public health issues, then θ
is the ignorance or illiteracy level. Figures 4 and 5 show plots of Iu and Ia for θ = 0.3 and θ = 0.9,
respectively, for different fractional order values. We see that increasing the fractional order from 0.75
to 1 results in a decrease in equilibrium values of the infected but unaware and infected but aware
populations. Figure 6 shows a plot of the Iu and Ia populations for different values of θ and a fixed
α. The figure indicates that the equilibrium number of infected and unaware individuals generally
increases when θ increases.
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Figure 4. Results indicating the effect of θ = 0.3 on the Iu and Ia fractional dynamics for
different fractional order α.

The relationship between θ and ε implies that Iu decrease as ε increases. However, varying θ has very
little to no effect on the equilibrium number of those infected and aware individuals. We also plotted the
recovered and treated populations for varying values of θ and observed that these sub-populations do
not change as we increase θ. We conclude that increasing public health education campaigns/literacy
on how Tungiasis spreads (reducing θ) plays a significant role in reducing the number of people who
eventually end up in class Iu. Ideally, we want to reduce the number of people who end up in this class.
If people are educated on Tungiasis dynamics and preventative measures, then they will adhere to all
precautionary measures in preventing possible infection. Also, individuals literate on the disease may
easily identify symptoms if infected. Then, they can quickly seek medical help and avoid complications
brought about by prolonged disease exposure.
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Figure 5. Numerical results showing the effect of θ = 0.9 on the Iu and Ia fractional dynamics
for different fractional order α.
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Figure 6. Results showing the effect of θ on the Iu and Ia fractional dynamics for a fixed
fractional order α.

6.3. Impact of treatment

The effect of the treatment rate ω on the population dynamics is presented in Figure 7, 8 and 9.
Figures 7 and 8 show plots of Ia, T and R for ω = 0.1 and ω = 0.3, respectively, and different fractional
order values. We observe that for a fixed ω and different fractional order, the equilibrium values of Ia,
T and R decrease as the fractional order increases from 0.57 to 1. In Figure 9, we also observe that for
a given fractional order, increasing ω results in a decrease in equilibrium values of the infected class.
Equilibrium values of T and R increase on average due to the increase in ω. This is consistent with
what is expected of treatment. As more people get treatment and recover from disease, the quality of
life of the people improves such that the effects of the disease burden are decreased. If more infected
people recover quickly, these people resume their duties (jobs) sooner that otherwise would be the case
in the absence of treatment. Treatment negates any potential adverse economic effects due to prolonged
sickness. Hence, research into effective drugs for the treatment of tungiasis should be heightened.
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Figure 7. Numerical results showing the effect of ω = 0.1 on the Ia, T and R fractional
dynamics for different fractional order α.
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Figure 8. Numerical results showing the effect of ω = 0.3 on the Ia, T and R fractional
dynamics for different fractional order α.
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Figure 9. Results showing the effect of ω on the Ia, T and R fractional dynamics for a fixed
fractional order α.

6.4. Impact of the contact rate

The effect of the contact or transmission rate β is analysed in Figure 10, 11 and 12. Figures 10 and
11 show dynamics of Iu, Ia, T and R for β = 0.1 and β = 0.3 with varying fractional order, respectively.
Similarly, the equilibrium values of Iu, Ia, T and R decrease as the fractional order increases from
0.75 to 1. Qualitatively, the trends of the curves are the same for different fractional values. Figure
12 indicate plots of Iu, Ia, T and R for different β for a fixed fractional order. The results show that
decreasing β results in a decrease in equilibrium values of Iu. For Ia, we observe a similar trend
even though there are times when a lower β results in a higher Ia. For instance, for approximately
32.0565 < t < 95.9409, β = 0.2 results in higher equilibrium values of Ia than the case for β = 0.3.
However, in the long run, we observe that as β decreases, Ia decreases, similarly to the Iu case. If a
decrease in β results in a decrease in both Iu and Ia, then we expect a decrease in both T and R. This
is because Iu and Ia feed into T and subsequently, R. Figure 12 depicts this expected outcome, that
is, as β decreases, the equilibrium values of T and R decrease too. As a public health intervention,
officials should devise strategies that target reducing the contact or transmission rate. Things like
wearing shoes, cleaning/disinfection ground surfaces where people walk barefoot, and reducing contact
between human beings and stray animals like rats, bovines, pigs, wild cats and dogs, etc can reduce
the transmission or spread of tungiasis.
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Figure 10. Numerical results showing the effect of β = 0.1 on Iu, Ia, T and R fractional
dynamics for different fractional order α.
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Figure 11. Numerical results showing the effect of β = 0.3 on Iu, Ia, T and R fractional
dynamics for different fractional order α.
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Figure 12. Results showing the effect of β on Iu, Ia, T and R fractional dynamics for a fixed
fractional order α.

7. Conclusion

In this manuscript, we developed and analysed a fractional model for the dynamics of tungiasis,
with the aim of establishing the potential impact of public health education and treatment in reducing
disease burden. Using the Caputo fractional derivative, we first established if the developed model
is well-posed. The boundedness and positivity of the solution of the model are determined using the
generalised mean-value theorem. We also determined the model steady-states and presented their sta-
bility based on the basic reproduction number. To solve the resulting system of fractional differential
equations, we used the Adam-Bashford-Moulton method. The numerical results are presented graphi-
cally for different fractional order α. We also studied the impact of public health education, treatment
and the contact rate on the overall disease dynamics. This is an attempt to identify key parameters
that public health officials can target in their attempts to reduce disease burden in communities. Our
numerical results envisage that an increase in media campaigns will result in an increase in the number
of educated, thus reducing the number of infected but unaware individuals. If people are infected and
aware of their disease status, then they can quickly seek medical help and avoid complications brought
about by prolonged disease exposure. Also, programs such as disinfection of public floors in endemic
areas, provision of shoes for the disadvantaged, and reduced contact with stray animals, targeted at
reducing disease transmission should be prioritised by public health officials. Research into effective
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tungiasis treatment drugs should also be heightened to reduce disease burden and suffering.
We acknowledged that the work presented in this paper has some limitations. The fact that the

model was not fitted to any epidemiological data in a particular setting is an issue we still need to
address. Our results agree with that found by other mathematical models that have previously analysed
tungiasis dynamics in sub-Saharan African settings, see, for instance, Nyang’inja et al. [11].

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this manuscript.

Acknowledgements

We thank the reviewers for carefully checking and reading our manuscript. The manuscript has
improved immensely because of their insightful comments.

References

1. E. Iboi, A. Richardson, R. Ruffin, D. Ingram, J. Clark, J. Hawkins, et al., Impact of Public Health
Education Program on the Novel Coronavirus Outbreak in the United States, Front. Public Health,
9 (2021), 630974. https://doi.org/10.3389/fpubh.2021.630974

2. I. Owusu-Mensah, L. Akinyemi, B. Oduro, O. S. Iyiola, A fractional order approach to
modeling and simulations of the novel COVID-19, Adv. Differ. Equ., 2020 (2020), 683.
https://doi.org/10.1186/s13662-020-03141-7

3. P. Veeresha, L. Akinyemi, K. Oluwasegun, M. Şenol, B. Oduro, Numerical surfaces of fractional
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