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Abstract: The high-accuracy attitude maneuvering problem for spacecraft systems is investigated. A
prescribed performance function and a shifting function are first employed to ensure the predefined-
time stability of attitude errors and eliminate the constraints on tracking errors at the incipient
stage. Subsequently, a novel predefined-time control scheme is developed by combining prescribed
performance control and backstepping control procedures. Radial basis function neural network and
minimum learning parameter techniques are introduced to model the function of lumped uncertainty
including inertial uncertainties, actuator faults and virtual control law derivatives. According to the
rigorous stability analysis, the preset tracking precision can be achieved within a predefined time
and the fixed-time boundedness of all closed-loop signals is established. Finally, the efficacy of the
propounded control scheme is manifested through numerical simulation results.
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1. Introduction

The attitude stabilization problem has attracted extensive attention in recent years for its significant
applications in spacecraft navigation, satellite formation flying and the recycling of space debris. To
achieve satisfactory tracking performance, system uncertainties and other nonlinear dynamics of the
controlled spacecraft should be handled effectively. A wide range of control techniques have been
proposed to address these issues, including adaptive control [1], output feedback control [2] and
robust control [3]. What is more, spacecraft systems commonly experience actuator constraints such
as saturation and degradation, which would severely undermine their practicality and reliability. To
deal with these actuator nonlinearity problems, several methods have been developed in [4–6].
However, the majority of above-mentioned strategies can only realize asymptotic stabilization of the
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system, implying that the convergence time of tracking errors is infinite and cannot be determined by
users, which is contrary to the requirement that some real-time space missions require a rapid
convergence.

To improve the convergence rate of the aforementioned strategies, the concept of finite-time
control was initially proposed in [7] and continuously applied to a variety of nonlinear
systems [8–10]. However, the convergence time cannot be predefined as desired, and its upper bound
is an infinite function of original states. This deficiency was addressed by developing a fixed-time
controller [11], which has the appealing merit that its time is independent of initial configurations.
Sliding mode methods are widely employed to realize control performance. In [12], a nonsingular
terminal sliding mode surface (NTSMS) is designed by using a piecewise continuous function. And
based on the NTSMS, an adaptive controller is proposed for spacecraft formation, allowing for
fixed-time coordinated attitude tracking. In [13], a robust fixed-time attitude controller is established
through the use of a faster fixed-time sliding mode surface and a fixed-time observer is designed for
lumped uncertainty. In addition to sliding mode control, a backstepping technique can also be used in
the construction of fixed-time controllers. In [14], a fixed-time backstepping controller is constructed
by virtue of a command filter for a class of nonstrict-feedback nonlinear systems, and the fuzzy logic
system is introduced to approximate uncertainties, input saturation and dead zones. In [15], a
fixed-time control protocol is proposed for hyper sonic vehicles by using a tracking differentiator for
the calculation of the derivatives of virtual control law. In [16], a command filter based backstepping
control scheme is introduced to avoid the computational complexity of the derivative of virtual control
law in conventional backstepping schemes. In [17], the backstepping control technique is combined
with a dynamic surface method to light the computational burden. Notwithstanding, no explicit
functions between tunable parameters and settling time can be obtained via the above-mentioned
methods.

Recently, the stabilization of systems with predefined-time convergence has become a hotpot and
many meaningful studies have been conducted on this topic because of its enhanced property as
compared to fixed/finite-time control schemes when it comes to rendering states into the origin with
the settling time that is explicitly equal to a user-tuning parameter. The sliding mode control and
backstepping are two of the most commonly used methods for designing predefined-time controllers,
and some representative work of predefined-time control of spacecraft systems has been reported
in [18–21] . However, the estimate of the convergence time bound in these works is somewhat
conservative, resulting in the actual settling time being several times shorter than the estimate.

Another important control goal of designed controllers is to achieve desirable transient performance.
To this end, prescribed performance control (PPC) protocol was first developed in [22] and heavily
implemented in spacecraft systems [23–25] in recent years. In [25], combining PPC and NTSMS,
a fixed-time sliding mode attitude controller is designed for flexible spacecraft systems. Unlike the
conventional exponential convergence prescribed performance function (PPF), a novel predefined-time
PPF is designed in [26], and it has the more appealing property that the convergence time is prescribed
by users. Chen et al. [27] utilized a polynomial function to design the PPF with predefined time
convergence; it can mitigate the chattering problem caused by an exponential function. Bu et al. [28]
constructed a finite-time prescribed performance controller for waverider vehicles, and no fuzzy/neural
systems are required to estimate the unknown dynamics. In [29] and [30], two brand-new types of
finite-time PPFs are explored for the purpose of minimizing the overshoot and overcoming the fragility
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problem caused by actuator saturation. Notwithstanding, the condition that the PPFs should be larger
than the tracking errors at the incipient stage needs to be satisfied for the execution of most of the above
PPF-based controllers.

To the best of the authors’ knowledge, developing a predefined-time controller for spacecraft
systems with inertia perturbation, space-environment disturbances and actuator faults is an open topic.
Inspired by the existing work, we have designed a radial basis function neural network
(RBFNN)-based controller with prescribed performance and appointed-time convergence which
ensures that the tracking error will converge to a prescribed small region in the vicinity of the origin
within the predefined time. The main contributions can be summarized as follows.

1) By employing the proposed PPC control scheme, both the convergence time and tracking accuracy
can be arbitrarily predefined by users. The designed controller presents great robustness against
input saturation, actuator misalignment and unexpected disturbance.

2) By applying a novel shifting function to conventional PPC, we release the constraints for the
initial tracking errors to be smaller than the initial PPF values. Additionally, the shifting function
also allows for an improved handling of input saturation.

3) Following the representative backstepping design methodology, we propose an attitude
controller with prescribed performance and appointed-time convergence for spacecraft systems.
The singularity problem associated with virtual control law is avoided via the design of a
piecewise continuous function.

4) RBFNN and minimum learning parameter (MLP) techniques are combined to estimate the system
uncertainty and the derivative of virtual control law. Moreover, the fixed-time convergence of the
learning parameter is ensured by constructing the adaptive law.

2. Preliminaries and problem formulation

2.1. Lemmas

Lemma 1. [11] Considering a nonlinear system

ẋ = f (x, t) (2.1)

suppose that there exists a positive-definite Lyapunov function V and scalars γ1 > 0, γ2 > 0, p > 1,
0 < q < 1 and ∆ > 0 such that the following property holds:

V̇ ≤ −γ1V p − γ2Vq + ∆ (2.2)

Then, the equilibrium of (2.1) is practically fixed-time stable with the settling time T f ≤
1

γ1κ(1−p) +
1

γ2κ(q−1) , where 0 < κ < 1. The solution of (2.1) will converge to a residual set that is given asx | V ≤ min


(
∆

γ1(1 − κ)

) 1
p

,

(
∆

γ2(1 − κ)

) 1
q

 (2.3)

Lemma 2. [31] For x, y ∈ R, the following relationship holds:

|x|m|y|n ≤
m

m + n
c|x|m+n +

n
m + n

c−
m
n |y|m+n (2.4)

where m > 0, n > 0 and c > 0.
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Lemma 3. [32] For y > x and l > 0, we have

x (y − x)l
≤

l
1 + l

(
y1+l − x1+l

)
(2.5)

Lemma 4. [33] For the variables x1, x2, . . . xn > 0, 0 < y1 ≤ 1 and y2 > 1, the following inequalities
hold:

n∑
i=1

xy1
i ≥

 n∑
i=1

xi

y1

(2.6)

n∑
i=1

xy2
i ≥ n1−y2

 n∑
i=1

xi

y2

(2.7)

Notation 1. In this paper, sigα (β) =
[
|ξ1|

αsgn(β1), |β2|
αsgn(β2), . . . , |βn|

αsgn(βn)
]T , where

β =
[
β1, β2, . . . , βn

]T ; sgn(·) denotes the sign function. The definition of the skew-symmetric matrix is
given by β× =

[
0,−β3, β2; β3, 0,−β1;−β2, β1, 0

]
, when n = 3.

2.2. Problem statement

The kinematic equation and dynamics of a spacecraft can be presented as[
q̇0

q̇v

]
=

[
−1

2 qT
v

1
2

(
q×v + q0I3

) ]
ω (2.8)

Jω̇ + ω×Jω = τ + d (2.9)

where q =
[
q0, q1, q2, q3

]T
=

[
q0, qv

]T
∈ R4 denotes the unit quaternion vector which is used to

parameterize the orientation of spacecraft satisfying the identity q2
0 + qT

v qv = 1; ω ∈ R3 represents
the angular velocity of spacecraft; d ∈ R3 denotes the unknown environment disturbance torque;
J = J0 + ∆J ∈ R3×3 denotes the inertia matrix of the spacecraft system, with J0 and ∆J being the
nominal and perturbed components, respectively; τ ∈ R3 is the control torque acting on spacecraft.

The relationship between the actual control torque and the command input can be given by [34]:

τ = Esat (uc) + σ (2.10)

where uc = [uc1, uc2, uc3]T ∈ R3 is the command torque generated by controllers;
E = diag {e1(t), e2(t), e3(t)} ∈ R3×3 represents the failure coefficient matrix indicating the effectiveness
condition of the actuator with 0 ≤ ei (t) ≤ 1; σ = [σ1, σ2, σ3]T ∈ R3 is the bias faults vector. The
saturation characteristic of an actuator [35] can be formulated as sat(uci) = sgn(uci) · min{|uci| , umaxi},
where umaxi denotes the maximum permissible torque generated by actuators.

Define qd =
[
qd0, qd1, qd2, qd3

]T
=

[
qd0, qdv

]T
∈ R4 as the expected attitude vector. The attitude

error described in unit quaternion format [36] is given by qe =
[
qe0, qe1, qe2, qe3

]T
=

[
qe0, qev

]T , qev =

qd0qv − q×dvqv − q0qdv, qe0 = q×dvqv + q0qd0 and q2
e0 + qT

evqev = 1. Considering the rest-to-rest attitude
maneuvering case, we have that ωe = ω in this paper.

The attitude error dynamics of the spacecraft systems is given by[
q̇e0

q̇ev

]
=

[
−1

2 qT
ev

1
2

(
q×ev + qe0I3

) ]
ωe (2.11)
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ω̇e = J−1
0 (M + τ + N + d) (2.12)

where M = −ωe
×J0ωe and N = −∆Jω̇e − ωe

×∆Jωe.
Define x1 = qev and x2 = q̇ev; (2.11) and (2.12) can be reconstructed as{

ẋ1 = x2

ẋ2 = G +Π + d2 + F(qev)J0
−1uc

(2.13)

where G = Ḟ(qev)ωe + F(qev)J0
−1 M, Π = F(qev)J0

−1N + F(qev)J0
−1 (E − I3) uc + F(qev)J0

−1σ +
F(qev)J0

−1 (E (sat (uc) − uc)), d2 = F(qev)J0
−1d and F

(
qev

)
= 1

2

(
q×ev + qe0I3

)
.

Assumption 1. The perturbed part of the inertia matrix, the external disturbance and the faulty torque
are unknown but bounded. The lumped disturbance is bounded and satisfies ∥d2∥ ≤ d̄, where d̄ is a
positive constant.

The primary objective is to design an adaptive controller for spacecraft systems in the presence of
actuator fault so as to achieve the prespecified tracking accuracy within a predefined time and satisfy
the prescribed performance boundaries throughout the entire process, as well as to ensure the fixed-
time boundedness of other closed-loop signals. Both the settling time and tracking precision can be
defined according to the specific requirements of users, irrespective of the initial conditions.

3. Prescribed performance control

To guarantee that attitude trajectory of the spacecraft remains within the prescribed boundaries with
desirable transient and static performance, the following constraints are constructed first:

−δiρi(t) < qevi(t) < δiρi(t) (3.1)

where δi, δi > 0, (i = 1, 2, 3) are two adjustable parameters and ρi(t) is the PPF.

3.1. Predefined-time PPF

In this paper, we propose a novel predefined-time PPF as

ρi(t) =

 (ρi0 − ρi∞) cos
(
πt

2Tc

)ai

+ ρi∞ , t < Tc

ρi∞ , t ≥ Tc

(3.2)

where ρi0 > ρi∞ > 0 are constants, Tc > 0 is the predefined maximum allowable convergence time
that can be arbitrarily defined by users and ai > 0 represents a preset constant that can adjust the
convergence rate. ρi(t) is a monotonically decreasing smooth function that can converge from ρi0 to
ρi∞ within Tc.

3.2. Shifting function

The traditional PPC method requires that the initial tracking errors satisfy the condition (3.1). Based
on this constraint, the values of δi, δi and even ρi need to be reassigned when the original tracking error
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exceeds the initial value of the PPF, which is challenging considering that the initial configurations
are unavailable. To overcome this weakness, we introduce a shifting function to map the value of the
initial tracking error into the interval

[
−δiρi0, δiρi0

]
as

ηi =
2ki

π
arctan(qevi) (3.3)

where ki =

δiρi0, qevi ≥ 0,
δiρi0, qevi < 0.

. Note that we set δi = δi = 1 in the following paper for the simplicity of

analysis.

Remark 1. From (3.3), it can be seen that lim
qevi→−∞

ηi = −ρi0, lim
qevi→+∞

ηi = ρi0, which indicates that,

regardless of the largeness of the attitude errors, they will not violate the prescribed boundary
requirements defined in (3.1) at the outset. Moreover, when lim

t→Tc
ηi = 0, we can obtain lim

t→Tc
qevi = 0,

meaning that the predefined-time attitude maneuvering can be achieved by rendering ηi to zero within
a prescribed interval.

Since ηi satisfies the boundary conditions, we have

−ρi(t) < ηi < ρi(t) (3.4)

From (3.3), the prescribed boundary for the attitude error qevi is shifted into

−hi(t) < qevi < hi(t) (3.5)

where hi(t) = tan
(
π

2ki
ρi(t)

)
, (i = 1, 2, 3). hi(t) is a monotonically decreasing function with lim

t→Tc
hi =

tan
(
π

2ki
ρi(∞)

)
.

3.3. Transformation function

To convert the constraint on qevi into its unconstrained counterpart, the transformation function is
defined as

T (εi) =
2
π

arctan(εi) (3.6)

Obviously, T (εi) is a monotonically increasing function with the following properties: (1)
−1 < T (εi) < 1; (2) lim

εi→+∞
T (εi) = 1; (3) lim

εi→−∞
T (εi) = −1; (4) T (0) = 0.

In what follows, we define
ηi = ρiT (εi) (3.7)

Therefore, the transformed error εi is introduced as

εi = T−1 (ξi) = tan
(
π

2
ξi

)
(3.8)

where ξi =
ηi
ρi

is the normalized error.
During the period of actuator saturation, the attitude errors may grow to exceed the prescribed

envelopes, which can result in the transformed error εi approaching infinity. Consequently, the actuator
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will be kept saturated, compromising the stability and reliability of the system. To this end, we redesign
the coefficient of our proposed shifting function as follows:

ki =

ρi, |sat(uci) − uci| > 0
si, |sat(uci) − uci| = 0

(3.9)

where 0 < si <
π
2 is a positive constant.

Remark 2. According to the properties of T (εi), it is obvious that the desired performance for the
shifted attitude errors ηi prescribed in (3.4) can be achieved when the boundedness of εi is ensured. In
this respect, the problem of (3.4) is converted into its equivalent of stabilizing the transformed state εi

by designing the controller.

Remark 3. Unlike the previous finite-time PPFs proposed in [26–28, 37], the settling of ρi0 is
independent of qevi(0). With the assistance of the shifting function provided in (3.3), the PPF defined
in (3.2) does not require prior knowledge of initial errors to design the parameters. The removal of
restrictions on initial conditions simplifies the design process and contributes to the reliability and
practicality of the proposed PPC scheme.

Remark 4. When there is input saturation, the shifting function ensures that the shifted error ηi remains
within the appointed boundary

[
−ρi, ρi

]
. With a smaller ηi, the value of the normalized error ξi will

be reduced, resulting in a smaller transformed error εi and a decline in the control input. When the
actuator exits its saturation zone, the coefficient of the shifting function changes to si. Compared with
the existing strategies [37–39], this method can reduce the control output by minimizing the absolute
value of the normalized error ηi. (The proof can be seen in Appendix.)

4. Adaptive controller design and stability analysis

4.1. Controller design

To facilitate the implementation of backstepping methods, we can definez1 = x1

z2 = x2 − α2
(4.1)

From (2.13), the time derivative of z1 is

ż1 = x2 (4.2)

To remove the initial value constraints, we impose the following shifted function on z1 and obtain
the shifted error signals:

η1i =
2k1i

π
arctan (z1i) (4.3)

Define the first normalized tracking error ξ1i =
η1i
ρ1i

, and using the transformation function defined in
(3.6), we can obtain

ε1i = tan
(
π

2
ξ1i

)
(4.4)
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The time derivative of ε1i is

ε̇1i =
∂ε1i

∂ξ1i
· ξ̇1i =

π

2
sec

(
π

2
ξ1i

)2
·
η̇1iρ1i − η1iρ̇1i

ρ2
1i

=
π

2ρ1i
sec

(
π

2
ξ1i

)2
·

 2k1i

π
√

1 + z2
1i

ż1i −
η1iρ̇1i

ρ1i


= ψ1i (g1ix2i − f1i)

(4.5)

where ψ1i =
π

2ρ1i
sec

(
π
2ξ1i

)2
, g1i =

2k1i

π
√

1+z2
1i

and f1i =
η1iρ̇1
ρ1i

.

We can rewrite ε1i in vector form as

ε̇1 = ψ1
(
g1x2 − f 1

)
(4.6)

where ψ1 = diag {ψ1i}, g1 = diag
{
g1i

}
and f 1 =

[
f11, f12, f13

]T .
Then, the virtual control law α2 = [α21, α22, α23]T can be established as

α2 = −(g1)−1(ψ1)−1 (
k1sigp(ε1) + k2ϕ1 − ψ1 f 1

)
(4.7)

where k1 > 0, k2 > 0, p > 1 and ϕ1 = [ϕ11, ϕ12, ϕ13]T is a piecewise continuous function designed as

ϕ1i =

sigq(ε1i), if |ε1i| > µ

l1sig(ε1i)(µ2)
q−1

2 + l2sig2(ε1i)(µ2)
q
2−1 + l3sig2(ε1i)(µ2)

q−3
2 , if |ε1i| ≤ µ

(4.8)

where 0 < q < 1, l1 = 0.5q2 − 2.5q + 3, l2 = −q2 + 4q − 3, l3 = 0.5q2 − 1.5q + 1 and µ is a tiny positive
constant.

Remark 5. If α2 is designed as α2 = −(g1)−1(ψ1)−1 (
k1sigp(ε1) + k2sigq(ε1) − ψ1 f 1

)
, then its

derivative will be α̇2 = −(g1)−1(ψ1)−1
(
k1ε̇1sigp−1(ε1) + k2ε̇1sigq−1(ε1) − ψ1 ḟ 1

)
. The singularity

problem may happen in α̇2 because of 0 < q < 1 when ε1i = 0 and ε̇1i , 0. To avoid the problem, we
design the above piecewise function at the switching point µ. The values of l1, l2 and l3 are selected to
ensure the continuity of ϕ1i and its first and second derivative.

The candidate of the first Lyapunov function is defined as

V1 =
1
2
εT

1 ε1 (4.9)

Differentiating V1 yields
V̇1 = ε

T
1 ε̇1

= εT
1ψ1

[
g1 (z2 + α2) − f 1

] (4.10)

Substituting (4.7) into (4.10), when |ε1i| > µ, we have

V̇1 = ε
T
1ψ1

[
g1

(
z2 − (g1)−1(ψ1)−1 (

k1sigp(ε1) + k2sigq(ε1) − ψ1 f 1
))
− f 1

]
= εT

1ψ1 g1 z2 − k1

3∑
i=1

|ε1i|
p+1
− k2

3∑
i=1

|ε1i|
q+1

(4.11)
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When |ε1i| ≤ µ, we can obtain

V̇1 =ε
T
1ψ1 g1 z2 − k1

3∑
i=1

|ε1i|
p+1
− k2

l1(µ2)
q−1

2

3∑
i=1

|ε1i|
2 + l2(µ2)

q
2−1

3∑
i=1

|ε1i|
3 + l3(µ2)

q−3
2

3∑
i=1

|ε1i|
4


≤εT

1ψ1 g1 z2 − k1

3∑
i=1

|ε1i|
p+1
− k2

3∑
i=1

|ε1i|
q+1 + k2

 3∑
i=1

|ε1i|
q+1 + l1(µ2)

q−1
2

3∑
i=1

|ε1i|
2 + l2(µ2)

q
2−1

3∑
i=1

|ε1i|
3

+ l3(µ2)
q−3

2

3∑
i=1

|ε1i|
4


≤εT

1ψ1 g1 z2 − k1

3∑
i=1

|ε1i|
p+1
− k2

3∑
i=1

|ε1i|
q+1 + 3k2

(
(µ2)

q+1
2 + (l1 + l2 + l3) (µ2)

q+1
2

)
≤εT

1ψ1 g1 z2 − k1

3∑
i=1

|ε1i|
p+1
− k2

3∑
i=1

|ε1i|
q+1 + 6k2(µ2)

q+1
2

(4.12)
Note that, when |ε1i| ≤ µ, there is only a bounded term 6k2(µ2)

q+1
2 added to the structure of (4.11).

Taking the derivative of z2, we can obtain

ż2 = G +Π + d2 + F(qev)J0
−1uc − α̇2 (4.13)

Similarly, we can relax the feasibility condition by introducing the shifting function to z2 and obtain
the shifted error signals:

η2i =
2k2i

π
arctan (z2i) (4.14)

Define the second normalized tracking error ξ2i =
η2i
ρ2i

, and the ith component of the transformed
error vector can be defined as

ε2i = tan
(
π

2
ξ2i

)
(4.15)

The time derivative of ε2i is

ε̇2i =
∂ε2i

∂ξ2i
· ξ̇2i =

π

2
sec

(
π

2
ξ2i

)2
·
η̇2iρ2i − η2iρ̇2i

ρ2
2i

=
π

2ρ2i
sec

(
π

2
ξ2i

)2
·

 2k2i

π
√

1 + z2
2i

ż2i −
η2iρ̇2i

ρ2i


= ψ2i (g2iż2i − f2i)

(4.16)

where ψ2i =
π

2ρ2i
sec

(
π
2ξ2i

)2
, g2i =

2k2i

π
√

1+z2
2i

and f2i =
η2iρ̇2i
ρ2i

.

The vector form can be rewritten as

ε̇2 = ψ2
(
g2 ż2 − f 2

)
(4.17)

where ψ2 = diag {ψ2i}, g2 = diag {g2i} and f 2 =
[
f21, f22, f23

]T .
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Substituting (4.13) into (4.17), we have

ε̇2 = ψ2

(
g2

(
G +Π + d2 + F(qev)J0

−1uc − α̇2

)
− f 2

)
(4.18)

Choose the second Lyapunov function candidate as

V2 =
1
2
εT

2 ε2 (4.19)

Differentiating V2 with respect of time yields

V̇2 =ε
T
2ψ2

[
g2

(
G +Π + d2 + F(qev)J0

−1uc − α̇2

)
− f 2

]
=εT

2 D + εT
2ψ2

[
g2

(
G + d2 + F(qev)J0

−1uc

)
− f 2

] (4.20)

where D = ψ2 g2(Π − α̇2) = [D1,D2,D3]T is the lumped disturbance which can be approximated with
the aid of the following RBFNN:

D(Z) =WT S(Z) + ζ (4.21)

where W ∈ Rn×3 denotes the optimal weight matrix, n represents the number of network neurons,
Z = [qev,ωe, ε1]T is the input vector, ζ ∈ R3 is the approximation error vector with ∥ζ∥ ≤ ζm and
S(Z) = [S 1(Z),S 2(Z),...,S n(Z)]T

n∑
i=1

Si(Z)
∈ Rn is the basis function vector with

S i = exp
(
−

(Z − βi)T (Z − βi)
H2

)
, i = 1, 2, ...n (4.22)

where βi and H are the receptive field center and width of the neural cell, respectively.
By defining θ = ∥W∥2, we use the MLP technique. In this way, we regulate the norm of the ideal

weight matrix rather than its elements and only one learning parameter is required to be updated for
the execution of the neural network. Therefore, the computational burden and the complexity of the
propounded strategy can be significantly reduced.

The RBFNN-based adaptive controller can be designed as

uc = −J0F(qev)
−1(g2)−1(ψ2)−1 (

r1sigp(ε2) + r2sigq(ε2) + r3ε2 + ψ2 g2G

−ψ2 f 2 +
ε2

∥ε2∥
2ε

T
1ψ1 g1 z2 +

θ̂ε2

2h2ST (Z)S(Z)

) (4.23)

where r1 > 0, r2 > 0, r3 > R + 1
2 and R = ∥ψ2∥

2∥g2∥
2. The adaptive law of the learning parameter θ is

developed as

˙̂θ = −w1θ̂ − w2θ̂
q +

λ∥ε2∥
2

2h2ST (Z)S(Z)
(4.24)

where w1 > 0, w2 > 0, λ > 0 and h > 0.
Substituting (4.23) into (4.20), we have

V̇2 ≤ ε
T
2ψ2 g2d2 + ε

T
2 D − r1

3∑
i=1

|ε2i|
p+1
− r2

3∑
i=1

|ε2i|
q+1
− r3∥ε2∥

2 − εT
1ψ1 g1 z2 −

θ̂∥ε2∥
2

2h2ST (Z)S(Z)
(4.25)
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With the help of Young’s inequality and the property that 0 ≤ ST S ≤ 1, we have

εT
2ψ2 g2d2 ≤

∥ε2∥
2∥ψ2∥

2∥g2∥
2

2
+
∥d2∥

2

2
≤

R∥ε2∥
2

2
+

d̄2

2
(4.26)

εT
2 D = εT

2 WT S(Z) + εT
2 ζ

≤ ∥ε2∥∥W∥∥S(Z)∥ +
3∑

i=1

ε2iζi

≤
θ∥ε2∥

2ST (Z)S(Z)
2h2 +

h2

2
+
∥ε2∥

2

2
+

3ζ2
m

2

≤
θ∥ε2∥

2

2h2ST (Z)S(Z)
+

h2

2
+
∥ε2∥

2

2
+

3ζ2
m

2

(4.27)

4.2. Stability analysis

Theorem 1. Considering the spacecraft system (2.13), the controller (4.23) and the adaptive law
(4.24), one can ensure the practical fixed-time boundedness of all of the closed-loop signals. Besides,
for any constants ν and T , if the PPF (3.2) parameters are respectively set as ρ1i∞ =

2s1i
π

arctan (ν) and
Tc = T, the tracking error will converge into the predefined region |qevi| ≤ ν within the predefined time
T , irrespective of the initial conditions.

Proof. Choose the third Lyapunov function for the whole system:

V3 = V1 + V2 +
1

2λ
θ̃2 (4.28)

where θ̃ = θ − θ̂.
Differentiating V3 yields

V̇3 = V̇1 + V̇2 −
1
λ
θ̃ ˙̂θ (4.29)

Together with (4.11), (4.12), (4.24), (4.25), (4.26) and (4.27), one has

V̇3 ≤ε
T
1ψ1 g1 z2 − k1

3∑
i=1

|ε1i|
p+1
− k2

3∑
i=1

|ε1i|
q+1 + 6k2(µ2)

q+1
2 +

R∥ε2∥
2

2
+

d̄2

2
+

θ∥ε2∥
2

2h2ST (Z)S(Z)
+

h2

2

+
∥ε2∥

2

2
+

3ζ2
m

2
− r1

3∑
i=1

|ε2i|
p+1
− r2

3∑
i=1

|ε2i|
q+1
− r3∥ε2∥

2 − εT
1ψ1 g1 z2 −

θ̂∥ε2∥
2

2h2ST (Z)S(Z)

−
θ̃

λ

(
−w1θ̂ − w2θ̂

q +
λ∥ε2∥

2

2h2ST (Z)S(Z)

)
≤ − k1

3∑
i=1

|ε1i|
p+1
− k2

3∑
i=1

|ε1i|
q+1
− r1

3∑
i=1

|ε2i|
p+1
− r2

3∑
i=1

|ε2i|
q+1 +

w1

λ
θ̃θ̂ +

w2

λ
θ̃θ̂q + 6k2(µ2)

q+1
2 +

d̄2

2

+
h2

2
+

3ζ2
m

2
(4.30)
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With the help of Young’s inequality, the following inequality is true.

w1

λ
θ̃θ̂ =

w1

λ
θ̃(θ − θ̃) = −

w1

λ
θ̃2 +

w1

λ
θ̃θ ≤ −

w1

2λ
θ̃2 +

w1

2λ
θ2 (4.31)

By invoking (4.31), (4.30) can be rewritten as

V̇3 ≤ −k1

3∑
i=1

|ε1i|
p+1
− k2

3∑
i=1

|ε1i|
q+1
− r1

3∑
i=1

|ε2i|
p+1
− r2

3∑
i=1

|ε2i|
q+1
−

w1

2λ
θ̃2 +

w1

2λ
θ2 +

w2

λ
θ̃θ̂q +∆1 (4.32)

where ∆1 = 6k2(µ2)
q+1

2 + d̄2

2 +
h2

2 +
3ζ2

m
2 .

Applying Lemma 2 and selecting x = w1
2λ θ̃

2, y = 1, m = 1+p
2 , n = 1−p

2 and c = 2
p+1 yields

(w1

2λ
θ̃2

) p+1
2
≤

w1

2λ
θ̃2 +

1 − p
2

(
2

p + 1

)− 1+p
1−p

(4.33)

In view of Lemma 3, one has

w2

λ
θ̃θ̂q =

w2

λ
θ̃
(
θ − θ̃

)q
≤

w2q
λ(1 + q)

(
θq+1 − θ̃q+1

)
(4.34)

Hence, substituting (4.33) and (4.34) into (4.32), we can obtain

V̇3 ≤ − k1

3∑
i=1

|ε1i|
p+1
− k2

3∑
i=1

|ε1i|
q+1
− r1

3∑
i=1

|ε2i|
p+1
− r2

3∑
i=1

|ε2i|
q+1
−

(w1

2λ
θ̃2

) p+1
2
−

w2q
λ(1 + q)

θ̃q+1

+
w1

2λ
θ2 +

1 − p
2

(
2

p + 1

)− 1+p
1−p

+
w2q

λ(1 + q)
θq+1 + ∆1

≤ −a1

(
εT

1 ε1

2

) p+1
2

− b1

(
εT

1 ε1

2

) q+1
2

− a2

(
εT

2 ε2

2

) p+1
2

− b2

(
εT

2 ε2

2

) q+1
2

− a3

(
θ̃2

2λ

) p+1
2

− b3

(
θ̃2

2λ

) q+1
2

+ ∆

≤ −γ1V
p+1

2
3 − γ2V

q+1
2

3 + ∆

(4.35)

where a1 = k12
p+1

2 , b1 = k12
q+1

2 3
1−q

2 , a2 = r12
p+1

2 , b2 = r22
q+1

2 3
1−q

2 , a3 = w
p+1

2
1 , b3 =

2
q+1

2 w2qλ
q+1

2

λ(1+q) , γ1 =

min {a1, a2, a3}, γ2 = min
{
3

1−q
2 b1, 3

1−q
2 b2, 3

1−q
2 b3

}
and ∆ = w1

2λθ
2 +

1−p
2

(
2

p+1

)− 1+p
1−p
+

w2q
λ(1+q)θ

q+1 + ∆1.

(1) In light of Lemma 1, V3 will converge to the region Ωv = min
{(

∆
γ1(1−κ)

) 2
p+1
,
(
∆

γ2(1−κ)

) 2
q+1

}
within

the fixed time T f . The settling time is bounded by T f ≤ Tmax =
2

γ1κ(1−p) +
2

γ2κ(q−1) .
Apparently, ε1i and ε2i will converge to the following regions, respectively:

Ωε1i = min


√

2
(
∆

γ1(1 − κ)

) 2
p+1

,

√
2
(
∆

γ2(1 − κ)

) 2
q+1

 (4.36)

Ωε2i = min


√

2
(
∆

γ1(1 − κ)

) 2
p+1

,

√
2
(
∆

γ2(1 − κ)

) 2
q+1

 (4.37)
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Based on (4.4) and (4.15), we can further obtain the residual sets that η1i and η2i will respectively
converge to Ωη1i and Ωη2i within T f .

Ωη1i =

{
η1i | |η1i| ≤ ρ1i

(
T f

) 2
π

arctan
(
Ωε1i

)}
(4.38)

Ωη2i =

{
η2i | |η2i| ≤ ρ2i

(
T f

) 2
π

arctan
(
Ωε2i

)}
(4.39)

(2) In view of (3.4) and the property of ρ1i(t), the inequality −ρ1i(∞) < η1i < ρ1i(∞) is satisfied
when t ≥ T . By designing ρ1i(∞) = ρ1i∞ =

2s1i
π

arctan (ν) and Tc = T , we have

|qevi| ≤ ν (4.40)

Therefore, the attitude error can converge to a prescribed region Ω = {qevi | |qevi| ≤ ν} within the
predefined time T . The flowchart that manifests the process for generating the proposed control action
is shown in Figure 1 .

Remark 6. The tracking accuracy and convergence time can be explicitly and arbitrarily settled in
advance, irrespective of the initial conditions, by tuning ν and T respectively. A smaller ν and T
contribute to improved precision, as well as a shorter convergence period. However, it is noted that the
setting of the parameters ν and T is exactly based on a trade-off between ambitious aims and allowable
practices.

Remark 7. The control parameters p, q, r1, r2, k1 and k2 can be selected by trial-and-error methods to
ensure that all other closed-loop signals are fixed-time bounded. The setting of these parameters does
not necessarily require taking the values of ν and T into consideration.

5. Simulation

The nominal component of the inertia matrix is defined as

J0 =


20 1.2 0.9
1.2 17 1.4
0.9 1.4 15

 kg ·m2.

The uncertain part of the inertia matrix is

∆J =


4.2 0.9 0.6
0.9 −7 2.5
0.6 2.5 5.89

 kg ·m2.

The external disturbance is set to be

d =


−4 + 4cos(0.2t) − cos(0.4t)
3 + 3sin(0.2t) − 2cos(0.4t)
−3 + 4sin(0.2t) − 3cos(0.4t)

 × 10−2N ·m.

Mathematical Biosciences and Engineering Volume 20, Issue 3, 5921–5948.



5934

Start

obtain boundary information

perform the shifting function on x1

construct the transformed error ε1

establish the virtual control law α2

perform the shifting function on x2 − α2

construct the transformed error ε2

estimate the unknown dynamics

establish the control law

spacecraft system

Figure 1. Flowchart of the proposed control scheme.
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The actuator misalignment takes the form of

e1 =

{
1
0.6

if t ≤ 2
if t > 2

e2 =

{
1
0.4

if t ≤ 4
if t > 4

e3 =

{
1
0.5

if t ≤ 5
if t > 5

σ1 =

{
0
−0.2

if t ≤ 3
if t > 3

σ2 =

{
0
0.1

if t ≤ 4
if t > 4

σ3 =

{
0
−0.1

if t ≤ 6
if t > 6

The desired attitude is qd = [1, 0, 0, 0]T . We consider two groups of different initial values to
perform the simulation. Case 1: q (0) = [0.6698,−0.5158, 0.4716, 0.2508]T ; Case 2:
q (0) = [0.1737,−0.2632, 0.7896,−0.5264]T . The maximum control torque is considered to be
umaxi = 7.5 N · m.

For the virtual control law (4.7) and the actual control law (4.23), the parameters are selected as
k1 = 1, k2 = 2, p = 1.2, q = 0.8, r1 = 10, r2 = 5 and µ = 0.01. The parameters of the update law
(4.24) are chosen as w1 = 2, w2 = 1, λ = 10 and h = 1. The shifting function parameters are given as
s1i = s2i = 0.4. The initial PPFs are set as ρ1i0 = ρ2i0 = 0.4. It is noteworthy that the initial condition
has been violated since the initial errors qe2(0) and qe3(0) in Case 1 and qe2(0) and qe3(0) in Case 2 are
bigger than ρ1i0.

5.1. Simulation one

In this section, Cases 1 and 2 are considered to demonstrate the efficacy of our proposed approach
when it comes to handling attitude tracking problems with a predefined convergence time independent
of the original states. The predefined-time PPF parameters are given as ν = 0.01, T = 10, ρ1i∞ =
2s1i
π

arctan (ν) = 0.0025, ρ2i∞ = 0.1 and a1i = a2i = 1.2.
The simulation results are shown in Figures 2–7. Figures 2 and 3 show that the proposed controller

performs fairly well under different initial conditions, and that the actual settling time is 7.5 s, which
is shorter than the predefined one. With the implementation of the shifting function, the proposed
controller is able to maintain attitude errors within prescribed envelopes despite the tracking errors
exceeding the PPFs at the beginning. As shown in Figure 4, different control torques are required
under different initial conditions to provide the desired performance. It can be seen in Figures 5 and
6 that the transformed errors ε1i and ε2i are fixed-time bounded. The boundedness of the adaptive
parameter is shown in Figure 7.

5.2. Simulation two

To further illustrate that the attitude maneuvering performance of spacecraft systems can be
prescribed with our proposed method in terms of convergence time, we present the results of the
simulation with two different convergence times T = 10 and T = 15. Case 1 is considered for the
initial attitude value. Other parameters of the PPFs and the proposed controller remain unchanged
from Simulation one.

The corresponding results are shown in Figures 8–10. It is observed in Figure 8 that the proposed
controller will render attitude error into the predefined region |qevi| ≤ 0.01 within T . Figures 8 and 9
also show that the convergence time of attitude errors with our proposed methods can be directly and
arbitrarily set by selecting different values of T . In general, a smaller T indicates a shorter stabilization
period but a greater control burden as shown in Figure 10.
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Figure 2. Response of attitude quaternion with different initial attitude values.
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Figure 3. Response of angular velocity with different initial attitude values.
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Figure 4. Response of control torque with different initial attitude values.
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Figure 5. Response of transformed error ε1.
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Figure 7. Curve of adaptive parameter θ̂.
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Figure 8. Response of attitude quaternion with different predefined times T .
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Figure 9. Response of angular velocity with different predefined times T .
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Figure 10. Response of control torque with different predefined times T .
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Figure 11. Response of attitude quaternion with different prescribed accuracies ν .

5.3. Simulation three

To demonstrate that the tracking performance of spacecraft systems can be prescribed with our
propounded controller in terms of control accuracy, we present the simulation with ν as ν = 0.01
and ν = 0.001 and the same value of prescribed settling time T = 5. Hence, ρ1i∞ values are set as
ρ1∞i = 0.0025 and ρ1∞i = 2.5 × 10−4, while other adjustable parameters remain the same as those in
Simulation one. We consider the example in Case 2 as the initial value of the quaternion.

The results are depicted in Figures 11 and 12. It is shown in Figure 11 that the attitude error is
stabilized into the prescribed region |qevi| ≤ ν within T no matter whether the initial values of the
quaternion violate the prescribed constraints. Generally, a smaller ν contributes to improved precision
in attitude maneuvering at the expense of a heavier burden on the controller, as shown in Figure 12.

5.4. Simulation four

To illustrate the advantage of our propounded controller, the fault-tolerant fast fixed-time convergent
attitude control (FTFFTCAC) proposed in [38] is considered to perform the comparative study. The
preset convergence time and prescribed accuracy are respectively given as T = 10, v = 0.01. Other
control parameters remain unchanged. We select Case 2 for the initial tracking errors.

For the following modified prescribed performance function (MPPF) developed in [38], the MPPF
parameters are chosen as k = 0.4, Tm = 10, ρ0 = 1 and ρ∞ = 0.01. Other control parameters are chosen
as [38].

ρi(t) =

 (ρ0 − ρ∞ (1 + t/Tm)) exp
(
−kt

Tm − t

)
+ ρ∞ , t < Tm

ρ∞ , t ≥ Tm

(5.1)

It can be seen in Figures 13 and 14 that our proposed control scheme exhibits better tracking
performance than the FTFFTCAC scheme, with faster convergence and higher accuracy. Figure 15
shows that the control consumption of the designed controller is significantly less than that of
FTFFTCAC, and that the control action is smoother.
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Figure 12. Response of control torque with different prescribed accuracies ν .
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Figure 16. Responses of attitude quaternion and shifted errors under the conditions of the
proposed method.

5.5. Simulation five

To demonstrate the robustness of our proposed control scheme, an additional disturbance is imposed

on the spacecraft during the period of 13–18 s with the term dsud =


2 + 0.5 sin(0.2t)
2 + 0.5 sin(0.2t)
2 + 0.5 sin(0.2t)

 N ·m.

Figure 16 shows that the proposed controller can guarantee the tracking errors with performance
in terms of convergence time and steady-state precision in the presence of an unexpected disturbance.
The shifted errors are always kept within the constraints, which verifies the robustness of our proposed
controller. It is depicted in Figure 17 that the control torque is bounded and not chattering when
a sudden change in disturbance occurs. As shown in Figure 18, the attitude error qe1 reaches the
guaranteed performance boundary at around t = 14 s, resulting in a loss of efficacy for the FTFFTCAC
controller.
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6. Conclusions

In this article, a novel adaptive predefined-time prescribed performance controller is presented for
spacecraft systems. By employing a predefined-time PPF, we guarantee that the attitude errors will
satisfy the prescribed tracking accuracy within a predefined time. By introducing a novel shifting
function, we eliminate the constraints on initial errors, enabling the proposed method to be
implemented even if the attitude errors violate the prescribed boundaries initially. RBFNN and MLP
techniques have been introduced to approximate the lumped uncertain dynamics, and the adaptive law
has been designed to ensure the fixed-time convergence of the learning parameter. Our proposed
method has the notable merit of allowing the settling time and the tracking precision to be directly
prespecified by setting two adjustable parameters. The proposed control scheme exhibits excellent
performance against input saturation, actuator misalignment and unexpected disturbances.
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Appendix

To achieve |e| ≤ v, the PPF parameter should be designed as ρ∞ = v according to previous PPC
schemes [37–39].

The PPF defined in (3.2) and in [37–39] can be rewritten in a general form as follows:

ρ(t) = rρ0 + (1 − r)v (A1)

where 0 ≤ r ≤ 1 refers to the monotonically decreasing component of the PPFs. For a given time, r is
a constant.

For our proposed PPC control strategy, according to Theorem 1, we need to design
ρ∞ =

2s
π

arctan (ν) to guarantee that the tracking error converges to the region |e| ≤ v. Therefore, the
PPF defined in (3.2) can be rewritten as

ρ(t) = rρ0 + (1 − r)k arctan(v) (A2)

where 0 < k = 2s
π
< 1.

The traditional formulation of normalized error in [37–39] can be written as

ξ1 =
e
ρ
=

e
rρ0 + (1 − r)v

(A3)

In our proposed scheme, the new normalized error is defined as

ξ2 =
η

ρ
=

k arctan(e)
rρ0 + (1 − r)k arctan(v)

(A4)

Letting f (e) = |ξ2| − |ξ1| = ξ2 (|e|) − ξ1 (|e|) yields

f =
k arctan (|e|)

rρ0 + (1 − r)k arctan(v)
−

|e|
rρ0 + (1 − r)v

=
k arctan (|e|) (rρ0 + (1 − r)v) − |e| (rρ0 + (1 − r)k arctan(v))

(rρ0 + (1 − r)k arctan(v)) (rρ0 + (1 − r)v)

(A5)
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Define g(|e|) = k arctan(|e|) (rρ0 + (1 − r)v) − |e| (rρ0 + (1 − r)k arctan(v)). Differentiating g with
respect to e, we can obtain

ġ =
sgn(e)k (rρ0 + (1 − r)v)

√
1 + e2

− sgn(e) (rρ0 + (1 − r)k arctan(v))

=
sgn(e)k (rρ0 + (1 − r)v) − sgn(e) (rρ0 + (1 − r)k arctan(v))

√
1 + e2

√
1 + e2

(A6)

When v→ 0, we have arctan(v) = v. Thus, ġ can be rewritten as

ġ =
sgn(e)rρ0

(
k −
√

1 + e2
)
+ sgn(e)k(1 − r)v

(
1 −
√

1 + e2
)

√
1 + e2

(A7)

Given that 0 < k < 1, when e < 0, it is obvious that ġ > 0. Similarly, when e > 0, we can obtain
ġ < 0. Therefore, we have that f (e) ≤ f (0) = 0 for any e ∈ R. From this perspective, the absolute value
of normalized error is reduced by our method. In addition, due to the property that the transformed
function is monotonically increasing, a decrease in the transformed error and the control torque output
can be achieved with the same error e.
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