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Abstract: In this paper, we propose a two-patch model with border control to investigate the effect
of border control measures and local non-pharmacological interventions (NPIs) on the transmission of
COVID-19. The basic reproduction number of the model is calculated, and the existence and stability
of the boundary equilibria and the existence of the coexistence equilibrium of the model are obtained.
Through numerical simulation, when there are no unquarantined virus carriers in the patch-2, it can
be concluded that the reopening of the border with strict border control measures to allow people in
patch-1 to move into patch-2 will not lead to disease outbreaks. Also, when there are unquarantined
virus carriers in patch-2 (or lax border control causes people carrying the virus to flow into patch-2),
the border control is more strict, and the slower the growth of number of new infectious in patch-2, but
the strength of border control does not affect the final state of the disease, which is still dependent on
local NPIs. Finally, when the border reopens during an outbreak of disease in patch-2, then a second
outbreak will happen.
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1. Introduction

It is reported that from the COVID-19 epidemic in the past three years, and due to the huge num-
ber of infected people, hundreds of variants have been produced, among which the most adaptable
variant has become the global epidemic strain. From the early original strain to the Omicron strain,
these variations are all generated through continuous evolution. This pathogen represents a substantial
challenge for public health, pandemic planning and health care systems. According to real-time data
from Worldometer, as of October 17, 2022, there were 629,958,941 confirmed COVID-19 cases and
6,571,478 deaths worldwide [1].
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It is known to all that people all over the world have been widely vaccinated with the novel coron-
avirus vaccine to establish their own immune barrier; however, vaccination seems to only reduce the in-
fection rate and reduce the severity, but not provide complete immunity to the virus [2]. In the absence
of specific drugs against COVID-19, mitigating the epidemic will depend on non-pharmacological in-
terventions(NPIs). There are many kinds of NPIs, which can be divided into two levels: one is the
personal level, such as home quarantine, social distancing, wearing masks, and frequent hand wash-
ing; and the other level of the disease control department, such as tracking close contacts, controlling
foreign personnel (returning home, traveling or visiting) and so on.

Mathematical models for the COVID-19 pandemic have been proposed to assess the effectiveness
of NPIs and study the dynamic behavior of the pandemic. For example, Seungpil et al. [3] proposed a
modified SEIR model to assess the effectiveness of social distancing, ban on gatherings and vaccination
strategies. Studies by Chinazzi et al. [4] have shown that additional travel restrictions (up to 90%
of traffic) have only a modest effect, unless coupled with public health interventions and behavioral
changes, can significantly reduce the rate of disease transmission. For other related research results,
see Refs.( [3–7]) and the references therein.

As we know, many countries and regions in the world have implemented lockdowns to curb the
rapid spread of COVID-19, and achieved phased victory at the early stage of the outbreak. For exam-
ple, Yang et al. [8] established a mathematical model and estimated that the opportunity of COVID-19
transmission will be reduced after the implementation of mandatory control measures on January 23,
2020; however, if the mandatory measures, such as “closed city”, are postponed for 5 days, the epi-
demic scale on the Chinese mainland will expand three times. However, with the universal vaccination
of the new coronavirus vaccine, people’s immune system has been gradually established. In addi-
tion, the mortality rate of the mutant virus Omicron has decreased, and many places are planning to
lift the closure (schools, work places, businesses), including reopening of borders between countries,
provinces, and regions. In fact, the reopening or lifting are still risky due to the fast spreading, and in
particularly, the higher percentage of asymptomatic infected individuals. It is essential to assess the
risk of lifting, and quantify the threshold conditions to inform the decision-making of public health.
Further, there are differences in the ability of responding to public health emergencies, medical re-
sources, relevant policies and the degree of residents’ compliance with policies in every country and
even every city.

Hence, there are some patch models that are proposed to depict the spread of disease from one
region to another, or in multiple-regions, see Refs.( [9–12]). For instance, Sun et al. [10] proposed a
two-patches model to reflect the mobility of humans between Hubei and regions outside Hubei, and
estimated the effective reproduction numbers for two patches, and also discussed the impact of the
resumption of work and production in Wuhan and the lifting of lockdown on the spread of COVID-
19. In particular, Hu et al [11] proposed a two-patches mathematical model to investigate the effects
of migration and supply of medical resources on the transmission of disease. However, as far as we
know, most of the above mentioned patch model studies on COVID-19 focus on the dynamic impact
of human activities on disease transmission between patches, and few study the impact of the severity
of various control measures between patches on disease transmission.

Hence, in this paper, we will take the movement of non-quarantined individuals from one patch to
the other and border controls into consideration, and propose a two-patch model to study the impact
of the severity of various control measures between patches on disease transmission. The details can
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be found in the following sections. In Section 2, we first propose a single patch model without pop-
ulation movement and study its basic properties, and then extend this model to a two-patch model by
considering border reopening and border control. We investigate the threshold dynamics of the border
reopening model in Section 3. Finally, we give some numerical simulation and a brief discussion in
Section 4 and Section 5, respectively.

2. Modelling

In this paper, we consider two closely related regions (cities, countries). During the COVID-19 out-
break, many countries have resorted to city closures, or even country closures, to avoid wider spread
of the epidemic and to accelerate local control. Therefore, this section will be divided into two sub-
sections to discuss changes in control measures for controlling the spread of disease when borders are
closed and reopened.

2.1. Without population movement

Regardless of the population movement between the two patches, that is, the two patches are inde-
pendent of each other, and each has its own NPIs measures, we consider the situation that the epidemic
of COVID-19 in both patches are under control, otherwise, there is no reason to open the border to
allow population movement.

The latent period is shorter than incubation period for COVID-19. A person can transmit infec-
tion without showing any signs of the disease. Such infection is called subclinical infection [14].
Therefore, we divide the human population on each patch- j ( j = 1, 2) into the following classes: sus-
ceptible (S j(t)), exposed (E j(t)), subclinical infection (Ia j(t)) (include those who remain asymptomatic
and those who have not yet developed symptoms), symptomatic infectious (I j(t)), quarantined and
hospitalized (H j(t)) who are all severely infected, and recovered (R j(t)).

Considering the following two types of forced quarantine: quarantine of traced close contacts (in-
cluding susceptible, exposed, and subclinical infected), and quarantine of confirmed infected individu-
als with mild clinical symptoms. Let S q j(t) denote quarantined susceptible (close contacts identified),
after the period of forced quarantine, people will return to class S j(t). Let Q j(t) denote quarantined
carriers of the virus, in which they either develop mild symptoms and then recover, or develop severe
symptoms and are hospitalized. In this paper, we assume that infected with severe cases will be admit-
ted to designated hospitals for treatment, while confirmed infected individuals with mild symptoms and
traced carriers of the virus will be sent to the centralized observation places for centralized quarantine.

For the patch- j ( j = 1, 2) population, people enter the susceptible class through birth at a recruit-
ment rate Λ j, and leave all classes through the same natural death rate µ. When a susceptible individual
comes into contact with an infectious individual, there is some probability that the person can get the
virus and move to the exposed class at the infection rate c jβ j

(
Ia j + I j

)
. Here, c j is the contact rate in

patch- j, and β j is the probability of transmission per contact in patch- j. Let τ and σ be the transition
rate of exposed individuals to the subclinical infection and the transition rate of subclinical infection
to the infected with symptom class, respectively. The terms θ j and δ j represent the rate of hospital-
izations due to severe clinical symptoms in the class of I j and in the class of Q j, respectively. When
the infected individuals with severe clinical symptoms are admitted to the hospital, they move to the
recovered class at a rate γh j, and die from infection at a rate d j. Furthermore, γa, γ and γq j are recovered
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rates in subclinical infected, symptomatic infected and quarantined carriers of the virus, respectively.
Moreover, qs j, qe j, qa j and qi j are the forced quarantine rate of susceptible individuals, exposed

individuals, subclinical infected and symptomatic infected by contact tracing, respectively. η j denotes
the rate of the quarantined uninfected contacts of patch- j . The flowchart of COVID-19 transmission
for patch- j ( j = 1, 2) without population movement is illustrated in Figure 1. Based on the above
assumptions and the flow chart, we propose the following single patch model (2.1)-(2.2) for patch-
j ( j = 1, 2):

Figure 1. Flow diagram of the COVID-19 model in patch-j. Solid lines indicate the move-
ment between classes. Dashed lines represent the virus transmission routes.

dS j

dt
= Λ j − c jβ jS j

(
Ia j + I j

)
−

(
qs j + µ

)
S j + η jS q j,

dE j

dt
= c jβ jS j

(
Ia j + I j

)
−

(
τ + qe j + µ

)
E j,

dIa j

dt
= τE j −

(
γa + σ + qa j + µ

)
Ia j,

dI j

dt
= σIa j −

(
θ j + γ + qi j + µ

)
I j,

dS q j

dt
= qs jS j −

(
η j + µ

)
S q j,

(2.1)

and 

dQ j

dt
= qe jE j + qa jIa j + qi jI j −

(
δ j + γq j + µ

)
Q j,

dH j

dt
= θ jI j + δ jQ j −

(
γh j + d j + µ

)
H j,

dR j

dt
= γa jIa j + γI j + γq jQ j + γh jH j − µR j.

(2.2)

It is obvious that Q j,H j and R j can be decoupled from the other equations in model (1), so it
suffices to only study model (2.1). Associated with model (2.1), we also consider the following initial
conditions:

S j(0) > 0, E j(0) ≥ 0, Ia j(0) ≥ 0, I j(0) ≥ 0, S q j(0) ≥ 0.

It is easy to calculate that model (2.1) always has a disease-free equilibrium e0 j = (s∗j, 0, 0, 0, s
∗
q j),

where s∗j =
Λ j(η j+µ)

µ(η j+qs j+µ) , s
∗
q j =

Λ jqs j

µ(η j+qs j+µ) . Then, using the next generation method, we obtain the basic
reproduction number of model (2.1):

R0 j =
c jβ js∗jτ

(
θ j + γ + qi j + µ + σ

)(
θ j + γ + qi j + µ

) (
γa + σ + qa j + µ

) (
τ + qe j + µ

) .
Mathematical Biosciences and Engineering Volume 20, Issue 4, 7171–7192.
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The properties of equilibria of model (2.1) are given in the following theorem:

Theorem 2.1. (i) If R0 j < 1, then disease-free equilibrium e0 j is globally asymptotically stable.
(ii) If R0 j > 1, then disease-free equilibrium e0 j is unstable, and model (2.1) has a unique endemic

equilibrium e∗j = (s∗∗j , e
∗∗
j , i
∗∗
a j, i

∗∗
j , s

∗∗
q j), where

s∗∗j =

(
µ + τ + qe j

) (
µ + θ j + γ + qi j

) (
µ + γa + σ + qa j

)
c jβ jτ

(
µ + θ j + γ + qi j + σ

) ,

e∗∗j =
µ
(
η + µ + qs j

) (
µ + θ j + γ + qi j

) (
µ + γa + σ + qa j

) (
R0 j − 1

)
c jβ jτ

(
µ + η j

) (
µ + θ j + γ + qi j + σ

) ,

i∗∗a j =
µ
(
η + µ + qs j

) (
µ + θ j + γ + qi j

) (
R0 j − 1

)
c jβ j

(
µ + η j

) (
µ + θ j + γ + qi j + σ

) ,

i∗∗j =
µσ

(
η + µ + qs j

) (
R0 j − 1

)
c jβ j

(
µ + η j

) (
µ + θ j + γ + qi j + σ

) ,
s∗∗q j =

qs j

(
µ + τ + qe j

) (
µ + θ j + γ + qi j

) (
µ + γa + σ + qa j

)
c jβ jτ

(
µ + η j

) (
µ + θ j + γ + qi j + σ

) .

That is to say, if R0 j < 1, then the disease will go extinct in patch- j, and the disease become endemic
in patch- j when R0 j > 1. When the border is closed, we can adopt the local NPIs policies to control
the basic reproduction number, so as to control the spread of COVID-19 in patch- j. Then, naturally,
we will consider how the reopening of the border will affect the epidemic in patch- j if the epidemic
situation in patch- j is controlled. Is it still effective to continue to take local NPIs measures after
reopening the border?

2.2. Border control for reopening

For the above two patches, when the basic reproduction number of one patch is less than 1, the
patch can consider reopening the border to allow people from the other patch to move into the patch
with border control measures. That is assuming that R02 < 1 meaning the patch-2 allows the people
of patch-1 to move in under some border control measures. For the patch-i(i = 1, 2), we classify the
general population into the following groups: susceptible (S i), exposed (Ei), subclinical infection (Iai),
symptomatic infection (Ii), centralized quarantine susceptible (S qi), centralized quarantine carriers of
the virus (Qi), hospitalized (Hi) and recovered (Ri). We subdivide the centralized quarantine population
at entry into four classes: susceptible (S w), exposed (Ew), subclinical infection (Aw) and symptomatic
infection (Iw).

During the outbreak of COVID-19, we consider only people in high-risk areas moving to low risk
area. There are two ways for entry: conventional entry and unconventional entry. People who con-
ventional entry must accept entry centralized quarantine for a while (usually for 14 days), with one
room per person (i.e., there are no new infections in the quarantine places at entry). People are tested
for nucleic acids at least twice during centralized quarantine. Unconventional entry individuals are not
subject to centralized quarantine and go directly to local areas. Let ρ (0 ≤ ρ ≤ 1) represent the rate
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of conventional entry by individuals in various classes. Here, ρ = 1 means that entry control measures
in a low-risk area is very strict and there is no unconventional entry individuals, and ρ = 0 means that
no entry control measures have been taken in a low-risk area. The flow diagram of the patch-model is
shown in Figure 2. We propose the following assumptions:

Figure 2. Flow diagram of the COVID-19 model in two-patch with border control. The red
arrows in the figure represent the portion of unconventional entry individuals from patch-1
to patch-2.

(A1) 100% of symptomatic infectious individuals can be detected during entry quarantine, and a small
number of subclinical infectious individuals may not be detected.

(A2) The entry quarantine period is not too long, ignoring the natural birth rate and natural death rate
of the population during the period of entry quarantine.

(A3) People who recover from COVID-19 will not be re-infected. We ignore the migration of people
who have recovered because the probability of them moving from one country to another during
the epidemic is very small.

(A4) Once the infected is diagnosed at the entry quarantine places, they will be transferred to the local
quarantine observation places for non-severe symptoms, thus entering the Q compartment.

(A5) The reason why people leave the entry quarantine place is because the susceptible individuals
leave after the expiry of the quarantine period, or the infected individuals are transferred to the
local centralized quarantine observation places with a positive nucleic acid test.

Base on the above assumption and the flow diagram in Figure 2, we arrive at the following equations

Mathematical Biosciences and Engineering Volume 20, Issue 4, 7171–7192.
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for each subpopulation from patch-i:



dS 1

dt
= Λ1 − c1β1S 1 (Ia1 + I1) − (µ + qs1) S 1 + η1S q1 − mS 1,

dE1

dt
= c1β1S 1 (Ia1 + I1) − (τ + µ + qe1) E1 − mE1,

dIa1

dt
= τE1 − (γa + σ + µ + qa1) Ia1 − mIa1,

dI1

dt
v = σIa1 − (θ1 + γ + µ + qi1) I1,

dS q1

dt
= qs1S 1 − (η1 + µ) S q1,

dS w

dt
= mρS 1 − κS w,

dEw

dt
= mρE1 − τwEw,

dIaw

dt
= mρIa1 + τwEw − (σw + qaw + ε) Iaw,

dIw

dt
= σwIaw − qiwIw,

dS 2

dt
= Λ2 + m(1 − ρ)S 1 + κS w − c2β2S 2 (Ia2 + I2) − (µ + qs2) S 2 + η2S 2,

dE2

dt
= m(1 − ρ)E1 + c2β2S 2 (Ia2 + I2) − (τ + µ + qe2) E2,

dIa2

dt
= m(1 − ρ)Ia1 + τE2 + εIaw − (γa + σ + µ + qa2) I2,

dI2

dt
= σIa2 − (θ2 + γ + µ + qi2) I2,

dS q2

dt
= qs2S 2 − (η2 + µ) S q2,

(2.3)

and 



dQ1

dt
= qe1E1 + qa1Ia1 + qi1I1 −

(
δ1 + γq1 + µ

)
Q1,

dH1

dt
= θ1I1 + δ1Q1 − (γh1 + d1 + µ) H1,

dR1

dt
= γaIa1 + γI1 + γq1Q1 + γh1H1 − µR1,

dQ2

dt
= qe2E2 + qa2Ia2 + qi2I2 + qawIaw + qiwIw −

(
δ2 + γq2 + µ

)
Q2,

dH2

dt
= θ2I2 + δ2Q2 − (γh2 + d2 + µ) H2,

dR2

dt
= γaIa2 + γI2 + γq2Q2 + γh2H2 − µR2.

(2.4)

The parameters in this model are described in Table 1. It is obvious that Q1, H1, R1, Q2, H2 and
R2 can be decoupled from all the equations in model (2.3), so it is suffices to study model (2.3). The
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initial value for all populations in model (2.3) is given by:

S i > 0, Ei ≥ 0, Iai ≥ 0, Ii ≥ 0, S qi ≥ 0, S w ≥ 0, Ew ≥ 0, Iaw ≥ 0, Iaw ≥ 0, i = 1, 2. (2.5)

Table 1. Definition and possible values of the basic parameter for model (2.3).
Param. Description Value Source

Λ1/Λ2 Recruitment rate of human in patch-1,2 Variable –

c1/c2 Contact rate in patch-1,2 [5,14] [15]

β1/β2 Probability of transmission per contact in patch-1,2

qs j , qe j , qa j , qi j The force quarantine rate of class S j , E j ,Ia j ,I j , j=1,2 [0, 1) –

qaw , qiw The transfer rate of from Iaw , Iw classes to Q2 [0, 1) –

θ1/θ2 Rate of hospitalizations in the class of I1/I2 0.0152 [16]

η1/η2 Rate of the quarantined uninfected contacts in patch-1,2 (0, 0.14) –

δ1/δ2 Rate of hospitalizations in the class of Q1/Q2 0.02 -

γq1/γq2 Recovery rate of the class of Q1/Q2 (0.0775, 0.1549) [16]

γh1/γh2 Recovery rate of the class of H1/H2 (0.0357, 0.17) [16]

d1/d2 Disease-induced death rate of human in patch-1,2 (0.0051, 0.0056) [17]

µ Natural death rate of human 1/(78 ∗ 365) –

m Move rate of human from patch-1 to patch-2 (0, 1) -

τ Transition rate of exposed to subclinical infection [0.2, 0.25] [18]

γa Recovery rate of subclinical infection (0.06929, 0.0708) [17]

σ Transition rate of Ei class to Ii class, i = 1, 2 0.33 -

γ Recovery rate of symptomatic infection 0.07 [17]

ρ Rate of conventional entry individuals in various classes (0, 1) -

κ Transition rate of from S w to S 2 1/14 -

τw Transition rate of exposed individuals to subclinical (0, 0.25) -

infection at the border quarantine places

σw Transition rate of subclinical infection to symptomatic (0, 0.33) -

infection at the border quarantine places

ε Rate of subclinical infections that are not detected [0, 1 − σw − qaw) -

at the border quarantine places

On the positivity and boundedness of solutions for model (2.3), we have the following result, which
can be easily proved by using a similar argument as in [19, Theorem 3.1]:

Theorem 2.2. Let X(t) = (S 1(t), E1(t), Ia1(t), I1(t), S q1(t), S w(t), Ew(t), Iaw(t), Iw(t), S 2(t), E2(t), Ia2(t),
I2(t), S q2(t)) be the solution of model (2.3) with initial condition (2.5). Then, we have

(a) X(t) is nonnegative for all t ≥ 0 and ultimately bounded;
(b) If X(0) > 0, then X(t) is also positive for all t > 0.

Remark 2.1. It is easy to verify that when the initial value of unquarantine carriers of the virus in
patch-2 is equal to zero (E2(0) = Ia2(0) = I2(0) = 0), it can be obtained from model (2.3) that the
number of newly infected individuals is equal to zero for t ≥ 0. That is to say, under strict border
control measures, border reopening will not result in an outbreak of patch-2 disease (all carriers of the
virus are detected at the border quarantine places, sent to the hospital and quarantined, and no new
infections will occur locally). This is different from other patch models of infectious diseases [20–23].

3. Threshold dynamics

In this section, we focus on the basic reproduction number of model (2.3), the stability of disease-
free equilibrium and boundary equilibrium, and the existence of coexistence equilibrium. Firstly, when
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Ei = 0, Iai = 0 and Ii = 0 (i = 1, 2,w), we have the disease-free subsystem

dS 1

dt
= Λ1 − (µ + qs1) S 1 + η1S q1 − mS 1,

dS q1

dt
= qs1S 1 − (η1 + µ) S q1,

dS w

dt
= mρS 1 − κS w,

dS 2

dt
= Λ2 + m(1 − ρ)S 1 + κS w − (µ + qs2) S 2 + η2S 2,

dS q2

dt
= qs2S 2 − (η2 + µ) S q2.

(3.1)

A simple calculation shows that subsystem (3.1) has a unique positive equilibrium K∗ = (S ∗1, S ∗q1, S ∗w,
S ∗2, S ∗q2) with

S ∗1 =
Λ1 (η1 + µ)

mη1 + µ (η1 + µ + qs1 + m)
, S ∗q1 =

Λ1qs1

mη1 + µ (η1 + µ + qs1 + m)
,

S ∗w =
Λ1mρ (η1 + µ)

κ
[
mη1 + µ (η1 + µ + qs1 + m)

] ,
S ∗2 =

Λ2 (η2 + µ)
µ (η2 + µ + qs2)

+
Λ1m (η2 + µ) (η1 + µ)

µ (η2 + µ + qs2)
[
mη1 + µ (η1 + µ + qs1 + m)

] ,
S ∗q2 =

Λ2qs2

µ
(
η2 + µ + qs2

) +
Λ1mqs2 (η1 + µ)

µ (η2 + µ + qs2)
[
mη1 + µ (η1 + µ + qs1 + m)

] ,
which is globally asymptotically stable. Therefore, model (2.3) has exactly a unique disease-free
equilibrium K0 =

(
S ∗1, 0, 0, 0, S

∗
q1, S

∗
w, 0, 0, 0, S

∗
2, 0, 0, 0, S ∗q2

)
. Then, we use the next generation matrix

method to calculate the basic reproduction number of model (2.3). Letting

F =



0 c1β1S ∗1 c1β1S ∗1 0 . . . 0 0
0 0 0 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . c2β2S ∗2 c2β2S ∗2
0 0 0 0 . . . 0 0
0 0 0 0 · · · 0 0


, V =

(
V11 0
V21 V22

)
,

where

V11 =


τ + µ + qe1 + m 0 0

−τ γa + σ + µ + qa1 + m 0
0 −σ θ1 + γ + µ + qi1

 ,

V21 =


−mρ 0 0 −m(1 − ρ) 0 0

0 −mρ 0 0 −m(1 − ρ) 0
0 0 0 0 0 0


T

,
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V22 =



τw 0 0 0 0 0
−τw σw + qaw + ε 0 0 0 0

0 −σw qiw 0 0 0
0 0 0 τ + µ + qe2 0 0
0 −ε 0 −τ γq + σ + µ + qa2 0
0 0 0 0 −σ θ2 + γ + µ + qi2


.

Thus, the basic reproduction number R̄0 of model (2.3) is given by

R̄0 = r(FV−1) = max
{
R̄01, R̄02

}
,

where

R̄01 =
c1β1S ∗1τ (θ1 + γ + µ + qi1 + σ)

(θ1 + γ + µ + qi1) (γa + σ + µ + qa1 + m) (τ + µ + qe1 + m)
,

R̄02 =
c2β2S ∗2τ (θ2 + γ + µ + qi2 + σ)

(θ2 + γ + µ + qi2) (γa + σ + µ + qa2) (τ + µ + qe2)
,

and r(FV−1) is the spectral radius of matrix FV−1.

Theorem 3.1. Assume R̄0 < 1. Then disease-free equilibrium K0 of model (2.3) is locally asymptoti-
cally stable, and unstable if R̄0 > 1.

Moreover, based on the arguments in [24], we have the following results.

Lemma 3.2. Let r(F − V) be the principle eigenvalue of F − V . It is clear that R̄0 − 1 has the same
sign as r(F − V).

By calculating the characteristic equation of Jacobian matrix of model (2.3) at disease-free equilib-
rium K0, we easily obtain that when R̄0 < 1, all characteristic roots have negative real parts, and on
the contrary, when R̄0 > 1, there is a characteristic root with positive real part. Therefore, the proof of
Theorem 3.1 is simple, and we here omit it.

Theorem 3.3. Assume R̄0 < 1. Then disease-free equilibrium K0 of model (2.3) is globally asymptoti-
cally stable.

Proof. It suffices to show that the globally attractivity of the disease-free equilibrium K0. It follows
from Theorem 3.1, we know that if R̄0 < 1, then r(F − V) < 0. Then, we can choose a small enough
constant ε > 0, such that r(F − V + εM) < 0, where

M =



0 c1β1 c1β1 0 . . . 0 0
0 0 0 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . c2β2 c2β2

0 0 0 0 . . . 0 0
0 0 0 0 · · · 0 0


.
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From the positivity of the solution of model (2.3), we have

dS 1

dt
≤ Λ1 − (µ + qs1) S 1 + η1S q1 − mS 1,

dS q1

dt
= qs1S 1 − (η1 + µ) S q1,

dS w

dt
= mρS 1 − κS w,

dS 2

dt
≤ Λ2 + m(1 − ρ)S 1 + κS w − (µ + qs2) S 2 + η2S q2,

dS q2

dt
= qs2S 2 − (η2 + µ) S q2.

Since the comparison system (3.1) has the positive equilibrium K∗ = (S ∗1, S
∗
q1, S

∗
w, S

∗
2, S

∗
q2), it is globally

asymptotically stable. Hence, for above given constant ε > 0, there exists a t1 > 0, such that for all
t > t1 one has S 1(t) ≤ S̄ 1(t) < S ∗1 + ε and S 2(t) ≤ S̄ 2(t) < S ∗2 + ε. From model (2.3), for all t > t1

dE1

dt
≤ c1β1

(
S ∗1 + ε

)
(Ia1 + I1) − (τ + µ + qe1) E1 − mE1,

dIa1

dt
= τE1 − (γa + σ + µ + qa1) Ia1 − mIa1,

dI1

dt
= σIa1 − (θ1 + γ + µ + qi1) I1,

dEw

dt
= mρE1 − τwEw,

dIaw

dt
= mρIa1 + τwEw − (σw + qaw + ε) Iaw,

dIw

dt
= σwIaw − qiwIw,

dE2

dt
≤ m(1 − ρ)E1 + c2β2

(
S ∗2 + ε

)
(Ia2 + I2) − (τ + µ + qe2) E2,

dIa2

dt
= m(1 − ρ)Ia1 + τE2 + εIaw − (γa + σ + µ + qa2) Ia2,

dI2

dt
= σIa2 − (θ2 + γ + µ + qi2) I2.

Consider the following auxiliary system:

dY(t)
dt

= (F − V + εM)Y(t), (3.2)

where Y(t) =
(
Ē1(t), Īa1(t), Ī1(t), Ēw(t), Īaw(t), Īw(t), Ēw(t), Īaw(t), Īw(t)

)T
. Since r(F − V + εM) < 0, all

eigenvalues of F − V + εM are with negative real parts. Hence, all non-negative solutions of system
(3.2) satisfy limt→∞ Y(t) = 0. By a standard comparison principle, we conclude that if R̄0 < 1, then all
non-negative solutions of model (2.3) satisfy limt→∞ Ei(t) = 0, limt→∞ Iai(t) = 0 and limt→∞ Ii(t) = 0,
for i = 1, 2,w. Moreover, from the equations of S 1(t), S q1(t), S w(t), S 2(t) and S q2(t) in model (2.3), we
can get

lim
t→∞

(S 1(t), S q1(t), S w(t), S 2(t), S q2(t)) = (S ∗1, S
∗
q1, S

∗
w, S

∗
2, S

∗
q2).
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Consequently, we deduce that disease-free equilibrium K0 of model (2.3) is globally attractive when
R̄0 < 1. This completes the proof. �

Remark 3.1. From the expression of R02 and R̄02, we can obtain

R̄02 = R02 +
c2β2τΛ1m(η2 + µ)(η1 + µ)(θ2 + γ + µ + qi2 + σ)
µ(η2 + µ + qs2)[mη1 + µ(η1 + µ + qs1 + m)]Υ

,

where Υ = (θ2 + γ + µ + qi2)(γa + σ + µ + qa2)(τ + µ + qe2). It is easy to see that, once the border is
reopened, the infection risk of people in patch-2 will increase, and the basic reproduction number of
patch-2 may change from less than 1 to more than 1. In other words, a reopen border may cause a
disease state from extinction to endemic in patch-2. Therefore, the extent of border reopening (value
of m) is crucial to the transmission of disease in patch-2. Once the value of m makes R̄02 greater than
1, patch-2 may need to consider closing the border again.

A simple calculation shows that if R̄01 < 1 and R̄02 > 1, then model (2.3) exists as the patch-1
disease-free and patch-2 endemic boundary equilibrium K2 = (S̃ 1, 0, 0, 0, S̃ q1, S̃ w, 0, 0, 0, S̃ 2, Ẽ2, Ĩa2, Ĩ2,

S̃ q2), where

S̃ 1 = S ∗1, S̃ q1 = S ∗q1, S̃ w = S ∗w, S̃ 2 =
S ∗2
R̄02

, S̃ q2 =
qs2S ∗2

R̄02(η2 + µ)
,

Ẽ2 =
µ(θ2 + γ + µ + qi2)(γa + σ + µ + qa2)(η2 + µ + qs2)(R̄02 − 1)

c2β2τ(η2 + µ)(θ2 + γ + µ + qi2 + σ)
,

Ĩa2 =
µ(θ2 + γ + µ + qi2)(η2 + µ + qs2)(R̄02 − 1)

c2β2τ(η2 + µ)(θ2 + γ + µ + qi2 + σ)
,

Ĩ2 =
µσ(η2 + µ + qs2)(R̄02 − 1)

c2β2τ(η2 + µ)(θ2 + γ + µ + qi2 + σ)
.

Theorem 3.4. Assume R̄01 < 1 and R̄02 > 1. Then the patch-1 disease-free and patch-2 endemic
boundary equilibrium K2 of model (2.3) is locally asymptotically stable.

Theorem 3.4 can be easily proved by calculating the characteristic equation of Jacobian matrix of
model (2.3) at boundary equilibrium K2, and then verified that all characteristic roots have the negative
real parts. We hence omit it here.

Remark 3.2. When R̄01 < 1, R̄02 > 1, then the disease will be endemic in patch-2, but extinct in patch-
1. That is to say, in model (2.3), the basic reproduction number R̄0 greater than 1 does not necessarily
lead to persistent disease epidemics throughout the system.

Theorem 3.5. If R̄01 > 1, then model (2.3) has a unique endemic equilibrium.

Theorem 3.5 can be easily proved by directly solving the equation of endemic equilibrium K3 =

Mathematical Biosciences and Engineering Volume 20, Issue 4, 7171–7192.



7183

(Ŝ 1, Ê1, Îa1, Î1, Ŝ q1, Ŝ w, Êw, Îaw, Îw, Ŝ 2, Ê2, Îa2, Î2, Ŝ q2) as follows

Λ1 − c1β1Ŝ 1(Îa1 + Î1) − (µ + qs1 + m)Ŝ 1 + η1Ŝ q1 = 0,
c1β1Ŝ 1(Îa1 + Î1) = (τ + µ + qe1 + m)Ê1,

τÊ1 = (γa + σ + µ + qa1 + m)Îa1,

σÎa1 = (θ1 + γ + µ + qi1)Î1, qs1Ŝ 1 = (η1 + µ)Ŝ q1,

ρŜ 1 = κŜ w, mρÊ1 = τwÊw,

mρÎa1 + τwÊw = (σw + qaw + ε)Îaw, σw Îaw = qiw Îw,

Λ2 + m(1 − ρ)Ŝ 1 + κŜ w − c2β2Ŝ 2(Îa2 + Î2) − (µ + qs2)Ŝ 2 + η2Ŝ q2 = 0,
m(1 − ρ)Ê1 + c2β2Ŝ 2(Îa2 + Î2) = (τ + µ + qe2)Ê2,

m(1 − ρ)Îa1 + τÊ2 + εÎaw = (γa + σ + µ + qa2)Îa2,

σÎa2 = (θ2 + γ + µ + qi2)Î2, qs2Ŝ 2 = (η2 + µ)Ŝ q2.

We here omit it.
Following the expression of R01 and R̄01, we obtain R̄01 = R01R̄

m
01, where

R̄m
01 =

γa + σ + qa1 + µ

γa + σ + qa1 + µ + m
×

τ + qe1 + µ

τ + qe1 + µ + m
×

µ(η1 + qs1 + µ)
mη1 + µ(η1 + qs1 + µ + m)

.

Remark 3.3. It can be seen from Theorem 3.5 that, if the border is reopened under the condition of
R01 > 1/R̄m

01, the disease will be prevalent in patch-1 and patch-2, and eventually become co-existence
endemic in the two patches. Therefore, in order to prevent this situation, it is better to allow people in
patch-1 to enter into patch-2 under R01 < 1/R̄m

01.

4. Numerical simulation

While several reliable vaccines have been developed for COVID-19, as far as we know, no vaccine
is 100% effective, that is to say that, there is still a risk of infection with novel coronavirus after
vaccination [25]. Moreover, there is no specific medicine for COVID-19. Hence, the relevant NPIs
policies on COVID-19 are still preferred approaches in all countries, such as keeping masks, keep
social distance, and the strict border control strategies among countries and so on. In this section,
we do some simulations to investigate the impact of relevant local (for one patch) NPIs policies on
COVID-19 transmission and control, as well as the impact of border control strategies between two
patches on local disease transmission. The possible values of parameters for model (2.1) and model
(2.3) are listed in Table 1, and we fix some basic model parameters as follows: Λ1 = 695, Λ2 = 449,
µ = 1/(78 ∗ 365), η1 = η2 = 1/14, τ = 1/4, γa = 1/14, σ = 0.327, γ = 1/15, θ1 = θ2 = 0.0152,
δ1 = δ2 = 0.02, γq1 = γq2 = 1/8, γh1 = γh2 = 1/15, d1 = 0.00012, d2 = 0.0001, κ = 1/14, τw = 1/3,
σw = 0.3.

The basic reproduction number R0 is a significant indicator to measure the risk of disease transmis-
sion and how to develop control measures. In order to provide a comprehensive understanding of the
influence of different local NPIs policies on COVID-19 transmission and control, the sensitivity anal-
ysis is conducted by obtaining the partial rank correlation coefficients (PRCCs) for various parameters
against R0. In the case of border close, we study the influence of the relevant local (for only one patch
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case) NPIs policies on the the basic reproduction number R0. Without loss of generality, here, we take
patch-2. Give two groups of different parameter ranges for patch-2 in Table 2. The Group I represents
the initial stage of the disease in which all kinds of control measures are not mature and the tracking
ability is limited. Group II implies not only to maintain social distance and wear masks, but also to
strengthen tracking for all carriers of the virus, and even increase the duration of quarantine for those
who are traced to be susceptible (the change of η).

Table 2. Definition and possible values of the basic parameter for model (2.3)

Param. Group I Group II
β2 (2.0 × 10−9, 3.5 × 10−9) (1.0 × 10−9, 2.0 × 10−9)

c2 (8,14) (5,8)

qs2 (0.0.001) (0,0.01)

qe2 (0,0.1) (0.2,0.9)

qa2 (0,0.1) (0.2,0.7)

qi2 (0,0.3) (0.4,1)

η2 (1/14,1/7) (1/28,1/14)

Figure 3 (a) and (b) illustrates the PRCCs of R02 with respect to parameters Group I and Group
II, respectively. Figure 3(a) implies that the basic reproduction number R02 is the most sensitive to
the forced quarantine rate of symptomatic infected, followed by the contact rate and transmission
rate, followed by the quarantine rates of exposed and subclinical infected individuals, and finally, the
quarantine rate and quarantine time of susceptible individuals. Figure 3 (b) indicates that the basic
reproduction number R02 is the most sensitive to the quarantine rate of exposed individuals, followed
by the contact rate and transmission rate, followed by the quarantine rate of subclinical infected indi-
viduals and the forced quarantine rate of symptomatic infected individuals, and finally, the quarantine
rate and quarantine time of susceptible individuals. Comparing Figure 3 (a) and (b), we find that the
sensitivity of the quarantine rate of exposed person and the forced quarantine rate of symptomatic in-
fected changes under different intensities of NPIs policies. At the same time, in either case, the contact
rate and transmission rate are always relative sensitive for the basic reproduction number R02. More-
over, the sensitivity of R02 with respect to the quarantine rate and lengthening the quarantine time of
susceptible individuals significantly changes under different intensities of NPIs policies. Biologically,
appropriate intensities of NPIs policies can be effective in controlling the risk of disease transmission.
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Figure 3. PRCCs of R02 with respect to model parameters.

Mathematical Biosciences and Engineering Volume 20, Issue 4, 7171–7192.



7185

Next, we investigate the degree of effect of the border open (the value of m corresponds to the degree
of border opening) between the two patches on the transmission and control of COVID-19. To this
end, we carry out numerical simulation analysis from two aspects. First, when the basic reproduction
number R02 of the patch-2 is less than 1, we open the border to study the influence of the open border
on the epidemic of patch-2. Second, in the case of open border, we study the effect of the degree of
the border open on the epidemic of patch-2 by adjusting the move rate m of people between the two
patches. For model (2.1), we set c1 = c2 = 10, β1 = 1.8034 × 10−9, β2 = 3.0 × 10−9, qs1 = 0.00002,
qs2 = 0.0004, qe1 = 0.1, qe2 = 0.2, qa1 = 0.15, qa2 = 0.1 and qi1 = qi2 = 0.3 and compute the
corresponding basic reproduction numbers R01 = 0.8624 and R02 = 0.7891. Thus, the disease goes
extinct in patch-1 and patch-2 if the border remains closed. In this case, we open the border between
the two patches, and mathematically, there are some new parameters introduced and the model (2.1)
of patch-2 changes to (2.3). Let m = 0.001, ρ = 0.8, ε = 0.05, qaw = 0.01 and qiw = 0.1, we can easily
find the basic reproduction number of patch-2 changing from less than 1(R02 = 0.7891 for model
(2.1)) to greater than 1(R̄02 = 1.9690 for model (2.3)), that is to say, the disease of patch-2 changes
from extinction to outbreak. Figure 4(a) gives an intuitive description of the numerical simulation
results, and the above implies the case of border close, the corresponding R02 = 0.7891 < 1 and the
disease is extinct. However, the bottom one indicates the R̄02 = 1.9690 > 1 when the border opens and
there is an outbreak of disease, and even a second outbreak two or three years later. Figure 4(b) shows
that the number of symptomatic infected in patch-2 increases with the increase of move rate m, and the
time to reach the peak also moves forward, which is to say that the adjustment of degree of the border
open has a significant influence on the epidemic of patch-2.
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Figure 4. The effect of move rate m.

Then, choose c1 = c2 = 10, β1 = 1.8034 × 10−9, β2 = 2.5 × 10−9, qs1 = 0.00002 qs2 = 0.00004,
qe1 = qe2 = 0.1, qa1 = 0.15, qa2 = 0.1, qi1 = qi2 = 0.3, m = 0.001, ε = 0.05, qaw = 0.01 and qiw = 0.1.
We conduct some numerical simulations to investigate the impact of border control measures and local
NPIs polices on local outbreaks. To this end, we first give one special initial value for model (2.3)
(1.3 × 107, 1040, 1020, 510, 5, 0, 0, 0, 1.9 × 107, 0, 0, 0, 0), that is to say patch-2 has no epidemic in the
initial state. Based on discussion above, we know the fact that the disease will cause an outbreak if the
border opens without strict enough NPIs polices. But, there is a fact that, if patch-2 has no epidemic in
the initial state, even if we open the border, as long as our border control measures are strict enough,
there will be no disease outbreak in patch-2. The blue line of Figure 5 (a) shows that if the border
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concentrated quarantine places can check out all of subclinical disease, namely the miss rate ε = 0,
and the ability to do give all people conventional entry with centralized quarantine, namely ρ = 1, the
number of daily new infectious equals to zero, the disease will not cause outbreak in patch-2. In fact,
once the carriers of the virus are detected, they will be quarantined and sent to hospitals immediately
at the border centralized quarantine places, and will not transfer the virus to the local population,
and then will not cause the disease outbreak. However, the red line of Figure 5 (a) shows that if
ε = 0 and ρ = 0.99, the disease will be prevalent in patch-2. Biologically, a small enough percentage
of unconventional arrivals will cause the disease epidemic. Then, we fix parameter ε = 0.05, and
discuss the effect of different degrees of conventional entry on the disease transmission, i.e., take
ρ = 0.1, 0.4, 0.7 and 1, respectively, we obtain the Figure 5 (b) and (c). These two figures imply that,
although ρ does not appear in the expression of the basic regeneration number R̄0, that is, the value of
ρ does not affect the final state (epidemic or extinction) of the disease in the two patches, the value of
ρ affects the number of infected in patch-2 in a short time. Specifically, the larger the value of ρ (the
stricter the control), the slower the growth of number of new infectious in patch-2.

Moreover, by means of numerical calculation, we also discuss the relationship among the basic
reproduction number R̄0, the proportion of conventional entry ρ and transmission rate β2. Because ρ
does not exist in the expression of the basic reproduction number R̄0 for model (2.3), here, we define
an instantaneous risk index of model (2.3) by ideas from Refs. [26–29] as follows,

R̄0(t) = max
{
R̄01(t), R̄02(t)

}
where

R̄01(t) =
c1β1S 1(t)τ (θ1 + γ + µ + qi1 + σ)

(θ1 + γ + µ + qi1) (γa + σ + µ + qa1 + m) (τ + µ + qe1 + m)
,

R̄02(t) =
c2β2S 2(t)τ (θ2 + γ + µ + qi2 + σ)

(θ2 + γ + µ + qi2) (γa + σ + µ + qa2) (τ + µ + qe2)
,

where S 1(t) and S 2(t) satisfies model (2.3). Numerically, we obtain the Figure 5(d) and Figure 5(e).
From the intuition of the these two graphs, we can see that as ρ decreases (the proportion of conven-
tional arrivals decreases), so does the transmission rate in order to reduce the instantaneous risk index
for patch-2. Biologically, after the opening of the border, in order to avoid increasing the transmis-
sion risk of local diseases, we should start from the following two aspects: first, strengthen the border
control measures (for example, isolate all the immigrants and ensure no missing detection); second,
strengthen the intensity of local NPIs polices (such as requiring local people to wear masks, maintain
social distance and increase tracking intensity).

Similarly, select the same initial values and parameter values as in Figure 5, where we conduct some
numerical simulations to investigate the impact of the rate of subclinical infections not detected at the
border quarantine on local disease transmission. The blue line of Figure 6 (a) shows that if the border
concentrated quarantine places can check out all subclinical diseases, i.e. ε = 0, and the ability to do
all entries as conventional, then entries are centralized quarantine, namely ρ = 1, the number of daily
new infectious equals to zero, the disease will not cause an outbreak in patch-2. However, the red line
of Figure 6(a) shows that if ε = 0.05 and ρ = 1, the disease will be prevalent in patch-2. Biologically,
a small enough percentage of virus carrier input to the local system will cause the disease epidemic in
patch-2. Fixed parameter ρ = 0.8, and ε was selected to be equal to 0.05, 0.1, 0.15 and 0.2, respectively.
The simulation results are shown in Figure 6(b) and Figure 6(c), indicating that when there are already
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COVID-19 cases in patch-2, the percentage of missing detection of subclinical infected at the border
quarantine places has a very weak influence on the number of infected individuals in patch-2.
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Figure 5. The effect of the rate of conventional entry individuals ρ.

Finally, it can be concluded from Figure 5 and Figure 6 that when there are no unquarantine cases
of COVID-19 in patch-2, strict quarantine control measures and accurate detection technology at entry
centralized quarantine places can prevent the epidemic in patch-2. However, once COVID-19 cases
are introduced in patch-2, the disease will be prevalent in patch-2. That is to say that the impact of
the intensity of border quarantine control on the transmission of the disease is not obvious when there
are already COVID-19 cases in patch-2. In this case, to achieve open borders without increasing the
risk of disease, it is necessary to strengthen the prevention and control measures in patch-2, such as
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increasing the proportion of masks worn, reducing social contact, closing public places, increasing the
rate of tracking and quarantine and mandatory quarantine for symptomatic patients. Therefore, we
draw the counter plots of R̄02 with m and parameters β2, c2, qe2, qa2 and qi2, respectively, as shown
in Figure 7. Specifically, it can be seen from Figure 7(a) that fixed β2 = 3.0 × 10−9, and the basic
reproduction number of patch-2 will soon become greater than a unit with the increase of m. Fixed
m = 0.00006, β2 can only be reduced from 3.0×10−9 to about 1.5×10−9, so that the basic reproduction
number is no higher than before the border opening (m = 0,R02 = 0.7891), c2 is similar to β2. Fixed
qe2 = 0.2, and the basic reproduction number of patch-2 will soon become greater than a unit with the
increase of m and fixed m = 0.00006, qe2 can only be increased from 0.2 to about 0.6, so that the basic
reproduction number is no higher than before the border opening (m = 0,R02 = 0.7891). The basic
reproduction number has a similar trend with m-qe2, m-qa2 and m-qi2. It is worth mentioning that Figure
7(e) shows that when m > 0.0006, only increasing the value of qi2 cannot reduce the value of the basic
reproduction number to less than 1. Hence, after the border is opened, patch-2 must simultaneously
increase the strength of various control measures to ensure that the local disease risk is not increased.
Therefore, during the epidemic period, there is a great risk for low-risk areas to open the border to
high-risk areas.
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Figure 6. The effect of the rate of subclinical infections that are not detected at the border
quarantine ε.
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Figure 7. The contour plot of the reproduction number R̄02 under four different scenarios.
The x-axes represent the relative frequency exchange rates β2, c2, qe2, qi2 and qi2, respectively,
and y-axes represent the relative frequency exchange rate m.

5. Discussion

In this paper, we propose a two-patch COVID-19 model with border control measures to quantita-
tively analyze whether liberalization can be implemented, and what measures should be taken to avoid
the recurrence of epidemic in local areas after liberalization. The dynamics of each patch in the cases
of border closure are described in terms of the basic reproduction number R0 j. When the basic repro-
duction number of patch-2 is less than 1, we consider the reopening of the border between patch-2 and
patch-1, and propose a two-patch model (2.3) with border control. In model (2.3), patch-2 allows peo-
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ple in patch-1 to enter, and central quarantine measures are implemented at the border of patch-2. We
calculate the basic reproduction number of model (2.3), and obtain the existence of various boundary
equilibria and the existence of coexistence equilibrium of model (2.3).

In numerical simulations, we focus on verifying the impact of various NPIs policies on local con-
tainment under border closure, and the influence of the degree of border reopening, the intensity of
border control and the possibility of missing detection of subclinical infected individuals at the border
quarantine on the transmission and control of the disease in patch-2 after the reopening of the border.
For the convenience of calculation and theoretical analysis, in this paper, we only consider the two-
patch model that moves in one direction from patch-1 to patch-2. Therefore, we are focusing on the
impact of imported people on the transmission of the disease in patch-2 after reopening the border.
Theoretical results show that after the outbreak of patch-2 is under control, reopening the border may
also lead to another outbreak of patch-2. In the numerical simulation, Figure 4 verifies this result. On
the other hand, Figure 5(a) and Figure 6(a) show that if the border is reopened after the unquaran-
tined virus carriers (E2(t), Ia2(t), I2(t)) in patch-2 are cleared, and there are no unconventional entry and
missed detection (the border control is very strict), no new infections will occur locally in patch-2, that
is, the disease will never be prevalent in patch-2. Numerical simulation results show that once infected
individuals flow into the unquarantine system in patch-2, the intensity of border control and the size
of the missed detection rate will not change the result of whether the disease is prevalent in patch-2
or not. Therefore, the control of the epidemic in patch-2 still depends on strengthening the local NPIs
policy of patch-2.
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