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Abstract: Nowadays, data analysis is been the most important means to realize power scheduling in 

smart grids. However, the sharp increase in business data of grids has posed great challenges for this 

purpose. To deal with such issue, this paper utilizes deep learning to discover hidden rules from 

massive large-scale big data and particle swarm optimization (PSO) algorithm for generation of control 

decision. Therefore, an intelligent scheduling control method for smart grid based on deep learning is 

proposed in this paper. By modeling the historical data of the power company, the long short-term 

memory algorithm can effectively extract the effective features and realize the prediction of the coal 

consumption of the unit under certain conditions. At the same time, a kind of intelligent power 

scheduling algorithm is designed by using PSO, so as to save energy and reduce emissions as much as 

possible while fulfilling the real-time power generation task. Experiments on a real-world smart grid 

dataset show that the proposal can achieve a relatively good performance with respect to intelligent 

scheduling. 
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1. Introduction  

With the continuous progress of the times, the Microgrid has gradually evolved into a complex 

independent system. The main characteristic of its operation is that it can be coupled with various 

energy devices to form a diversified system, so as to achieve the optimal operation efficiency and 
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obtain benefits [1]. Connecting distributed devices to the energy Internet in the form of Microgrid can 

greatly reduce problems such as excessive load, difficulty in control and low efficiency caused by 

large-scale access to the power supply. Therefore, integrating different energy systems into a Microgrid 

and optimizing its energy scheduling strategy have become a hot topic for current scholars [2]. 

Nowadays, digitalization and intellectualization have penetrated into all aspects of people's lives, and 

smart grids have emerged, as the times require. The security of the power system is an important part 

of national security. Therefore, a unified power grid and a unified dispatching communication mode 

are required [3]. The power system in China is above 500 kV, which is a unified power grid. The power 

used in cities is 500 kV, and the voltage level is gradually reduced by power transformation. Whether 

the whole power grid has a good communication mode to ensure the reasonable operation of the power 

grid is the problem that the smart grid needs to consider at present [4]. The power grid dispatching 

control system is the nerve center of the whole power grid system [5]. It controls a series of important 

indicators, such as power flow control, power balance, voltage balance and frequency control, and is 

the front line of the power grid security [6]. In case of natural disasters such as typhoons and mountain 

torrents, the power grid will inevitably be affected, and problems will occur [7]. At this time, the power 

grid dispatching control system can assume all responsibilities to ensure the safe and stable operation 

of the power grid [8]. Now, with the gradual expansion of the power system, the dispatching level of 

the power system has also changed [9]. 

At present, the data of provincial dispatching, network dispatching and national dispatching are 

collected level by level, sent from provincial dispatching to network dispatching and then sent from 

network dispatching to national dispatching, forming the real-time data of the whole network [10]. The 

main purpose of level-by-level collection is to realize the analysis of the whole network [11]. The 

theory of the Microgrid is also in full swing, generally from the modeling process and algorithm 

strategy. From the point of view of the model, it is mostly analyzed from the use efficiency of its 

distributed energy and the economic benefits of the Microgrid, such as the optimization of distributed 

power generation, the optimization of energy storage system and load and the economic benefits of the 

Microgrid [12]. Specifically, from the perspective of a distributed energy system, [13] uses energy 

storage power technology to stabilize the power of the power grid. [14] and [15] use other energy 

systems to adjust the load. However, there are still some defects in the actual operation of the 

dispatching control system, such as the need for sufficient energy support to convert energy into 

electric energy. Furthermore, it needs higher quality of electrical equipment [16]. However, there is a 

shortage of energy in our country. At this time, if the dispatching control system of smart grid wants 

to give full play to its role, it must consider the use of new energy [17]. At present, people's demand 

for power use is growing, and the energy issue has become the focus of consideration. In addition, 

there are many factors that cause power grid failure, especially in bad natural weather. This uncertain 

factor causes power grid failure, which has a certain impact on the operation of the smart grid 

dispatching control system [18]. Moreover, if the short-circuit current is not controlled in time during 

the operation, it has an impact on the dispatching; and at the same time, it will greatly increase the 

management cost of the power grid dispatching. In addition, the quantitative evaluation of the power grid 

operation performance is not enough, and the multi-objective adjustment control cannot be realized. 

In the power market, the price of electricity also plays an important role. The dispatcher realizes 

various goals by controlling the price of electricity and adopts different price mechanisms for different 

Microgrid models. By analyzing and predicting the electricity price, the electricity price is controlled 

at a lower level when the load is high, which meets the demand of the user. The time of use electricity 
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price can be used to formulate the electricity price strategy according to the time period. [19] studied 

the influence on the load curve of changing the electricity price, so as to achieve the effects of peak 

shaving and valley filling. In recent years, the electric energy trading between Microgrids has also 

received special attention. [20] describes the scenario of electric energy trading among multiple 

Microgrids and analyzes its economic benefits. There must be cooperation or competition in 

transactions between multiple Microgrids. By analyzing its Nash equilibrium and using game theory 

to model, [21] achieves the goal of mutual benefit and a win-win situation. In terms of design algorithm, 

optimal scheduling is an important branch. Generally, the power quality is guaranteed under the 

premise of meeting the load demand by controlling the scheduling strategy. The algorithm used is 

usually particle swarm optimization [22] or simulated annealing algorithm. For complex wind power 

systems, it is also important to predict the wind power value through a data-driven method. [23] also 

uses a mixed integer linear programming algorithm to calculate the wind power consumption. For the 

optimization of the Microgrid system after the wind and solar energy prediction, [24] uses the kernel 

function limit learning machine to establish a model for load prediction and shows good prediction 

performance, and it studies the factors that may affect the error through correlation analysis. In terms 

of energy management, [25] establishes a stochastic planning and dispatching model by satisfying the 

principle of optimal comprehensive benefits, and it optimizes the model with particle swarm 

optimization algorithm, so as to minimize the expected value of Microgrid operation cost. However, 

with the increase of control accuracy and precision required by the Microgrid, traditional algorithms 

have difficulty meeting this demand. People urgently need more accurate and effective algorithms to 

control the scheduling strategies [26,27]. 

With the rapid development of China's economy, the demand for electricity is increasing. The 

power load itself is affected by many factors and policies, such as date, weather, climate, market and 

other factors. These factors greatly increase the difficulty of accurate power load forecasting [28-30]. 

With the rise of machine learning, many scholars have also applied machine learning to Microgrid 

control, training using large sets of wind and light data with neural networks to obtain predicted wind 

and light data [31]. At the same time, with the deepening of reinforcement learning, some scholars 

have applied reinforcement learning to the field of energy dispatching: using reinforcement learning 

to stabilize the fluctuation of renewable energy in a Microgrid [32]. The power trading model of the 

Microgrid is iterated through reinforcement learning to obtain the optimal scheme in [33]. [34] uses 

reinforcement learning to control the energy storage device for the load; [35] uses deep reinforcement 

learning to accurately control various devices of an automobile, reducing the cost of fuel consumption. 

As shown above, applying machine learning to Microgrids has become a hot research topic. At present, 

the ability of machine learning to solve problems largely depends on the quality of the extracted 

features. However, deep learning technology can obtain high-quality features without manual 

extraction, so the long short-term memory network (LSTM) is a technology of deep learning, which 

can establish a model well. In view of the good robustness and positive heuristic of particle swarm 

optimization (PSO), this paper designs a load allocation algorithm based on PSO. The main 

contributions are summarized as follows: (1) The time-series model of power data is established. 

Compared with the traditional model, the time series model can better reveal the internal relationship 

of the data. (2) The convolution neural network (CNN) in the long and short memory network model 

can extract the feature information of the original load related data and reduce the complexity of the 

information input into the prediction model to extract the data features. (3) An intelligent power 

dispatching algorithm is designed using particle swarm optimization (PSO), which can save energy 
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and reduce emissions as much as possible while completing real-time power generation tasks. 

2. Architecture research of smart grid framework and problem description  

2.1. Architecture design of smart grid 

As the support of the whole power grid, the network dispatching control system has great 

importance for the power system. With the increasing demand for power, the requirements for the 

security and stability of the power system are also higher and higher. At present, the power grid 

dispatching control system can realize integrated coordination control and form an integrated 

intelligent dispatching system. For example, the new energy power prediction system in power grid 

dispatching can predict the short-term and ultra-short-term on grid power generation of wind power 

plants and photovoltaic power plants. Compared with manual prediction, the new energy power 

prediction system has established an accurate prediction model based on the historical data of power 

generation, combined with more detailed and accurate numerical weather forecast information, Under 

normal circumstances, the prediction accuracy in the next 24 hours is more than 85%, and the 

prediction accuracy in the next 4 hours is more than 90%, which is convenient for the grid dispatching 

and operation personnel to make the power generation plan in advance, more reasonably dispatch the 

grid and reduce the impact of the randomness and volatility of new energy generation on the grid 

operation. The power grid dispatching control system is the decision-maker and commander of the 

power grid operation. It is an indispensable part of the power grid. Recently, the R&D and construction 

of a smart grid dispatching control system has been gradually carried out in the power industry. The 

basic structure mainly includes dispatching management, monitoring and early warning and 

dispatching plan. In terms of monitoring and early warning, it mainly monitors and evaluates the 

operation of the power system, and it can give early warning in case of failure. The dispatching 

management is mainly aimed at the daily management and resource maintenance of the dispatching 

organization. On the scheduling plan, the plan formulation and distribution are realized according to 

different scheduling mode requirements. Smart micro-grid refers to a small power generation and 

distribution system composed of distributed power supply, energy storage device, energy conversion 

device, load, monitoring and protection device, etc. It realizes the flexible and efficient application of 

distributed power supply through the use of advanced Internet and information technology, and it has 

certain energy management functions. Therefore, the Architecture of a Smart grid is designed as shown 

in Figure 1. 

As is shown in Figure 1, a household microgrid system consists of a distributed generation unit, 

energy storage unit, smart meter, residential load and electric vehicle. Considering the natural 

complementarity of wind energy and solar energy in time and space, the distributed generation unit 

composed of wind turbine and photovoltaic array can effectively reduce the capacity configuration of 

the energy storage battery. The energy storage unit can suppress the random fluctuation of distributed 

generation and improve the power quality. The household loads include water heaters and hair dryers, 

and there are certain differences in each household. Electric vehicles are parked together for unified 

regulation. Electric vehicles can not only be used as vehicles, but they also help as energy storage units 

to solve the intermittent problem of distributed generation and reduce the configuration cost of energy 

storage units. The smart meter in the system has a two-way metering function and a two-way data 

communication function, which is one of the key factors to realize the energy and information 
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interaction between the microgrid system and the energy Internet. The energy control center is the core 

module of the household type microgrid system. It networks the components in the system, reduces 

the total operating cost and improves the load characteristics through the operation control of these 

components to achieve the purpose of energy optimization management. The main functions of the 

energy control center are divided into two aspects: One is to receive the electricity price information 

of the distribution network and collect the output information of the distributed power supply, the 

unified load of each household, the power demand information of electric vehicles and the energy 

storage status. The second is to release real-time control information for the unified load, electric 

vehicle and energy storage unit in the system. 

 

Figure 1. The structure design of microgrid system. 

2.2. Description of intelligent power dispatching problem 

In this section, the energy regulation of the microgrid system is carried out by dynamic 

optimization. The specific implementation process is shown in Figure 2. 

(1) Input/update demand information: When the new decision-making cycle begins, the energy 

control center receives the power demand information of residential electric appliances and electric 

vehicles through the Advanced Metering Infrastructure (AMI), including the minimum operating 

power, maximum operating power, operating time and minimum energy consumption of each 

residential electric appliance, as well as the network access time, off network time State of charge 

(SOC), off grid SOC and rated power of charge and discharge. After optimized dispatching, the system 

energy control center updates energy consumption of residents' load and SOC information of electric 

vehicles through AMI. (2) Renewable energy prediction: According to the existing research 

conclusions on the output power of wind and solar renewable energy, the wind and light output in the 

future is predicted with the wind and solar output in the current period as the starting value. (3) Finite 
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time domain optimization: According to the power demand information of household electrical 

appliances and electric vehicles, the prediction information of wind and light output and the energy 

storage status and the developed new internal real-time electricity price mechanism, the optimal power 

consumption scheme of controllable electrical appliances, electric vehicles and energy storage systems 

of each household is formulated. (4) Real time regulation: In the current period, each controllable 

electric appliance, electric vehicle and energy storage system performs specific power consumption, 

idle or discharge operations according to the power consumption scheme and transmits regulation 

information through AMI. The energy management strategy based on the new real-time electricity 

price and Model Predictive Control (MPC) algorithm gives play to the auxiliary service potential of the 

active load, which can minimize the adverse impact caused by the uncertainty of distributed wind and light 

output prediction in the optimization process, significantly reduce the total cost of the microgrid system 

and effectively improve the net load characteristics. 

 

Figure 2. Implementation process of basic dynamic energy regulation of microgrid system. 

3. Dispatching control method for smart grid based on machine learning 

The algorithm framework is mainly divided into three parts: One is the dimension reduction 

method of power grid big data. First, there is collection of the operation data of the microgrid through 

the combination of wireless sensor network and cloud platform to provide the basis for data mining 

[36]. Second, on the basis of the LSTM regression model [37], the system conducts modeling through 

historical data, obtains the regression relationship between the data load of each sensor of the unit and 

the coal consumption of the generator and predicts the coal consumption in a certain time. Third, after 

obtaining the regression model and the real-time load distribution system based on PSO, according to 

the current real-time data of each unit, it obtains the load distribution scheme with the lowest overall 

coal consumption under the completion of power generation tasks and other constraints. The 

dispatching system framework is shown in Figure 3. 
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Figure 3. The structure of the algorithm. 

3.1. Research on dimension reduction algorithm of Laplace feature mapping data 

The high-dimensional sample data (d dimension) collected from the smart grid is actually in a 

manifold, and the manifold structure retains the geometric features of the original data, while l is the 

intrinsic dimension of the sample data. As an effective dimensionality reduction method of machine 

learning big data, Laplace feature mapping is a nonlinear dimensionality reduction method to construct the 

relationships between data from a local perspective, the idea of which is to calculate and find out the points 

that are related to each other and can retain the useful information of the high dimensional data. 

In Laplacian algorithm, I and j should retain the similarity relationship in the target low-

dimensional subspace after the dimension reduction and be as close as possible. Therefore, Laplacian 

eigenmaps are 

𝑚𝑖𝑛 ∑ 𝑊𝑖𝑗‖𝑦 − 𝑦𝑖‖𝑖𝑗                                 (1) 

where D is a diagonal matrix, and the formula (s) can be expressed as follows: 

𝑚𝑖𝑛 𝑡 𝑟(𝑌𝑇𝐿𝑌), 𝑠. 𝑡. 𝑌𝑇𝐷𝑌 = 𝑙                                 (2) 

where the matrix is the Laplace matrix. The constraints ensure non-zero eigenvalues (including 

multiple roots) of the following generalized eigenvalue problem: 

𝐿𝑦 = 𝛿𝐷𝑦                                  (3) 

Laplace feature mapping establishes a domain map. Data points will be a cloud node in the domain 

map, and the connection relationship between each nodes is determined. The effect of this process can 

be generally expressed as 

𝑀𝐷 ⇒
𝐿𝐸

𝑀𝐿                                 (4) 

where 𝑀𝐷 and 𝑀𝐿 , respectively, represent the original features in the d-dimensional space and the 

mapping features in the L-dimensional space. 
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3.2. LSTM deep learning regression model 

The artificial neural network algorithm has the advantages of generalization and strong learning 

ability. Now, this algorithm has been widely used in the field of power load forecasting and has 

achieved good results. They often use data directly through neural networks to achieve power grid 

scheduling. This paper mainly uses LSTM network to extract features from power data and then 

combines the traditional PSO algorithm to achieve power dispatching. This method can better improve 

the efficiency of the algorithm and improve the accuracy of the algorithm. In ordinary deep neural 

networks, the nodes of each layer are connectionless. If the current state of the problem is related to 

the previous state, it is easy to cause poor processing results. The recurrent neural network (RNN) can 

solve this problem by adding recursive edges to the hidden layer neurons, so that the neural network 

has memory. The structure of a recurrent neural network is shown in Figure 4. RNN is equivalent to a 

multi-layer deep neural network (DNN) developed according to time series. Due to the large number 

of layers, the gradient may disappear. 

Compared with RNN, the LSTM network structure contains candidate states of memory function 

for memory and transmission of effective information. In addition, the LSTM structure also includes 

a forgetting gate, an input gate and an output gate. The three gate control signals are as follows: 

𝑓𝑡 = 𝜎(𝑊𝑓 [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                             (5) 

𝑖𝑡 = 𝜎(𝑊𝐶  [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)                             (6) 

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶  [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)                          (7) 

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶  [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)                           (8) 

𝑜𝑡 = 𝜎(𝑊𝑜 [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)                             (9) 

ℎ(𝑡) = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡)                               (10) 

3.3. Energy optimal dispatching strategy of microgrid 

When the microgrid is in the isolated grid operation mode, the objective of its optimal dispatching 

is to achieve the lowest power generation cost and the lowest pollution gas emission under the 

constraints of meeting the operation constraints of each distributed unit and the thermal power load 

demand. When the microgrid is in the grid connection mode, in addition to considering various 

constraints under the isolated grid operation, the two-way flow of power flow and mutual purchase of 

electric energy between the microgrid and the large grid should also be considered. The objective 

function of the energy management optimization dispatching of the microgrid system can be expressed as 

 𝑚𝑖𝑛 𝑍𝑐𝑜𝑠𝑡 = 𝜆1𝐶𝑔 + 𝜆2𝐶𝑒                             (11) 

where 𝑍𝑐𝑜𝑠𝑡 is the objective function of total operation cost of the microgrid, 𝐶𝑔 is system power 

generation cost, 𝐶𝑒 is penalty cost of pollutant gas emission, and 𝜆1 and 𝜆2 are weight proportion of 

power generation cost and pollution gas emission penalty cost. 

In this paper, the bacterial foraging algorithm is used to improve the PSO algorithm, which is 

prone to "premature convergence" and needs to deal with many constraints in the micro grid energy 

management optimization scheduling problem. The speed and position updating formulas of the 

improved PSO are 
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𝑣𝑖𝑗 = 𝑤𝑣𝑖𝑗 + 𝑐1(𝑝𝑏𝑒𝑠𝑡𝑖𝑗 − 𝑝𝑖𝑗) + 𝑐2(𝑔𝑏𝑒𝑠𝑡𝑖𝑗 − 𝑔𝑖𝑗) + 𝑐2(𝑓𝑟𝑤𝑖𝑗 − 𝑝𝑖𝑗)            (12) 

𝐶(𝑖) =
∑ |𝐸𝑟𝑟𝑜𝑟𝑖,𝑘|+1

𝜉
𝑘=1

√𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
                               (13) 

where j is the dimension of the i-th particle; N is the total dimension of the particle; 𝑓𝑟𝑤𝑖𝑗is the j-th 

coordinate of the i-th particle foraging random step position; 𝑝𝑖𝑗  and 𝑔𝑖𝑗  are the dimensional 

coordinates of the position and velocity of the i-th particle, respectively; 𝑝𝑏𝑒𝑠𝑡𝑖𝑗 and 𝑔𝑏𝑒𝑠𝑡𝑖𝑗 are the 

j-th coordinate of the individual optimal solution of the i-th particle and the j-th coordinate of the global 

optimal solution, respectively; 𝐶(𝑖) is the random step size of foraging. 
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Figure 4. The simple structure LSTM. 

Therefore, it is necessary to deal with each constraint condition before calculation. The equality 

constraints considered in this paper include node power flow constraints and power balance constraints. 

The inequality constraints considered mainly include rotation reserve constraints, distributed unit 

output constraints, node voltage constraints and interaction capacity constraints with large power grids. 

The flow of the improved particle swarm optimization algorithm for energy optimization scheduling 

of microgrid in this paper is shown in Figure 5. As is shown in Figure 5, the main process of the PSO 

algorithm is as follows: First, the particle swarm optimization algorithm is composed of a group of 

particles moving in the search space, which is affected by its own best past position pbest and the best 

past position gbest of the whole group or its nearest neighbor. Then, calculate and update the latest 

position of particles by formulas (12) and (13). Finally, from the velocity update formula, we can see 

that if the algorithm needs to converge quickly, we need to increase the acceleration constant. However, 

doing so may lead to "precocity" of the algorithm. If the inertia weight is increased, it can increase the 

"enthusiasm" of particles to detect new positions, avoiding falling into local optimization prematurely, 

but also reduce the convergence speed of the algorithm. For some improved algorithms, a random term 

will be added to the last term of the speed update formula to balance the convergence rate and avoid 

"premature" convergence. According to the characteristics of the location update formula, particle 

swarm optimization is more suitable for solving continuous optimization problems. 
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Figure 5. The flowchart of PSO for energy optimization scheduling of microgrid. 

4. Simulation results and performance analysis 

4.1. Data sources and data processing 

The historical data of two units of Xuancheng Power Plant in Anhui Province were collected. For 

the #1 unit, the selected data were from August 10, 2020, to August 10, 2020, with a total of 43 

measuring points The data of the #2 unit from June 1, 2020, to July 1, 2020, were selected. There were 

46 measuring points in the test. Since the time interval for each sensor to acquire data is different, the 

test needs to understand the current stable state of the system, so the original data is processed to obtain 

the average data of each sensor within 1 min. The Laplacian eigenmaps grid big data dimension 

reduction algorithm was encoded in the Java language and tested in the Hadoop platform. Hadoop is a 
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distributed system infrastructure. It adopts master/slave mode. One master node manages one or more 

slave nodes in a unified manner. Hadoop version 2.2.0 system was used in the experiment. The 

performance of Laplacian eigenmaps algorithm was analyzed by using two types of data, which are 

from a smart grid in Southwest China. 

 

Figure 6. Data dimension reduction performance verification. 

The fault detection data of transformer is denoted as data1, and the prediction of intelligent 

substation is denoted as data2. The data set capacity of data 1 and data 2 is 15GB.  The condition 

attributes of these two kinds of data sets are reduced to compare the dimension reduction efficiency of 

Laplacian eigenmaps algorithm under different attributes, and then the performance of this algorithm 

is compared with the commonly used parallel dimension reduction algorithm according to the 

acceleration ratio. Finally, the data after cleaning is obtained through data duplication and error 

elimination, as shown in Figure 6. The reduction efficiency of the algorithm will increase with the 

increase of its parallelization. In order to verify the reduction efficiency of the Laplacian eigenmaps 

algorithm, 15 GB of transformer fault detection data are used to select 5, 10 and 15 nodes, respectively, 

for the Hadoop platform to conduct the time-effectiveness comparison experiment on the data sets of 

the same size. The data dimension reduction performance verification is in Figure 6. As is shown, when 

the number of nodes keeps increasing, the reduction efficiency of Laplacian eigenmaps algorithm will 

be improved accordingly. The performance advantages and disadvantages of the Laplacian eigenmaps 

algorithm and common parallel dimension reduction algorithms are analyzed in terms of time 

complexity, space complexity and algorithm accuracy. In order to further prove the effectiveness of 

this method, the performances of this method and the mainstream dimension reduction method are 

compared from the two aspects of reduction efficiency and acceleration ratio. 
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4.2. The accuracy verification of regression model 

The hidden layer composed of 10 layers of LSTM is used in the test, and each layer has 128 nodes. 

The model was trained by stochastic gradient descent (SGD) with 500 rounds. The fitting effect of the 

unit is shown in Figure 7. When the number of training rounds is 500, the mean square error of the 

test set can be stable at 0.18 for the #1 unit and 0.06 for the #2 unit, which has achieved the 

expected fitting effect. 

 

Figure 7. Prediction accuracy verification based on LSTM regression model. 

The interval width of the proposed model is the narrowest, and the quantile score is the lowest. 

The main reason is that the convolutional neural network (CNN) in the LSTM model can extract the 

characteristic information of the original load related data and reduce the complexity of the information 

input to the prediction model. In addition, compared with the traditional regression model, LSTM can 

use its internal memory structure to continuously mine the time sequence compliance relationship 

within the time series under different loci, while the traditional RNN network model can only simply 

establish the mapping relationship between input variables and output variables and cannot use long-

term historical input data information. 

4.3. The influence factor results analysis based on partial relation coefficient 

This paper mainly evaluates genetic algorithm, ant colony algorithm [38] and improved particle 

swarm optimization algorithm from the two aspects of time-consumption and scheduling effect. In 

practical application, in order to ensure the normal use of unit #1 and unit #2 of the power plant, the 

following restrictions are used. Micro gas turbine is used in the cogeneration unit in this paper. There 

are great differences in the thermal power load in the microgrid on the residential user side, and the 

thermal load demand will change significantly with the change of seasons. In summer, the average 
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heat load demand in a week is only about the maximum heat load demand of the whole year, while the 

change of electric load demand is relatively small. In terms of one hour, the heat load demand is 

relatively stable, while the electric load demand fluctuates with the time period. In this paper, the 

generation cost of a microgrid in the future hours of a typical day in winter is selected as the research 

object for optimal control. The thermal power load prediction curve of a microgrid in the hours of that 

day is shown in the figure. Inputs are the forecast data of sunlight, temperature, wind speed, etc. The 

output forecast data of photovoltaic power generation can be obtained, respectively. The operation cost 

of a microgrid system under various dispatching strategies is shown in Figure 8. 

 

Figure 8. Superiority verification of the algorithm. 

When the strategy is adopted, the power generation cost of the microgrid is the highest, in which 

the fuel cost accounts for the total cost, and the pollution penalty is also the highest compared with 

other strategies. Under the strategy, as the storage battery and the main network jointly participate in 

the system scheduling, the power generation cost is significantly reduced, which is slightly lower than 

the strategy. Meanwhile, the system fuel cost and pollution penalty are significantly reduced. Under 

the strategy, since the two-way interaction of electric energy with the main grid can be realized, when 

the microgrid has abundant electric energy, it can be sold to the main grid, so as to have a certain 

amount of electricity sales income and also make the power generation cost lower than that of the 

strategy, reducing about. On the basis of the strategy, the strategy considers the participation of 

controllable loads in the microgrid. It is found that when controllable loads in the microgrid participate 

in energy management, it is beneficial to improve the economy of microgrid system operation, and its 

power generation cost is the lowest compared with the first three dispatching strategies. 

5. Conclusion 

The smart grid dispatching control system is the backbone of the power system, and the premise 

is to ensure the stable and safe operation of the power grid. In recent years, due to the continuous 

expansion of the power system, power enterprises have gradually carried out the research and 
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construction of the smart grid dispatching control system and developed from the traditional 

application architecture to the new application architecture. This paper presents an intelligent power 

plant scheduling algorithm based on LSTM algorithm and PSO algorithm. A pre-processing method 

of smart grid big data based on machine learning is proposed. Laplacian eigenmaps are used to 

adaptively learn and reduce the dimension of power grid big data, and then the reduced dimension data 

is used for analysis. The experimental analysis is carried out on the Hadoop platform. The results show 

that the Laplacian eigenmaps algorithm can be effectively applied to reduce the dimension of smart 

grid big data, and it has very broad application prospects. The coal consumption of the generating unit 

is accurately predicted by LSTM. Improved PSO is used to intelligently distribute the total power 

generation load, so that the total coal consumption of the whole plant is the lowest when the power 

generation index is completed. This method effectively improves the utilization rate of coal, improves 

the economic benefits of power plants, reduces the emission of pollutants and provides necessary 

support for economic and environmental protection with power plants. Due to the difference of 

regional power data, the dispatching methods in different regions are also different. It is important to 

try to achieve the collection of resources and forces to connect the grid and expand its coverage and 

scope. By breaking regional restrictions and barriers, this will provide more comprehensive social 

services, create a complete smart grid and improve the adaptability of the dispatching algorithm. . 
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