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Abstract: In this paper, a mathematical model describing the hepatitis B virus (HBV) infection of
hepatocytes with the intracellular HBV-DNA containing capsids, cytotoxic T-lymphocyte (CTL), anti-
bodies including drug therapy (blocking new infection and inhibiting viral production) with two-time
delays is studied. It incorporates the delay in the productively infected hepatocytes and the delay in
an antigenic stimulation generating CTL. We verify the positivity and boundedness of solutions and
determine the basic reproduction number. The local and global stability of three equilibrium points
(infection-free, immune-free, and immune-activated) are investigated. Finally, the numerical simula-
tions are established to show the role of these therapies in reducing viral replication and HBV infection.
Our results show that the treatment by blocking new infection gives more significant results than the
treatment by inhibiting viral production for infected hepatocytes. Further, both delays affect the num-
ber of infections and duration i.e. the longer the delay, the more severe the HBV infection.

Keywords: delay model; drug therapy; HBV-DNA containing capsids; hepatitis B virus; immune
response; cytotoxic T-lymphocyte (CTL)

1. Introduction

Hepatitis B virus (HBV) infection is a significant worldwide health issue. It is a liver infection
caused by the hepatitis B virus. Generally, the infection is classified as either acute or chronic and can
lead to more serious long-term complications, such as liver inflammation, cirrhosis or liver cancer [1].
According to World Health Organisation (WHO) reports, HBV infection is mostly notified in Africa,
Southern Europe, Asia and Latin America. 257 million people were living with chronic HBV infection
in 2015 [2] and about 887,000 people died. In extremely endemic areas, hepatitis B is most commonly
spread from mother to child at birth or transmitted through contact with the blood or other body fluids of
an infected person. From the global epidemic situation, it is essential to have some effective prevention
and treatment measures for hepatitis B infection.
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HBV can replicate within hepatocytes without causing direct cell damage, this can be seen in those
who are asymptomatic HBV carriers. Approximately 5-10% of HBV-infected adults may progress
to a chronic state. The immune responses to HBV antigens are responsible for both disease patho-
genesis and viral clearance. The adaptive immune response specifically the virus-specific cytotoxic T
lymphocytes (CTL) is shown to play a key role in eliminating the infected cells and inhibiting viral
replication [3–11]. Another adaptive immune response is the antibodies, which are produced by the
B cells, that neutralize virus particles and prevent the reinfection of cells [10, 12]. Further, the body’s
immune response would take time from being attacked by viruses to the cell becoming productively
infected, therefore time delay regarding to this circumstance should not be ignored [13–20]. In addi-
tion, HBV infections have shown some time delay in virus amplification and spreading through the
liver [21].

People with chronic hepatitis B infection are recommended to have some medication to reduce the
risk of disease progression, prevent transmission to others and decrease the risk of complications of
hepatitis B. There are two main types of drugs which are standard PEGylated interferon (PEG-IFN)
and nucleoside analogues (NAs). IFN has a role in suppressing viral protein synthesis, preventing viral
infection of cells and degradation of viral mRNA. The NAs play a role in elongating DNA in order
to inhibit HBV replication [21–23]. In addition, in some cases, the treatment may include antiviral
medications (e.g. lamivudine, adefovir, entecavir) and the interferon alfa-2b injection [24]. However,
mentioned drugs can hardly clear the viral covalently closed circular DNA (cccDNA) which is re-
sponsible for the persistence of HBV [25, 26]. The alternative therapies have been recently in clinical
trials and proposed, they base on viral gene silencing by controlling the RNA interference (RNAi)
pathway which suppresses HBV replication and may result in disabling cccDNA during chronic infec-
tion [25, 26]. With the fact mentioned above, although the HBV vaccines are widely used, safe and
effective and there are some drugs that could cure and greatly reduce the viral burden [27, 28], there
are limitations against chronic infection. Hence, HBV infection is still a major health problem around
the world.

Mathematical models have been shown to greatly contribute to a better understanding of HBV
infection. The work by Nowak et al. [29] is one of the earliest models about the HBV infection of
hepatocytes consisting of three variables which are the concentration of uninfected cells, infected cells
and free virus particles. There are a number of mathematical models that have been proposed after that
(e.g. [30–39]). Some models involve treatments or drug efficacy (e.g. [38, 40, 41]). In some studies,
the time delay has been considered. The models which involve the time delay from being infected to
the release of free virus particles and free movement of virus particles in the liver are of the works
by Gourley et al., 2008 [42]; Xie et al., 2010 [43]; Guo and Cai, 2011 [16]; Wang et al., 2008 [44].
Further, some studies involve the effect of humoral immunity or CTL-mediated cellular immunity e.g.
the work by Yousfi et al., 2011 [34] and Fisicaro et al., 2009 [45]. Recently, Sun et al., 2017 [46]
proposed a delay model with 6 variables including exposed state, CTL and alanine aminotransferases
(ALT), where the delay was put on the CTL process. In 2015, Manna and Chakrabarty, 2015 [47]
proposed a model which included the intracellular HBV DNA-containing capsids and a delay in the
production of the infected hepatocytes. Later on, Guo et al., 2018 [48] extended the work of Manna
and Chakrabarty, 2015 [47] by adding a delay during the time when the infected cells create new
intracellular HBV DNA-containing capsids due to the penetration by the virus. Furthermore, Aniji et
al., 2020 [49] proposed the model involves a delay as a time between antigenic stimulation and the
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production of CTL including a delay during the decay of CTL. With the important role of antibodies
against HBV infection, Meskaf et al., 2017 [18], Sun et al., 2017 [46] and Allali et al., 2018 [50] had
added antibodies as variables into their models. In addition, some researchers have developed HBV
models which involve both diffusion and delay (e.g. [51,52]). Among the above studies, in some studies
drug therapies have also been applied in the models e.g the work by Hattaf et al., 2009 [53], Manna and
Chakrabarty, 2018 [54] and in particular Danane and Allali, 2018 [20] had included the drug therapies
in their delay model. Further, some researchers have proposed models involving infection in the form
of fractional differential equations (e.g. [55, 56]).

In this paper, we have developed a model for HBV infection which incorporates the intracellular
HBV DNA-containing capsids, CTL and antibodies with a time delay from being attacked by the virus
to being infected hepatocytes and a time delay in the antigenic stimulation generating CTL. Further,
two drug therapies, i.e., blocking new infection and inhibiting viral production have been applied in
the model. The structure of the paper starts with a description of the proposed model in section 2,
followed by the model properties, the basic reproduction number, three equilibrium states and their
global stability. In section 3, the numerical simulations are presented and discussed. Finally, we end
this paper with conclusions in section 4.

2. Model formulation

We have developed a delay model describing the hepatitis B virus (HBV) dynamics involving im-
mune response and drug therapy by extending the work of Danane and Allali, 2018 [20] by adding the
delay time that an antigenic stimulation generating CTL, which is τ2 in our model. This is because
we take into account the fact that the antigenic stimulation generates CTL cells may require a time lag
and in this model, we assume that CTL produced depends on infected cells. This model is described
by a system of delay differential equations (2.1), it includes six variables: the concentration of unin-
fected hepatocytes x(t), infected hepatocytes y(t), intracellular HBV DNA-containing capsids c(t), free
viruses v(t), antibodies w(t), and CTL z(t). The uninfected hepatocytes x(t) are produced at a constant
rate Λ and die at a rate σ. The infection of hepatocytes in this model incorporates the uninfected be-
come infected hepatocytes by the free virus with a rate β with involvement of the efficiency of drug
therapy in blocking new infection u1. The e−mτ1 is the probability of surviving hepatocytes in the time
period from t − τ1 to t, where m is a constant rate of the death average of infected hepatocytes which
are still not virus-producing cells. Time τ1 is the delay in the productively infected hepatocytes. This
infection term is represented by the nonlinear term (1 − u1)e−mτ1βx(t)v(t). The infected hepatocytes
y(t) are eliminated by the CTL, z(t), with a rate q and die at a rate σ, which has the same rate as the
mortality rate of uninfected hepatocytes as we assume there is no increase in death rate of infected
hepatocytes due to an infection. The production of intracellular HBV DNA-containing capsids c(t)
incorporates the efficiency of drug therapy in inhibiting viral production u2 with a production rate a,
described by the term (1 − u2)ay(t). The intracellular HBV DNA-containing capsids are transmitted
into the bloodstream to become free viruses at a rate α and are decomposed at a rate δ. The free viruses
are reduced by the neutralization rate of antibodies γ and die at a rate µ. The antibodies are enhanced
in response to the free viruses at a rate g and decay at a rate h. Further, the second time delay in this
model cannot be ignored for the immune response, that is the activation of CTL producing antigens
may require a period of time τ2. Therefore, we propose the form ky(t − τ2)z(t − τ2) and the CTL decay
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at the rate ε. The flow chart of the model is presented in Figure 1.

Figure 1. The flow chart of delays model of HBV infection with immune response and drug
therapy.

This model can be written into a form of system of delay differential equations as follows:
dx
dt

= Λ − σx(t) − (1 − u1)βx(t)v(t)

dy
dt

= (1 − u1)βe−mτ1 x(t − τ1)v(t − τ1) − σy(t) − qy(t)z(t)

dc
dt

= (1 − u2)ay(t) − αc(t) − δc(t) (2.1)

dv
dt

= αc(t) − γv(t)w(t) − µv(t)

dw
dt

= gv(t)w(t) − hw(t)

dz
dt

= ky(t − τ2)z(t − τ2) − εz(t),

with initial condition

x(0) ≥ 0, y(0) ≥ 0, c(0) ≥ 0, v(0) ≥ 0,w(0) ≥ 0, z(0) ≥ 0, (2.2)

for τ1 > 0 and τ2 > 0. Here, 0 < u1 < 1 and 0 < u2 < 1.

2.1. Model analysis

2.1.1. Initial conditions

The Banach space of continuous functions mapping the interval [−τ, 0] into R6
+ is defined by

C = C([−τ, 0],R6
+), where τ = max[τ1, τ2]. For any ϕ ∈ C([−τ, 0],R6

+) by the fundamen-
tal theory of functional differential equations (see [59]) there exists a unique solution P(t, ϕ) =

((x(t, ϕ), y(t, ϕ), c(t, ϕ), v(t, ϕ),w(t, ϕ), z(t, ϕ)) of the system (2.1), which satisfies P0 = ϕ. The initial
conditions are given by x(θ) ≥ 0, y(θ) ≥ 0, c(θ) ≥ 0, v(θ) ≥ 0,w(θ) ≥ 0, z(θ) ≥ 0 with θ ∈ [−τ, 0] and
y(0), c(0), v(0),w(0), z(0) > 0.

2.1.2. Non-negative and boundedness of solution

For system (2.1) to be epidemiologically meaningful, we prove that all state variables are non-
negative. Since it is irrational to have a negative hepatocytes density and system (2.1) describes the
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Table 1. Parameters used in the model (2.1).
Parameter Description Value Unit Ref

x the concentration of uninfected hepatocytes.
y the concentration of infected hepatocytes.
c the concentration of intracellular HBV

DNA-containing capsids.
v the concentration of free viruses.
w the concentration of antibodies expansion

in response to free viruses.
z the concentration of cytotoxic T lymphocyte

(CTL) cells.
Λ the production rate of the uninfected hepatocytes. 4.0551 day−1mm−3 [46]
σ the death rate of hepatocytes. 0.011 day−1 [42]
u1 the efficiency of drug therapy in blocking 0.5 - assume

new infection.
u2 the efficiency of drug therapy in inhibiting 0.5 - assume

viral production.
β the infection rate of uninfected hepatocytes 0.0014 mm3virion−1day−1 [33]

by the free virus.
e−mτ1 the probaility of surviving of hepatocytes in

the time period from t − τ1 to t
τ1 the delay in the productively infected hepatocytes. 5 day assume
τ2 the delay in an antigenic stimulation 5 day assume

generating CTL.
m the constant rate of the death average of infected 0.011 day−1 [18]

hepatocytes which still not virus-producing cells.
q the death rate of infected hepatocytes 0.001 mm3day−1 [18]

by the CTL response.
a the production rate of intracellular HBV 0.15 day−1 assume

DNA-containing capsids.
α the growth rate of virions in blood. 0.0693 day−1 [29]
δ the clearance rate of intracellular HBV DNA-containing 0.053 day−1 [19]

capsids.
γ the rate that viruses are neutralized by antibodies. 0.01 mm3day−1 [18]
µ the death rate of free viruses. 0.693 day−1 [42]
g the expansion rate of antibodies in 0.008 mm3virion−1day−1 [57]

response to free viruses.
h the decay rate of antibodies. 0.15 day−1 [18]
k the expansion rate of CTL in response to viral antigen 0.001 mm3day−1 assume

derived from infected hepatocytes.
ε the decay rate of CTL in the absence of antigenic 0.5 day−1 [58]

stimulation.

dynamics of HBV infection of hepatocytes, we show that all state variables stay non-negative and the
solutions of system (2.1) with non-negative initial conditions will remain non-negative for fall t > 0.
The following lemma is applied.

Lemma 1. Given that the initial solutions and parameters of system (2.1) are non-negative, the solu-
tions x(t), y(t), c(t), v(t),w(t) and z(t) stay non-negative for all t > 0.

Proof. Consider the first equation in system (2.1) we have,

dx
dt

= Λ − σx − (1 − u1)βxv

dx
dt

+ (σ + (1 − u1)βv)x = Λ. (2.3)
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We multiply both sides of the differential equation by the integrating factor which is defined as

I = e
∫ t

0 (σ+(1−u1)βv(s))ds. (2.4)

Multiply equation (2.3) by I, we have

(e
∫ t

0 (σ+(1−u1)βv(s))ds)
dx
dt

+ (e
∫ t

0 (σ+(1−u1)βv(s))ds)(σ + (1 − u1)βv)x = (e
∫ t

0 (σ+(1−u1)βv(s))ds)Λ. (2.5)

We integrate both side between 0 and t, then∫ t

0
(e

∫ t
0 (σ+(1−u1)βv(s)) ds)

(dx(s)
dt

+ (σ + (1 − u1)βv(s))x(s)
)
ds =

∫ t

0
(e

∫ t
0 (σ+(1−u1)βv(s)) ds)Λds.

Thus, x(t) = (e−
∫ t

0 (σ+(1−u1)βv(s)) ds)(x(0) +
∫ t

0
(e

∫ t
0 (σ+(1−u1)βv(s)) ds)Λds), leads to x(t) ≥ 0.

Similarly,

y(t) = e−
∫ t

0 (σ+qz(s))ds(y(0) +

∫ t

0
e
∫ t

0 (σ+qz(s))ds(1 − u1)βe−mτ1 x(s − τ1)v(s − τ1)ds) ≥ 0

c(t) = e−(α+δ)t(c(0) +

∫ t

0
(1 − u2)ay(s)e(α+δ)ds) ≥ 0

v(t) = e−
∫ t

0 (γw(s)+µ)ds(v(0) +

∫ t

0
e
∫ t

0 (γw(s)+µ)dsαc(s)ds) ≥ 0 (2.6)

w(t) = w(0)e
∫ t

0 (gv(s)−h)ds ≥ 0

z(t) = e−εt(z(0) +

∫ t

0
ky(s − τ2)z(s − τ2)eεtds) ≥ 0.

Therefore, x(t) ≥ 0, y(t) ≥ 0, c(t) ≥ 0, v(t) ≥ 0, w(t) ≥ 0, z(t) ≥ 0 for all t > 0 given that
x(0) ≥ 0, y(0) ≥ 0, c(0) ≥ 0, v(0) ≥ 0, w(0) ≥ 0, z(0) ≥ 0. �

Theorem 1. Under the given initial conditions, all solutions of system (2.1) are non-negative and
bounded for all t ≥ 0.

Proof. First, we use the following function to help determining the boundness of the solutions of
system (2.1):

N(t) = e−mτ1 x(t − τ1) + y(t) +
q
k

z(t + τ2) +
σ

2(1 − u2)a
c(t) +

σ

2(1 − u2)a
v(t) +

σγ

2(1 − u2)ag
w(t). (2.7)

By differentiating (2.7) with respect to t and with system (2.1), we have

dN(t)
dt

= e−mτ1
dx(t − τ1)

dt
+

dy
dt

+
qd
k

z(t + τ2)
dt

+
σ

2(1 − u2)a
dc(t)

dt
+

σ

2(1 − u2)a
dv(t)

dt

+
σγ

2(1 − u2)ga
dw(t)

dt
= Λe−mτ1 − σe−mτ1 x(t − τ1) − (1 − u1)βe−mτ1 x(t − τ1)v(t − τ1)
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+ (1 − u1)βe−mτ1 x(t − τ1)v(t − τ1) − (σ −
σ

2
)y(t)

− qy(t)z(t) + qy(t)z(t) −
qε
k

z(t + τ2) −
σα

2(1 − u2)a
c(t)

−
σδ

2(1 − u2)a
c(t) +

σα

2(1 − u2)a
c(t) −

σγ

2(1 − u2)a
v(t)w(t) −

σµ

2(1 − u2)a
v(t)

+
σγ

2(1 − u2)a
v(t)w(t) −

σγh
2(1 − u2)ga

w(t)

= Λe−mτ1 − σe−mτ1 x(t − τ1) −
σ

2
y(t) −

qε
k

z(t + τ2)

−
σδ

2(1 − u2)a
c(t) −

σµ

2(1 − u2)a
v(t) −

σγh
2(1 − u2)ga

w(t)

≤ Λe−mτ1 −min(σ,
σ

2
, ε, δ, µ, h)(e−mτ1 x(t − τ1) + y(t) +

q
k

z(t + τ2)

+
σ

2(1 − u1)a
c(t) +

σ

2(1 − u1)a
v(t) +

σγ

2(1 − u2)ga
w(t))

= Λe−mτ1 −min(σ,
σ

2
, ε, δ, µ, h)N(t). (2.8)

Let Q = min(σ, σ2 , ε, δ, µ, h).
Thus, we have

dN(t)
dt
≤ Λe−mτ1 − QN(t). (2.9)

By integrating both sides,∫ t

0

dN(t)
Λe−mτ1 − QN(t)

≤

∫ t

0
dt

Nt ≤
Λe−mτ1 − e−Qt(Λe−mτ1 − QN0)

Q
.

By taking t → ∞, we have

Nt ≤
Λe−mτ1

Q
. (2.10)

Hence, we have that N(t) is bounded, which leads to the variables x(t), y(t), c(t), v(t),w(t) and z(t) are
bounded. �

2.1.3. The steady states of system

In this section, we compute steady states of system (2.1). There are five steady states as follows.

1. The infection-free steady state E0 is (x0, y0, c0, v0,w0, z0) =

(
Λ
σ
, 0, 0, 0, 0, 0

)
.

2. The immune-free steady state E1 is (x1, y1, c1, v1, 0, 0) where
x1 =

σµ(α+δ)
(1−u1)(1−u2)βe−mτ1 aα , y1 =

(α+δ)c1
(1−u2)a , c1 =

σµ

(1−u1)βα (R0 − 1), v1 = αc1
µ

. E1 exists when R0 > 1.

3. The immune-activated infection steady state E2 is (x2, y2, c2, v2,w2, z2) where
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x2 =
Λg

σg+(1−u1)βh , y2 = ε
k , c2 =

(1−u2)aε
k(α+δ) , v2 = h

g ,w2 =
(1−u2)aεαg
(α+δ)γhk −

µ

γ
,

z2 =
(1−u1)βΛhke−mτ1

(σg+(1−u1)βh)qε −
σ
q . E2 exists when (1−u2)aεαg

(α+δ)hk > µ and (1−u1)βΛhke−mτ1

(σg+(1−u1)βh)ε) > σ.

4. The andibody-free steady state E3 is (x3, y3, c3, v3, 0, z3) where
x3 = Λ

σ−(1−u1)βv3
, y3 = ε

k , c3 =
(1−u2)ay3
α+δ

, v3 = αc3
µ
,w3 = 0,

z3 =
(1−u1)βe−mτ1 x3v3−σy3

qy3
. E3 exists when σ > (1 − u1)βv3 and (1 − u1)βe−mτ1 x3v3 > σy3.

5. The CTL-free steady state E4 is (x4, y4, c4, v4,w4, 0) where
x4 = Λ

σ−(1−u1)βv4
, y4 =

(1−u1)βe−mτ1 x4v4
σ

, c4 =
(1−u2)ay4

(α+δ) , v4 = h
g ,w4 =

αc4−µv4
γv4

, z4 = 0.
E4 exists when σ > (1 − u1)βv4 and αc4 > µv4.

2.1.4. The basic reproduction number (R0)

To calculate R0, we used the next-generation matrix method by van den Driessche et al., 2002 [60]
and we obtain

F =


(1 − u1)βe−mτ1 xv

0
0

 andV =


σy + qzy

αc + δc − (1 − u2)ay
γvw + µv − αc

 . (2.11)

Then we have

F =


0 0 (1 − u1)βe−mτ1 x
0 0 0
0 0 0

 and V =


σ + qz 0 0
−(1 − u2)a α + δ 0

0 −α γw + µ

 . (2.12)

By substituting the infection-free equilibrium point (2.1.3) in the Jacobian matrices above, we get

F =


0 0 (1 − u1)βe−mτ1 Λ

σ

0 0 0
0 0 0

 and V =


σ 0 0

−(1 − u2)a α + δ 0
0 −α µ

 . (2.13)

Next,

V−1 =
1

µσ(α + δ)


µ(α + δ) 0 0
µ(1 − u2)a µσ 0
(1 − u2)aα ασ σ(α + δ)

 . (2.14)

The next generation matrix is

FV−1 =


(1−u1)(1−u2)βe−mτ1 Λaα

σ2µ(α+δ)
(1−u1)βe−mτ1 Λα

σ2µ(α+δ)
(1−u1)βe−mτ1 Λ

σ2µ

0 0 0
0 0 0

 . (2.15)

The basic reproduction number is given by ρ(FV−1), thus

R0 =
(1 − u1)(1 − u2)βe−mτ1Λaα

σ2µ(α + δ)
. (2.16)
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2.1.5. Local stability of infection-free equilibrium point

Theorem 2. (local stability at E0) If R0 < 1, then the infection-free equilibrium point (E0) is locally
asymptotically stable. Otherwise, it is unstable.

Proof. The Jacobian matrix of system (2.1) at E0 is

J(E0) =



−σ 0 0 −(1 − u1)βx0 0 0
0 −σ 0 (1 − u1)βe−(m+λ)τ1 x0 0 0
0 (1 − u2)a −(α + δ) 0 0 0
0 0 α −µ 0 0
0 0 0 0 −h 0
0 0 0 0 0 −ε


. (2.17)

From Jacobian matrix above, we have the characteristic equation as

(λ + ε)(λ + h)(λ + σ)
(
(λ + σ)(λ + α + δ)(λ + µ) − (1 − u1)(1 − u2)aαβe−(m+λ)τ1 x0

)
= 0. (2.18)

Thus, λ1 = −ε < 0, λ2 = −h < 0, λ3 = −σ < 0.
Since, x0 = Λ

σ
and R0 =

(1−u1)(1−u2)βe−mτ1 Λaα
σ2µ(α+δ) , we write the rest of the term as

(λ + σ)(λ + α + δ)(λ + µ) − (1 − u1)(1 − u2)aαβe−(m+λ)τ1
Λ

σ
= 0,

(λ + σ)(λ + α + δ)(λ + µ) = (1 − u1)(1 − u2)aαβe−(m+λ)τ1
Λ

σ
,

(λ + σ)(λ + α + δ)(λ + µ) = µσ(α + δ)R0e−λτ1 . (2.19)

For R0 < 1, if λ has a non-negative real part then the modulus of the left-hand side of equation (2.19)
satisfies

|(λ + σ)(λ + α + δ)(λ + µ)| ≥ σ(α + δ)µ. (2.20)

Consider the modulus of the right-hand side of equation (2.19),

|µσ(α + δ)R0e−λτ1 | ≤ µσ(α + δ)R0 < µσ(α + δ), (2.21)

which is contradiction. Hence, when R0 < 1, the real part of λ has no non-negative real part and the
infection-free state E0 is locally asymptotically stable.
For R0 > 1, we let

h(λ) = (λ + σ)(λ + α + δ)(λ + µ) − µσ(α + δ)R0e−λτ1 . (2.22)

Then,
h(0) = µσ(α + δ) − µσ(α + δ)R0 < 0, (2.23)

and limλ→∞ h(λ) = +∞.

By the continuity of h(λ), there exists at least one positive root of h(λ) = 0. Thus, the infection-free
equilibrium point, E0 is unstable when R0 > 1. This completes the proof. �
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2.1.6. Global stability of infection-free equilibrium point

Theorem 3. If R0 < 1, the infection-free equilibrium point (E0) is globally asymptotically stable.

Proof. Let the Lyapunov functions be

L(t) = x0

( x
x0
− ln

( x
x0

)
− 1

)
+ emτ1y(t) +

(1 − u1)βΛαc(t)
µσ(α + δ)

+
(1 − u1)βΛv(t)

µσ
+

(1 − u1)βΛγw(t)
gµσ

+ (1 − u1)β
∫ t

t−τ1

x(s)v(s)ds, (2.24)

where L is positive definite. The derivative of L along the solutions of the system (2.1) is

dL
dt

=

(
1 −

x0

x

)(
Λ − σx − (1 − u1)βxv

)
+ emτ1

(
(1 − u1)βe−mτ1 x(t − τ1)v(t − τ1) − σy − qyz

)
+

(1 − u1)βΛα

µσ(α + δ)

(
(1 − u2)ay − (α + δ)c

)
+

(1 − u1)βΛ

µσ

(
αc − γvw − µv

)
+

(1 − u1)βΛγ

gµσ

(
gvw − hw

)
+ (1 − u1)β

(
xv − x(t − τ1)v(t − τ1)

)
. (2.25)

Since,
dx0

dt
= Λ − σx0 − (1 − u1)βx0v0 = 0,we have Λ = σx0. (2.26)

Then,
dL
dt

=

(
1 −

x0

x

)(
σx0 − σx − (1 − u1)βxv

)
+ (1 − u1)βx(t − τ1)v(t − τ1) − σyemτ1 − qyzemτ1

+
(1 − u1)(1 − u2)βΛαay

µσ(α + δ)
−

(1 − u1)βΛαc
µσ

+
(1 − u1)βΛαc

µσ
−

(1 − u1)βΛγvw
µσ

−
(1 − u1)βΛv

σ
+

(1 − u1)βΛγvw
µσ

−
(1 − u1)βΛγhw

gµσ
+ (1 − u1)βxv

− (1 − u1)βx(t − τ1)v(t − τ1)

=
−σ(x − x0)2

x
− qyzemτ1 + σyemτ1

( (1 − u1)(1 − u2)βΛαae−mτ1

σ2µ(α + δ)
− 1

)
−

(1 − u1)βΛγhw
gµσ

= −
σ2

xσ
(x − x0)2 − qyzemτ1 + σyemτ1

(
R0 − 1

)
−

(1 − u1)βΛγhw
gµσ

. (2.27)

We obtain that dL
dt < 0 when R0 < 1 and dL

dt = 0 at E0. Therefore, E0 is globally asymptotically stable
when R0 < 1. �

2.1.7. Local stability of the immune-free equilibrium point

Theorem 4. (local stability at E1) If 1 < R0 < 1 + inf{A1, A2},
where A1 =

(1−u1)(1−u2)εaβα
kσµ(α+δ) and A2 =

(1−u1)hβ
gσ , then the immune-free equilibrium point (E1) is locally

asymptotically stable. If R0 > 1 + inf{A1, A2}, then E1 is unstable.
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Proof. We first set det(J(E1) − λI) = 0 to find eigenvalues, then we obtain det(J(E1) − λI)

=



−σ − (1 − u1)βv1 − λ 0 0 −(1 − u1)βx1 0 0
(1 − u1)βv1e−(m+λ)τ1 −σ − λ 0 (1 − u1)βe−(m+λ)τ1 x1 0 −qy1

0 (1 − u2)a −(α + δ) − λ 0 0 0
0 0 α −µ − λ −γv1 0
0 0 0 0 gv1 − h − λ 0
0 0 0 0 0 ky1e−λτ2 − ε − λ


.

(2.28)

= (ky1e−λτ2−ε−λ)(gv1−h−λ)


−σ − (1 − u1)βv1 − λ 0 0 −(1 − u1)βx1

(1 − u1)βv1e−(m+λ)τ1 −σ − λ 0 (1 − u1)βx1e−(m+λ)τ1

0 (1 − u2)a −(α + δ) − λ 0
0 0 α −µ − λ


(2.29)

= (ky1e−λτ2 − ε − λ)(gv1 − h − λ)(−σ − (1 − u1)βv1 − λ)

∣∣∣∣∣∣∣∣∣
−σ − λ 0 (1 − u1)βx1e−(m+λ)τ1

(1 − u2)a −(α + δ) − λ 0
0 α −µ − λ

∣∣∣∣∣∣∣∣∣
− (ky1e−λτ2 − ε − λ)(gv1 − h − λ)(1 − u1)βv1e−(m+λ)τ1

∣∣∣∣∣∣∣∣∣
0 0 −(1 − u1)βx1

(1 − u2)a −(α + δ) − λ 0
0 α −µ − λ

∣∣∣∣∣∣∣∣∣
(2.30)

= (ky1e−λτ2 − ε − λ)(gv1 − h − λ)(σ + (1 − u1)βv1 + λ)(σ + λ)

∣∣∣∣∣∣ −(α + δ) − λ 0
α −µ − λ

∣∣∣∣∣∣
+ (ky1e−λτ2 − ε − λ)(gv1 − h − λ)(σ + (1 − u1)βv1 + λ)(1 − u2)a

∣∣∣∣∣∣ 0 (1 − u1)βx1e−(m+λ)τ1

α −µ − λ

∣∣∣∣∣∣
+ (ky1e−λτ2 − ε − λ)(gv1 − h − λ)(1 − u1)(1 − u2)βv1ae−(m+λ)τ1

∣∣∣∣∣∣ 0 −(1 − u1)βx1

α −µ − λ

∣∣∣∣∣∣ (2.31)

By calculating above expression, we have characteristic equation as

(ky1e−(m+λ)τ2 − ε − λ)(gv1 − h − λ)
[
λ4 + a1λ

3 + a2λ
2 + a3λ + a4 + (a5λ + a6)e−λτ1

]
= 0 (2.32)

where

a1 = α + δ + µ + 2σ + (1 − u1)βv1,

a2 = (2σ + (1 − u1)βv1)(α + δ + µ) + (σ + (1 − u1)βv1)σ + µ(α + δ),
a3 = (2σ + (1 − u1)βv1)(α + δ)µ + (σ + (1 − u1)βv1)σ(α + δ + µ),
a4 = (σ + (1 − u1)βv1)σ(α + δ)µ,
a5 = −(1 − u1)(1 − u2)βaαx1e−mτ1 ,
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a6 = −(1 − u1)(1 − u2)βaαx1(σ + (1 − u1)βv1)e−mτ1

+ (1 − u1)2(1 − u2)β2x1v1αae−mτ1 . (2.33)

Therefore, it gives λ1 = ky1(t − τ2)e−λτ2 − ε and λ2 = gv1 − h.
First, we consider

λ1 = ky1e−λτ2 − ε. (2.34)

For τ2 = 0, If 1 < R0 < 1 +
(1−u1)(1−u2)εaβα

kσµ(α+δ) . Then, we have λ1 = ky1 − ε, since y1 =
σµ(α+δ)(R0−1)

(1−u1)(1−u2)βαa .
Thus,

λ1 = k
(
σµ(α + δ)(R0 − 1)

(1 − u1)(1 − u2)βαa

)
− ε

=
kσµ(α + δ)(R0 − 1) − ε(1 − u1)(1 − u2)βαa

(1 − u1)(1 − u2)βαa

<
kσµ(α + δ)(1 +

(1−u1)(1−u2)εaβα
kσµ(α+δ) − 1) − ε(1 − u1)(1 − u2)βαa

(1 − u1)(1 − u2)βαa
= 0

Thus, λ1 < 0. This shows that λ1 < 0 for τ2 = 0. Next, we consider the case when τ2 > 0. By letting
λ1 = ωi (ω > 0) be a purely imaginary root for some ω > 0, we have

(iω) − ky1e−iωτ2 + ε = 0
iω − ky1(cos(ωτ2) − i sin(ωτ2)) + ε = 0

(iω) + ε = ky1(cos(ωτ2) − i sin(ωτ2)).

Thus, this implies that ε = ky1 cos(ωτ2) and ω = −ky1 sin(ωτ2).
Then,

ω2 + ε2 = (ky1)2(cos2(ωτ2) + sin2(ωτ2))
ω2 = (ky1)2 − ε2

ω2 =

( kσµ(α + δ)(R0 − 1)
(1 − u1)(1 − u2)βαa

)2

− ε2.

Since 1 < R0 < 1 +
(1−u1)(1−u2)εaβα

kσµ(α+δ) , then

ω2 <
(kσµ(α + δ)

(
1 +

(1−u1)(1−u2)εaβα
kσµ(α+δ) − 1

)
(1 − u1)(1 − u2)βαa

)2

− ε2 = 0

Thus, ω2 < 0 which is contradiction.
Next, suppose that λ1 = b + ωi where b is positive real number and ω > 0, we can write

λ1 = h − ε, where h = ky1e−λτ2 . (2.35)
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Then, the magnitude of h is as follows when b is positive real number,

|h| = |ky1e−(b+ωi)τ2 | = ky1e−bτ2 |e−iωτ2 |.

Since

e−ωiτ2 = cos(ωτ2) − i sin(ωτ2), and|e−iωτ2 | = 1, then|h| = ky1e−bτ2 ≤ ky1. (2.36)

Substituting y1 into (2.36), we have

|h| ≤
kσµ(α + δ)(R0 − 1)
(1 − u1)(1 − u2)aβα

<
kσµ(α + δ)(1 +

(1−u1)(1−u2)εaβα
kσµ(α+δ) − 1)

(1 − u1)(1 − u2)aβα
= ε. (2.37)

Thus, |h| < ε implie that h ∈ B(0, ε). If h = D + Ci where D > 0, then h is complex number in the
right-half of complex plane. However, if h− ε = D +Ci− ε, then D− ε is negative real part. Therefore,
we have h − ε is a complex number in the left-half of complex plane, then consider the left hand side
of the equation (2.35) as

λ1 = b + ωi. (2.38)

Since we suppose that b > 0 and λ1 = h − ε, then λ1 will be a complex number on the right-half of
complex plane. We have

b + ωi = D − ε + Ci (2.39)

By assumption b > 0, but D − ε < 0. This is contradiction, because b can not be a positive real part.
Therefore, λ1 has a negative real part, when 1 < R0 < 1 +

(1−u1)(1−u2)εaβα
kσµ(α+δ) .

Next, we consider λ2 = gv1 − h. If 1 < R0 < 1 +
h(1−u1)β

gσ , then

λ2 = g
(
σ(R0 − 1)
(1 − u1)β

)
− h

<
gσ(1 +

h(1−u1)β
gσ − 1)

(1 − u1)β
− h = 0

Thus, λ2 < 0. Therefore, λ2 is negative when 1 < R0 < 1 +
h(1−u1)β

gσ .
Then, we consider the characteristic equation where τ1 > 0,

λ4 + a1λ
3 + a2λ

2 + a3λ + a4 + (a5λ + a6)e−λτ1 = 0 (2.40)

where a1 − a6 are defined in (2.33).
Thus, we have

|λ4 + a1λ
3 + a2λ

2 + a3λ + a4|
2 = |a5λ + a6|

2|e−λτ1 |2. (2.41)

Suppose (2.40) has a purely imaginary root λ = iω (ω > 0), by substituting λ = iω into (2.41) and
separating the real and imaginary parts, we have

|(iω)4 + a1(iω)3 + a2(iω)2 + a3(iω) + a4|
2 = |a5(iω) + a6|

2|e−iωτ1 |2.
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Since |e−iωτ1 | = | cos(−ωτ1) + i sin(−ωτ1)| =
√

cos2(ωτ1) + sin2(ωτ1) = 1, then we have

|ω4 − a1ω
3i − a2ω

2 + a3ωi + a4|
2 = |a5ωi + a6|.

2 (2.42)

Thus, we have

|ω4 − a1ω
3i − a2ω

2 + a3ωi + a4|
2 = (ω4 − a1ω

3i − a2ω
2 + a3ωi + a4)(ω4 + a1ω

3i − a2ω
2 − a3ωi + a4)

= ω8 − a2ω
6 + a4ω

4 + a2
1ω

6 − a1a3ω
4 − a2ω

6 + a2
2ω

4 − a2a4ω
2

− a1a3ω
4 + a2

3ω
2 + a4ω

4 − a2a4ω
2 + a2

4, (2.43)

and
|a5ωi + a6|

2 = (a5ωi + a6)(−a5ωi + a6) = a2
5ω

2 + a2
6. (2.44)

Thus, equation (2.42) becomes

ω8 + D1ω
6 + D2ω

4 + D3ω
2 + D4 = 0 (2.45)

where D1 = −2a2 + a2
1, D2 = 2a4 − 2a1a3 + a2

2, D3 = a2
3 − 2a2a4 − a2

5, D4 = a2
4 − a2

6. (2.46)

We let X = ω2 and define a function G(X) as the left-hand side of (2.45), the above equation can be
simplified to

G(X) = X4 + D1X3 + D2X2 + D3X + D4. (2.47)

Therefore, if the characteristic equation (2.40) has a purely imaginary root (λ = iω), it is equivalent to
the fact that G(X) = 0 has a positive real root (X = ω2).

Theorem 5. If G(X) = 0 has no positive real roots, then the positive equilibrium point E1 is locally
asymptotically stable for any τ1 > 0.

Proof. If G(X) = 0 has no positive real roots, we obtain that X can be zero or negative root. Since
X = ω2, so ω can be either zero or bi for b > 0. But from the hypothesis that ω > 0, we then have
ω = bi, implying that (2.40) have negative roots i.e. λ = ωi = (bi)i = −b. Therefore, the equilibrium
E1 is locally asymptotically stable for any τ1 > 0 when G(X) = 0 has no positive real roots. �

Next, we consider E1 being locally asymptotically stable for [0, τ0
1) such that τ0

1 = min{τ j
1n
|1 ≤ n ≤

ñ} where ñ is the number of roots of G(X).
Substituting λ = iω into (2.40), we obtain the real part as

ω4 − a2ω
2 + a4 + a6 cos(ωτ1) + a5ω sin(ωτ1) = 0 (2.48)

and the imaginary part as

a1ω
3 − a3ω + a6 sin(ωτ1) − a5ω cos(ωτ1) = 0. (2.49)

Next, we solve for cos(ωτ1) and sin(ωτ1) from equation (2.48) and (2.49). Assuming that G(X) = 0
has (1 ≤ ñ ≤ 4) positive real roots, denoted by Xn(1 ≤ n ≤ ñ). As

√
Xn = ω, (2.49) then becomes

a1(
√

Xn)3 − a3

√
Xn − a5 cos(

√
Xnτ1) = −a6 sin

√
Xnτ1.
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Thus,

sin(
√

Xnτ1) =
a3
√

Xn + a5 cos(
√

Xnτ1) − a1(
√

Xn)3

a6
. (2.50)

Substituting (2.50) into (2.48), we have

cos(
√

Xnτ1) =

[
(a1a5 − a6)X2

n + (a2a6 − a3a5)Xn − a4a6

]
a2

6 + a2
5

√
Xn

. (2.51)

Then, substitute (2.51) into (2.50), gives

sin(
√

Xnτ1) =
a2a5Xn + a3a6

√
Xn − a5a6X2

n − a1a6(
√

Xn)3 − a4a5

a2
6 + a2

5

√
Xn

. (2.52)

Let

cos(
√

Xnτ1) = Qn =

[
(a1a5 − a6)X2

n + (a2a6 − a3a5)Xn − a4a6

]
a2

6 + a2
5

√
Xn

sin(
√

Xnτ1) = Pn =
a2a5Xn + a3a6

√
Xn − a5a6X2

n − a1a6(
√

Xn)3 − a4a5

a2
6 + a2

5

√
Xn

. (2.53)

Therefore, for the imaginary root λ = iω of (2.40), we have two sequences as follows:

τ
j
1n

=

 1
√

Xn
(arccos(Qn) + 2 jπ), if Pn ≥ 0

1
√

Xn
(2π − arccos(Qn) + 2 jπ), if Pn < 0

where 1 ≤ n ≤ ñ and j = 0, 1, 2, 3, ...
Assuming τ(0)

1n
= min{τ( j)

1n
|1 ≤ n ≤ ñ, j = 0, 1, 2}, i.e., τ(0)

1n
is the minimum value associated with the

imaginary solution iω0 of the characteristic equation (2.40). Therefore, the characteristic equation
(2.40) has a pair of purely imaginary roots ±i

√
Xn.

For every integer j and 1 ≤ n ≤ ñ, define λ( j)
n (τ1) = α

( j)
n (τ1) + iω( j)

n (τ1) as the root of (2.40) near τ( j)
1n

,
satisfying α( j)

1n
(τ( j)

1n
) = 0 and ω( j)

n (τ( j)
1n

) =
√

Xn.

Theorem 6. If G(X) = 0 has some positive real roots, then E1 is locally asymptotically stable for
τ1 ∈ [0, τ(0)

1n
), when τ(0)

1n
= min{τ( j)

1n
|1 ≤ n ≤ ñ, j = 0, 1, 2, ...}.

Proof. For τ(0)
1n

= min{τ( j)
1n
≤ n ≤ ñ, j = 0, 1, 2, ...}, G(X) = 0 has no positive real roots when τ1 ∈

[0, τ(0)
1n

), which means that all the roots of (2.40) have strictly negative real part when τ1 ∈ [0, τ(0)
1n

).
Therefore, E1 is locally asymptotically stable for τ1 ∈ [0, τ(0)

1n
). �

Theorem 7. If Xn0 is a simple root of G(X) = 0, then there is a Hopf bifurcation for the system as τ1

increases past τ(0)
1n0

.
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Proof. The characteristic equation (2.40) can be written into the following form:

f0(λ) + f1(λ)e−λτ1 = 0, (2.54)

where f0(λ) = λ4 + a1λ
3 + a2λ

2 + a3λ + a4 and f1(λ) = a5λ + a6, and f0(λ) and f1(λ) are continuously
differentiable to λ.
Next, we determine sign

{
dRe(λ)

dτ1

∣∣∣∣∣
τ1=τ(0)

1n

}
, where sign is the sign function and Re(λ) is the real part of λ.

We assume that λ(τ1) = v(τ1) + iω(τ1) is the solution of (2.40) with respect to τ1. Suppose that one of
the roots of (2.54) is λ(τ1) = α(τ1) + iω(τ1), satisfying α(τ10) = 0 and ω(τ10) = ω0 for a positive real
number τ10 .
Let

φ(ω) = | f0(iω)|2 − | f1(iω)|2. (2.55)

Since

| f0(iω)|2 = ( f0(iω))( f0(iω))
= ω8 + a1ω

7i − a2ω
6 − a3ω

5i + a4ω
4 − a1ω

7i + a2
1ω

6 + a1a2ω
5i

− a1a3ω
4 − a1a4ω

3i − a2ω
6 − a1a2ω

5i + a2
2ω

4 + a2a3ω
3i

− a2a4ω
2 + a3ω

5i − a1a3ω
4 − a2a3ω

3i + a2
3ω

2 + a3a4ωi + a4ω
4

+ a1a4ω
3i − a2a4ω

2 − a3a4ωi + a2
4. (2.56)

Then,

d(| f0(iω)|2)
dω

= 8ω7 + (6a2
1 − 12a2)ω5 + (4a2

2 + 8a4 − 8a1a3)ω3 + (2a2
3 − 4a2a4)ω. (2.57)

And since f1(iω) = a5(iω) + a6 = a5iω + a6,

| f1(iω)|2 = ( f1(iω))( f1(iω))
= (a5iω + a6)(−a5iω + a6)
= a2

5ω
2 + a6. (2.58)

Then, d| f1(iω)|2

dω = 2a2
5ω. �

Thus, we have

1
2ω

dφ
dω

=
1

2ω
d(| f0(iω)|2 − | f1(iω)|2)

dω

=
1

2ω

(d| f0(iω)|2

dω
−

d| f1(iω)|2

dω

)
=

1
2ω

(
− 2Im( f0(iω) ḟ0(iω)) + 2Im( f1(iω) ḟ1(iω))

)
= Im

[ ḟ1(iω) f1(iω) f1(iω)
ω f1(iω)

−
ḟ0(iω) f0(iω) f0(iω)

ω f0(iω)

]
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= Im
[
| f1(iω)|2

ḟ1(iω)
ω f1(iω)

− | f0(iω)|2
ḟ0(iω)
ω f0(iω)

]
. (2.59)

Because | f0(iω0)|2 = | f1(iω0)|2, we have( 1
2ω

dφ
dω

)∣∣∣∣∣
ω=ω0

= | f0(iω)|2Im
[ ḟ1(iω0)
ω0 f1(iω0)

−
ḟ0(iω0)

ω0 f0(iω0)

]
. (2.60)

Next, differentiate both sides of (2.54) with respect to τ1, we have

ḟ0(λ)
dλ
dτ1

+ ḟ1(λ)
dλ
dτ1

e−λτ1 −

(
λ + τ1

dλ
dτ1

)
f1(λ)e−λτ1 = 0. (2.61)

We can write (2.61) as ( dλ
dτ1

)−1

=
ḟ0(λ) + ḟ1(λ)e−λτ1 − f1(λ)τ1e−λτ1

λ f1(λ)e−λτ1

=
ḟ0(λ)eλτ1 + ḟ1(λ)

λ f1(λ)
−
τ1

λ
. (2.62)

Since f0(iω0) + f1(iω0)e−iω0τ1 = 0, we obtain that

Re
[( dλ

dτ1

)−1∣∣∣∣∣
τ1=τ0

]
= Re

[ ḟ0(iω0)eiω0τ1 + ḟ1(iω0)
iω0 f1(iω0)

]
= Re

[ ḟ0(iω0)eiω0τ1

iω0 f1(iω0)
+

ḟ1(iω0)
iω0 f1(iω0)

]
= Re

[
−

ḟ0(iω0)eiω0τ1

iω0 f0(iω0)eiω0τ1
+

ḟ1(iω0)
iω0 f1(iω0)

]
= Re

[ ḟ0(iω0)eiω0τ1

ω0 f0(iω0)eiω0τ1
(i) −

ḟ1(iω0)
ω0 f1(iω0)

(i)
]

= Im
[ ḟ1(iω0)
ω0 f1(iω0)

−
ḟ0(iω0)

ω0 f0(iω0)

]
. (2.63)

From (2.60) and (2.63), we have

sign
[dRe(λ)

dτ1

∣∣∣∣∣
τ1=τ0

]
= sign Re

[( dλ
dτ1

∣∣∣∣∣
τ1=τ0

)]
= sign Re

[ dλ
dτ1

∣∣∣∣∣
τ1=τ0

]−1

= sign Re
[
Im

[ ḟ1(iω0)
ω0 f1(iω0)

−
ḟ0(iω0)

ω0 f0(iω0)

]]
= sign Re

[
| f0(iω)|2Im

[ ḟ1(iω0)
ω0 f1(iω0)

−
ḟ0(iω0)

ω0 f0(iω0)

]]
= sign

[( 1
2ω
×

dφ
dω

)∣∣∣∣∣
ω=ω0

]
. (2.64)
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When Re(λ) = α
( j)
n (τ1), we have

sign
[dα j

n(τ1)
dτ1

∣∣∣∣∣
τ1=τ

j
1n

]
= sign

[(dG
dx

)∣∣∣∣∣
X=Xn

]
. (2.65)

As Xn0 is a simple root of G(X) = 0, we know Ġ(Xn0) , 0. From (2.65), we know
(

dα(0)
n0

dτ1

∣∣∣∣∣
τ1=τ(0)

1n

, 0
)
. If

dα(0)
n0

dτ1

∣∣∣∣∣
τ1=τ(0)

1n

< 0, then we obtain that the root of (2.40) has positive real part when τ1 ∈ [0, τ(0)
1n0

) which

contrasts to Theorem 6. Hence, we can see that
dα(0)

n0
dτ1

∣∣∣∣∣
τ1=τ(0)

1n

> 0. When τ1 = τ(0)
1n0

, except for the pair of

purely imaginary root, the remaining roots of (2.40) have strictly negative real parts, so the system has
Hopf bifurcation. This completes the proof. �

2.1.8. Global stability of the immune-free equilibrium point

Theorem 8. The immune-free equilibrium point E1 is globally asymptotically stable when 1 < R0 <

1 + inf{A1, A2}, where A1 =
(1−u1)(1−u2)εaβα

kσµ(α+δ) and A2 =
(1−u1)hβ

gσ .

Proof. We consider the function G(x) = x − 1 − ln x (x > 0). Note that G(x) ≥ 0,∀x and that G(x) = 0
if and only if x = 1. We define a Lyapunov function L1 as follows:

L1 = x1

( x
x1
− 1 − ln

x
x1

)
+ emτ1y1

( y
y1
− 1 − ln

y
y1

)
+

(1 − u1)βx1v1c1

(α + δ)c1

( c
c1
− 1 − ln

c
c1

)
+

(1 − u1)βx1v1v1

αc1

( v
v1
− 1 − ln

v
v1

)
+

(1 − u1)βx1v1γw
gαc1

+
qemτ1z

k

+ (1 − u1)βx1v1

∫ t

t−τ1

G
( x(s)v(s)

x1v1

)
ds + qemτ1

∫ t

t−τ2

y(s)z(s)ds. (2.66)

dL1

dt
=

(
1 −

x1

x

)(
Λ − σx − (1 − u1)βxv

)
+ emτ1

(
1 −

y1

y

)(
(1 − u1)βe−mτ1 x(t − τ1)v(t − τ1)

− σy − qyz
)

+
(1 − u1)βx1v1c1

(α + δ)

(
1 −

c1

c

)(
(1 − u2)ay − (α + δ)c

)
+

(1 − u1)βx1v1c1

(α + δ)

(
1 −

v1

v

)(
αc − γvw − µv

)
+

(1 − u1)βx1v1γ

gαc1

(
gvw − hw

)
+

qemτ1

k

(
ky(t − τ2)z(t − τ2) − εz

)
+ (1 − u1)βx1v1

( xv
x1v1

−
x(t − τ1)v(t − τ1)

x1v1
+ ln

x(t − τ1)v(t − τ1)
xv

)
+ qemτ1

(
yz − y(t − τ2)z(t − τ2)

)
. (2.67)

Since dx1
dt = 0, then Λ = σx1 + (1 − u1)βx1v1. Therefore,

dL1

dt
=

(
1 −

x1

x

)(
σx1 + (1 − u1)βx1v1 − σ − (1 − u1)βxv

)
+ (1 − u1)βx(t − τ1)v(t − τ1) − σemτ1y − qemτ1yz −

y1

y
(1 − u1)βx(t − τ1)v(t − τ1)
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+ σemτ1y1 + qemτ1y1z +
(1 − u1)(1 − u2)βx1v1ay

(α + δ)c1
− (1 − u1)βx1v1

c
c1

−
(1 − u1)(1 − u2)βx1v1ayc1

(α + δ)c1c
+ (1 − u1)βx1v1 + (1 − u1)βx1v1

c
c1

−
(1 − u1)βx1v1γvw

αc1
−

(1 − u1)βx1v1µv
αc1

−
(1 − u1)βx1v2

1αc
αc1v

+
(1 − u1)βx1v2

1γvw
αc1v

+
(1 − u1)βx1v2

1µ

αc1
+

(1 − u1)βx1v1vw
αc1

−
(1 − u1)βx1v1γhw

gαc1
+

qemτ1ky(t − τ2)z(t − τ2)
k

−
qemτ1εz

k

+ (1 − u1)βx1v1

( xv
x1v1

−
x(t − τ1)v(t − τ1)

x1v1
+ ln

x(t − τ1)v(t − τ1)
xv

)
+ qemτ1yz − qemτ1y(t − τ2)z(t − τ2). (2.68)

dL1

dt
= − σ

(x − x1)2

x
+ 2(1 − u1)βx1v1 − (1 − u1)βx1v1

x1

x
+ (1 − u1)βx1v

+ (1 − u1)βx(t − τ1)v(t − τ1) − σemτ1y −
y1

y
(1 − u1)βx(t − τ1)v(t − τ1)

+ σemτ1y1 + qemτ1y1z +
(1 − u1)(1 − u2)βx1v1ay

(α + δ)c1

−
(1 − u1)(1 − u2)βx1v1ayc1

(α + δ)c1c
−

(1 − u1)βx1v1µv
αc1

−
(1 − u1)βx1v2

1c
c1v

+
(1 − u1)βx1v2

1γw
αc1

+
(1 − u1)βx1v2

1µ

αc1
−

(1 − u1)βx1v1γhw
gαc1

−
qemτ1εz

k

+ (1 − u1)βx1v1

(
−

x(t − τ1)v(t − τ1)
x1v1

+ ln
x(t − τ1)v(t − τ1)

xv

)
. (2.69)

Since c1 =
(1−u2)ay1
α+δ

, we have (1−u1)(1−u2)βx1v1ayc1
(α+δ)c1c =

(1−u1)βx1v1yc1
y1c and v1 = αc1

µ
then (1−u1)βx1v1µv1

αc1
= (1 −

u1)βx1v1 and dy1
dt = 0, we have (1 − u1)βx1v1 = σy1emτ1 .

Then,

dL1

dt
= − σ

(x − x1)2

x
+ (1 − u1)βx1v1

(
4 −

x1

x
−

y1x(t − τ1)v(t − τ1)
yx1v1

−
yc1

y1c
−

v1c
vc1

+ ln
x(t − τ1)v(t − τ1)

xv

)
− σemτ1y + qemτ1y1z +

(1 − u1)(1 − u2)βx1v1ay
(α + δ)c1

+
(1 − u1)βx1v1γwv1

αc1
−

(1 − u1)βx1v1γhw
gαc1

−
qemτ1εz

k
.

(2.70)

Substituting x1 =
σµ(α+δ)

(1−u1)(1−u2)βe−mτ1 aα , c1 =
(1−u2)ay1
α+δ

and v1 = αc1
µ

into (1−u1)(1−u2)βx1v1ay
(α+δ)c1

= σemτ1y. We have
v1 =

σ(R0−1)
(1−u1)β from 1 < R0 < 1 +

(1−u1)gβ
gσ then v1 <

h
g and y1 =

(α+δ)σµ(R0−1)
(1−u1)(1−u2)βaα from 1 < R0 <

(1−u1)(1−u2)εaβα
kσµ(α+δ) ,

we have y1 <
ε
k . Then,

dL1

dt
= − σ

(x − x1)2

x
+ (1 − u1)βx1v1

(
4 −

x1

x
−

y1x(t − τ1)v(t − τ1)
yx1v1

−
yc1

y1c
−

v1c
vc1

+ ln
x(t − τ1)v(t − τ1)

xv

)
+ qemτ1z(y1 −

ε

k
) +

(1 − u1)βx1v1γw
αc1

(v1 −
h
g

). (2.71)

Mathematical Biosciences and Engineering Volume 20, Issue 4, 7349–7386.



7368

We obtain that dL
dt < 0 when 1 < R0 < 1 + inf{A1, A2}, where A1 =

(1−u1)(1−u2)εaβα
kσµ(α+δ) and A2 =

(1−u1)hβ
gσ and

dL
dt = 0 at E1. Therefore, E1 is globally asymptotically stable when 1 < R0 < 1 + inf{A1, A2}, where
A1 =

(1−u1)(1−u2)εaβα
kσµ(α+δ) and A2 =

(1−u1)hβ
gσ . �

2.1.9. Global stability of the immune-activated infection equilibrium point

Theorem 9. The immune-activated infection equilibrium point E2 is globally asymptotically stable
when R0 > 1 and A > B (where A and B are defined in the proof).

Proof. We consider the function G(x) = x − 1 − ln x (x > 0). Note that G(x) ≥ 0,∀x and that G(x) = 0
if and only if x = 1. We define a Lyapunov function L2 as follows:

L2 = x2

( x
x2
− 1 − ln

x
x2

)
+ emτ1y2

( y
y2
− 1 − ln

y
y2

)
+

( (1 − u1)βx2v2

(α + δ)c2

)
c2

( c
c2
− 1 − ln

c
c2

)
+

( (1 − u1)βx2v2

αc2

)
v2

( v
v2
− 1 − ln

v
v2

)
+

( (1 − u1)βγx2v2

αgc2

)
w2

( w
w2
− 1 − ln

w
w2

)
+

(qemτ1

k

)
z2

( z
z2
− 1 − ln

z
z2

)
+ (1 − u1)βx2v2

∫ t

t−τ1

G
( x(θ)v(θ)

x2v2

)
dθ + qemτ1y2z2

∫ t

t−τ2

G
(y(θ)z(θ)

y2z2

)
dθ.

(2.72)

Then,

dL2

dt
=

(
1 −

x2

x

)(
Λ − σx(t) − (1 − u1)βx(t)v(t)

)
+ emτ1

(
1 −

y2

y

)(
(1 − u1)βe−mτ1 x(t − τ1)v(t − τ1) − σy(t) − qy(t)z(t)

)
+

( (1 − u1)βx2v2

(α + δ)c2

)(
1 −

c2

c

)(
(1 − u2)ay(t) − αc(t) − δc(t)

)
+

( (1 − u1)βx2v2

αc2

)(
1 −

v2

v

)(
αc(t) − γv(t)w(t)

− µv(t)
)

+

( (1 − u1)βγx2v2

αgc2

)(
1 −

w2

w

)(
gv(t)w(t) − hw(t)

)
+

(qemτ1

k

)(
1 −

z2

z

)(
ky(t − τ2)z(t − τ2) − εz(t)

)
+ (1 − u1)βx2v2

( x(t)v(t)
x2v2

−
x(t − τ1)v(t − τ1)

x2v2
+ ln

x(t − τ1)v(t − τ1)
x(t)v(t)

)
+ qemτ1y2z2

(y(t)z(t)
y2z2

−
y(t − τ2)z(t − τ2)

y2z2
+ ln

y(t − τ2)z(t − τ2)
y(t)z(t)

)
. (2.73)

Since dx2
dt = 0 then Λ = σx2 + (1 − u1)βx2v2 and y2 = ε

k , we have

dL2

dt
= − σ

(x − x2)2

x
−

x2

x
(1 − u1)βx2v2 + (1 − u1)βx2v + (1 − u1)βx2v2 − σemτ1y

−
y2

y
(1 − u1)βx(t − τ1)v(t − τ1) + σmτ1y2 +

(1 − u1)(1 − u2)βx2v2ay
(α + δ)c2

− (1 − u1)βx2v2
c
c2
−

(1 − u1)(1 − u2)βx2v2ay
(α + δ)c

+ (1 − u1)βx2v2

+

( (1 − u1)βx2v2

αc2

)(
1 −

v2

v

)(
αc(t) − γv(t)w(t) − µv(t)

)
+

( (1 − u1)βγx2v2

αgc2

)(
1 −

w2

w

)(
gv(t)w(t) − hw(t)

)
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−
z2

z
qemτ1y(t − τ2)z(t − τ2) + qemτ1y2z2 + (1 − u1)βx2v2 ln

x(t − τ1)v(t − τ1)
xv

+ qemτ1y2z2 ln
y(t − τ2)z(t − τ2)

y(t)z(t)
. (2.74)

dL2

dt
= − σ

(x − x2)2

x
+ (1 − u1)βx2v2

(
2 −

x2

x
−

y2

y
x(t − τ1)v(t − τ1)

x2v2
−

c
c2

+ ln
x(t − τ1)v(t − τ1)

xv

)
+ qemτ1y2z2

(
1 −

z2

z
y(t − τ2)z(t − τ2)

y2z2
+ ln

y(t − τ2)z(t − τ2)
yz

)
+ (1 − u1)βx2v

− σemτ1y + σemτ1y2 +
(1 − u1)(1 − u2)βx2v2ay

(α + δ)c2
−

(1 − u1)(1 − u2)βx2v2ay
(α + δ)c

+

( (1 − u1)βx2v2

αc2

)(
1 −

v2

v

)(
αc(t) − γv(t)w(t) − µv(t)

)
+

( (1 − u1)βrx2v2

αgc2

)(
1 −

w2

w

)(
gv(t)w(t) − hw(t)

)
. (2.75)

From
dy2

dt
= 0 and

dc2

dt
= 0,

we have

(1 − u1)βx2v2 − qy2z2emτ1 = σemτ1y2and(1 − u2)ay2 = (α + δ)c2. (2.76)

Then,

dL2

dt
= − σ

(x − x2)2

x
+ (1 − u1)βx2v2

(
3 −

x2

x
−

y2

y
x(t − τ1)v(t − τ1)

x2v2
−

c
c2

+ ln
x(t − τ1)v(t − τ1)

xv
−

c2y
cy2

)
+ qemτ1y2z2

(
2 −

y2

y
−

y(t − τ2)z(t − τ2)
y2z

+ ln
y(t − τ2)z(t − τ2)

yz

)
+

qemτ1y2
2z2

y
+ (1 − u1)βx2v + qz2emτ1y

− 2qemτ1y2z2 + (1 − u1)βx2v2
c
c2
−

(1 − u1)βx2v2

αc2
γvw − (1 − u1)βx2v2

cv2

c2v
+

(1 − u1)βx2v2
2γw

αc2

+
(1 − u1)βx2v2

2µ

αc2
−

(1 − u1)βx2v2µv
αc2

+
(1 − u1)βx2v2γvw

αc2
−

(1 − u1)βx2v2γhw
αgc2

−
(1 − u1)βx2v2γw2v

αc2

+
(1 − u1)βx2v2γhw2

αgc2
. (2.77)

And since, dv2
dt = 0, γw2 =

αc2−µv2
v2

and v2 = h
g , then

dL2

dt
= − σ

(x − x2)2

x
+ (1 − u1)βx2v2

(
4 −

x2

x
−

y2

y
x(t − τ1)v(t − τ1)

x2v2
−

cv2

c2v
−

c2y
cy2

+ ln
x(t − τ1)v(t − τ1)

xv

)
+ qemτ1y2z2

(
2 −

y2

y
−

y(t − τ2)z(t − τ2)
y2z

+ ln
y(t − τ2)z(t − τ2)

yz

)
+

qemτ1y2
2z2

y
+ qemτ1yz2 − 2qemτ1y2z2.

(2.78)

Let A = σ (x−x2)2

x − (1 − u1)βx2v2

(
4 − x2

x −
y2
y

x(t−τ1)v(t−τ1)
x2v2

−
cv2
c2v −

c2y
cy2

+ ln x(t−τ1)v(t−τ1)
xv

)
− qemτ1y2z2

(
2 −

y2
y −

y(t−τ2)z(t−τ2)
y2z + ln y(t−τ2)z(t−τ2)

yz

)
+ 2qemτ1y2z2 and B = qemτ1yz2 +

qemτ1 y2
2z2

y . Thus, the global stability
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of immune-activated steady state equilibrium point is globally asymptotically stable when R0 > 1 and
A > B. �

Next, we perform numerical simulation for system (2.1) to confirm global stability of the three
above equilibrium points.
Case I: infection-free equilibrium point

In this case, we used β = 3 × 10−13, then the infection-free equilibrium point (E0 =

(368.6455, 0, 0, 0, 0, 0)) is globally asymptotically stable when R0 = 2.9178 × 10−10 < 1 as shown
in Figure 2.
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Figure 2. The solution x, y, c, v,w, and z of system (2.1) converge to the infection-free equi-
librium values in (a), (b), (c), (d), (e) and (f), respectively, when τ1 = 5, τ2 = 5.

Case II: immune-free equilibrium point
In this case, 1 < R0 = 1.3616 < inf{A1, A2} = 2.1932 at β = 0.0014 and k = 0.001 the immune-free

equilibrium point (270.7360, 92.6698, 56.8294, 5.6829, 0, 0) is globally asymptotically stable as shown
in Figure 3.
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Figure 3. The solution x, y, c, v,w, and z of system (2.1) converge to the immune-free equi-
librium values in (a), (b), (c), (d), (e) and (f), respectively, when τ1 = 5, τ2 = 5.
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Case III: immune-activated infection equilibrium point

The last critical point is the immune-activated infection equilibrium is globally asymtotically
stable when R0 = 13.6164 > 1 as shown in Figure 4. We use a = 1.5, then E2 =

(168.0870, 50, 306.6211, 18.7500, 44.0279, 30.7616).

0 50 100 150 200 250 300

times

0

1000

2000

3000

4000

5000

6000

u
n

in
fe

c
te

d
 h

e
p

a
to

c
y
te

s

R0>1

(a)

0 50 100 150 200 250 300

times

0

1000

2000

3000

4000

5000

in
fe

c
te

d
 h

e
p

a
to

c
y
te

s

R0>1

(b)

0 50 100 150 200 250 300

times

0

2000

4000

6000

8000

10000

12000

c
a

p
s
id

s

R0>1

(c)

0 50 100 150 200 250 300

times

0

50

100

150

200

250

300

fr
e

e
 v

ir
u

s
e

s

R0>1

(d)

Mathematical Biosciences and Engineering Volume 20, Issue 4, 7349–7386.



7374

0 50 100 150 200 250 300

times

0

500

1000

1500

2000

2500

a
n

ti
b

o
d

ie
s

R0>1

(e)

0 50 100 150 200 250 300

times

0

0.5

1

1.5

2

2.5

3

C
T

L

10
4 R0>1

(f)

Figure 4. The solution x, y, c, v,w, and z of system (2.1) converge to the immune-activated
infection equilibrium values in (a), (b), (c), (d), (e) and (f), respectively, when τ1 = 5, τ2 = 5.

3. Numerical simulation

In this section, the numerical simulations of the system (2.1) are performed with the use of parame-
ters values from Table 1. We divide the results into 4 cases as follows to investigate the impact of drug
therapy (u1 and u2) and to explore the dynamics of model in the different values of time delays.
(i)when u1 varies and τ1 = τ2 = 0
(ii)when u2 varies and τ1 = τ2 = 0
(iii)when τ1 varies and τ2 = 5
(iv)when τ2 varies and τ1 = 5.
(i) when u1 varies and τ1 = τ2 = 0.
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Figure 5. Simulation results of the HBV model (2.1) with both drug therapies (u1 =

0.2, 0.4, 0.6 and u2 = 0.5) when τ1 = τ2 = 0. (a) the concentration of uninfected hepa-
tocytes, (b) the concentration of infected hepatocytes, (c) the concentration of intracellular
HBV DNA-containing capsids, (d) the concentration of free viruses, (e) the concentration of
antibodies and (f) the concentration of CTL. u1 is the efficiency of drug therapy in blocking
new infection and u2 is the efficiency of drug therapy in inhibiting viral production.

Figure 5 (a)–(f) shows the dynamics of the concentration of the uninfected hepatocytes, infected
hepatocytes, intracellular HBV DNA-containing capsid, free viruses, antibodies, and CTL, respectively
where they are treated by u1 and u2 representing the efficiency of drug therapy in blocking new infection
and the efficiency of drug therapy in inhibiting viral production, respectively. We choose u1 = 0.2, 0.4,
0.6 and u2 = 0.5. From Figure 5(a), we can see that a larger value of u1 can slow down the decline of
the concentration of uninfected hepatocytes when compare with the smaller u1. At the end, they tend
to reach the same equilibrium value. Figures 5(b) and 5(c) give a similar pattern, the concentration of
infected hepatocytes and intracellular HBV DNA-containing capsids rises since the beginning for all
values of u1. Figure 5(b) shows that the greater value of u1, the smaller the peak of the concentration
of infected hepatocytes with a slightly slower time for the peak to occur. In the case when u1 = 0.2 and
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0.4, it tends to give the second peak in the period of 80th to 150th day, whereas when u1 = 0.6 there is
no second peak. Further, it reaches a lower equilibrium value when compared with a smaller u1. The
difference between Figure 5(c) and Figure 5(b) is that the first peak of all three cases are at the same
level. At the start in Figure 5(d), the concentration of free viruses decreases for a few days and goes up
sharply to reach a peak. When u1 increases, the peak height is smaller, respectively with a slower time
for the peak to occur and reaches the smaller equilibrium value. Further, for the case u1 = 0.2 and 0.4,
the second peak is observed between 50th-150th day. Figure 5(e) shows interesting results i.e. there
are two peaks of the concentration of antibodies when u1 = 0.2 and 0.4, where their second peak is
larger than their first peak. Only one peak of the concentration of antibodies is obtained for u1 = 0.6.
Time for the peak to occur is slightly slower when u1 increases. The dynamics tend to reach a lower
equilibrium value with the larger value of u1. Interestingly, Figure 5(f) shows a significant reduction
of the concentration of CTL and a slower time for the peak to occur when u1 increases. Further, in the
case of u1 = 0.2, on the 100th day, the concentration of CTL rises again to reach a small peak ranging
the period of 50 days then goes down to zero. Overall, from the results above u1 has been shown to
play a main role in significantly reducing the concentration of infected hepatocytes, free viruses and
CTL.
(ii) when u2 varies and τ1 = τ2 = 0
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Figure 6. Simulation results of the HBV model (2.1) with both drug therapies (u2 =

0.2, 0.4, 0.6 and u1 = 0.5) when τ1 = τ2 = 0. (a) the concentration of uninfected hepa-
tocytes, (b) the concentration of infected hepatocytes, (c) the concentration of intracellular
HBV DNA-containing capsids, (d) the concentration of free viruses, (e) the concentration of
antibodies and (f) the concentration of CTL. u1 is the efficiency of drug therapy in blocking
new infection and u2 is the efficiency of drug therapy in inhibiting viral production.

In Figure 6, the value of u2 is varied by choosing u2 = 0.2, 0.4, 0.6 and u1 = 0.5. In Figure 6(a), our
results show that with an increase of u2, the concentration of uninfected hepatocytes decreases slightly
slower than the concentration of the smaller u2 and it tends towards the same equilibrium value at the
end. Figure 6(b) demonstrates double peaks of the concentration of infected hepatocytes where the
higher value of u2, the lower peak height for both peaks. It reaches a peak at 1000 cells/ml in the case
u2 = 0.2, whereas it reaches a peak at less than 900 cells/ml for u2 = 0.6. After the first peak, they drop
down to between 200-300 cells/ml and gradually rise up again as the second peak on approximately
100th day. Figure 6(c) gives a very interesting result i.e. with u2 = 0.2, 0.4 and 0.6, the concentration
of intracellular HBV DNA-containing capsids go up to reach the peak at 800 cells/ml, 600 cells/ml
and 400cells/ml, respectively. Although when u2 = 0.2 and u2 = 0.4, it tends to give the second peak
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in the period of 100th to 150th day, with u2 = 0.6 there is no second peak. Further, with the larger
value of u2, it tends to reach a lower equilibrium value. Figure 6(d) shows a significant decrease of the
concentration of free viruses when u2 increases, and the time for the peak to occur is slightly slower.
Figure 6(e) shows the concentration of antibodies increases from the beginning for all u2 values, there
is a double peak for u2 = 0.2, it reaches the first peak at 400 cells/ml on the 45th day and slightly
declines to 350 cells/ml then it rises up again to the higher second peak. At u2 = 0.4, the double peak
is smaller than the case of u2 and than its first peak. With a higher value of u2, the concentration of
antibodies decreases largely, respectively and tends to reach a lower equilibrium value. Figure 6(f)
shows that when u2 increases, the concentration of CTL decreases significantly, and the time for the
peak to occur is slightly slower, respectively. On the whole, from the results above u2 has been shown
to play a main role in greatly reducing the concentration of intracellular HBV DNA-containing capsids,
free viruses, antibodies and CTL.
(iii) when τ1 varies and τ2 = 5
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Figure 7. Simulation results of the HBV model (2.1) with τ1 and τ2 represent the delay in the
productively infected hepatocytes and the delay in an antigenic stimulation generating CTL,
respectively. We vary the value of τ1 to be τ1 = 0.5, 5, 15 where τ2 = 5. (a) the concentration
of uninfected hepatocytes, (b) the concentration of infected hepatocytes, (c) the concentration
of intracellular HBV DNA-containing capsids, (d) the concentration of free viruses, (e) the
concentration of antibodies and (f) the concentration of CTL.

In Figure 7, we vary the value of τ1 where τ2 is 5. From Figure 7 (a), we can see that the dynamics
of concentration of uninfected hepatocytes hardly changed when τ1 varies. Figures 7(b) and 7(c) show
a similar pattern, the concentration of infected hepatocyte and intracellular HBV DNA-containing
capsids go up since the beginning for all values of τ1. They show that the higher the value of τ1, the
smaller the peak and the longer it takes for the peak to appear. Further, it reaches a lower equilibrium
value when compared with a smaller τ1. Figure 7(d) shows double peaks in the concentration of free
viruses, the lower peak height for both peaks obtained with the larger value of τ1. They drop down
after the first peak, then gradually rise to the second peak, which occurs between the 150th and 250th
day. Finally, it tends to reach a lower equilibrium value when τ1 increases. Figures 7(e) and 7(f) show
that in the case when τ1 increases, the concentration of antibodies and CTL decrease with a slower time
for the peak to occur, respectively. In summary, the result above τ1 has shown to have an impact to
a reduction in the concentration of infected hepatocytes, intracellular HBV DNA-containing capsids,
free viruses, antibodies and CTL. Also, the epidemic peak occurs slower when τ1 increases. (iv) when
τ2 varies and τ1 = 5.
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Figure 8. Simulation results of the HBV model (2.1) with τ1 and τ2 represent the delay in the
productively infected hepatocytes and the delay in an antigenic stimulation generating CTL,
respectively. We vary the value of τ2 to be τ2 = 0.5, 5, 15, where τ1 = 5. (a) the concentration
of uninfected hepatocytes, (b) the concentration of infected hepatocytes, (c) the concentration
of intracellular HBV DNA-containing capsids, (d) the concentration of free viruses, (e) the
concentration of antibodies and (f) the concentration of CTL.

When τ2 increases, the concentration of uninfected hepatocytes drops faster on the first 100th day,
as shown in Figure 8(a). After that, however, the concentration of uninfected hepatocytes tends to
decrease slower than in the case of smaller τ2. Figure 8(b) and 8(c) give a similar pattern when τ2

increases, the concentration of infected hepatocytes and intracellular HBV DNA-containing capsids
largely increase, with a slower time for the peak to occur. Interestingly, with τ2 = 0.5, there are two
peaks occurred, whereas only one peak observed in case τ2 = 5 and 15. Further, with τ2 = 15 it reaches
a lower equilibrium value when compared to τ2 = 0.5, and 5. When τ2 increases, the concentration of
free viruses increases to almost the same level of the peak as shown in Figure 8(d). However, it tends
to give the second peak for case τ2 = 0.5 and 5, while in case τ2 = 15 there is only one peak. At the
start in Figure 8(e), when τ2 increases, the concentration of antibodies significantly increases with a
slower time for the peak to occur, with τ2 = 0.5, after the 70th day, it goes up again to the small second
peak at a smaller level. On the other hand, Figure 8(f) shows a large reduction of the concentration of
CTL with a slower time for the peak to occur, when τ2 increases. Further, in the case τ2 = 0.5, on the
80th day, it tends to rise to give the second peak ranging the period of 70 days then goes down to zero.
On the whole, from the results above, τ2 has shown to give an impact in boosting up the concentration
of infected hepatocytes, intracellular HBV DNA-containing capsids, free viruses, and antibodies with
a longer period of an epidemic time. However, it shows to play a main role in greatly reducing the
concentration of CTL. This means that the delay of antigenic stimulation generating CTL causes a
longer duration with a large quantity of the hepatitis B virus infection.

4. Conclusion

In this paper, different from other existing models we propose multiple delays within-host model
for HBV infection with 6 variables consisting of the uninfected hepatocytes, infected hepatocytes, in-
tracellular HBV-DNA containing capsids, free viruses, antibodies, and cytotoxic T-lymphocyte (CTL).
We incorporate the two delays which are the delay in the productively infected since viruses attack
and an additional delay in an antigenic stimulation generating CTL. The model also involves two drug
therapies. We have proved that all solutions are non-negative and bounded. Three equilibrium states
are determined in this model i.e. infection-free, the immune-free and the immune-activated infection.
The basic reproduction number is determined and becomes the threshold in determining the stability of
the infection-free equilibrium point. Further, the global stability of immune-free and immune-activated
infection equilibrium points are analyzed and presented in Theorem 8 and 9, respectively. Our numer-
ical simulations have shown that both drug therapies play a key role in reducing an HBV infection
overall. From Figure 7, we obtain that τ1 affects the time for the peak to occur i.e. it is slower when τ1

increases. Also, a smaller epidemic is observed in a larger value of τ1. In addition, the results of Figure
8 obtained, they show that the greater the delay in an antigenic stimulation generating CTL (τ2), the
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more severe HBV infection occurs. Our findings have confirmed the great role of both drug therapies
in reducing HBV infection as shown in the work of Danane and Allali, 2018 [20]. However, the greater
the delay in an antigenic stimulation generating CTL cells has been shown to make the HBV infection
more severe, this can be found in the work of Sun and Liu, 2017 [46] that this time delay gives a big
effect on the model dynamics. Overall, including both adaptive immune responses which are CTL and
antibodies with time delays would make this model more realistic and this could bring better under-
standing of HBV infection. As a future work, it might be reasonable to include spatial components and
diffusion for viruses into the model.
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