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Abstract: Knowledge graph completion (KGC) has attracted significant research interest in applying
knowledge graphs (KGs). Previously, many works have been proposed to solve the KGC problem,
such as a series of translational and semantic matching models. However, most previous methods suffer
from two limitations. First, current models only consider the single form of relations, thus failing to
simultaneously capture the semantics of multiple relations (direct, multi-hop and rule-based). Second,
the data-sparse problem of knowledge graphs would make part of relations challenging to embed.
This paper proposes a novel translational knowledge graph completion model named multiple relation
embedding (MRE) to address the above limitations. We attempt to embed multiple relations to provide
more semantic information for representing KGs. To be more specific, we first leverage PTransE
and AMIE+ to extract multi-hop and rule-based relations. Then, we propose two specific encoders
to encode extracted relations and capture semantic information of multiple relations. We note that
our proposed encoders can achieve interactions between relations and connected entities in relation
encoding, which is rarely considered in existing methods. Next, we define three energy functions to
model KGs based on the translational assumption. At last, a joint training method is adopted to perform
KGC. Experimental results illustrate that MRE outperforms other baselines on KGC, demonstrating
the effectiveness of embedding multiple relations for advancing knowledge graph completion.

Keywords: knowledge graph completion; knowledge graphs; multiple relations; entities; semantic
information

1. Introduction

A knowledge graph (KG) [1,2] is a semantic network designed to describe entities of the real world
and the relations between various entities, sometimes referred to as the Knowledge Base (KB) [3, 4].
A KG also can be denoted as a triple [5] indicating that the head entity and the tail entity are connected
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by a relation, e.g., (head entity, relation, tail entity). However, even some large-volume KGs, such
as Freebase [6] and NELL [7], are still incomplete, i.e., missing a lot of correct KGs. Thus, many
researchers have paid massive attention to knowledge graph completion (KGC) to validate whether
a KG is correct or not. A KGC task is one of the research directions of knowledge representation
learning (KRL) [8–11] that aims at validating whether a triple is correct or not while preserving the
inherent structure of the KGs. Examples of knowledge graphs are illustrated in Figure 1. The colored
ellipses represent entities, and arrows connect the relations from the head entities to the tail entities.
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Opera
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Is_famous_for

Is_famous_for

Figure 1. An example of knowledge graphs. Nodes (ellipses) represent entities, and edges
(arrows) represent relations.

Most of the available methods perform the KGC tasks by embedding components of KGs into
continuous vector spaces through two steps: embedding KG components (entities and relations) and
then defining a scoring function to measure the plausibility of each triple. The current KGC models can
be categorized as translational and semantic matching models. Translational models take relations to
translate head entities to tail entities, such as TransE [12], TransH [13] and TransR [14]. Translational
models can take advantage of the transitional character of KG components, but they only use addition
operations, which limits the expressive power of KGC models. Semantic matching models match
latent semantics of KG components in the embedding space, such as RESCAL [15] and DistMult
[16]. Semantic matching models can capture the semantic similarities among different triples, but
some models with fully connected layers usually cause overfitting problems. Consequently, some
convolution neural network (CNN)-based methods [17,18] have been proposed to perform KGC tasks.
They can capture deep expressive features and alleviate overfitting problems.

Recently, some researchers have attempted to use path information to improve the performance of
knowledge graph completion models. A path starts along the head entity, passes through intermediate
entities, and reaches the tail entity. Taking a 2-hop path as an example, the path can be composed of two
multi-hop relations and an intermediate entity, i.e., r1−→e−→r2, where r1 and r2 are 2-hop relations,
and e denotes a intermediate entity. PTransE [19] is a typical translational model that performs simple
addition operations on multi-hop paths to complete knowledge graphs. Other methods like RUGE [20]
can inject logic rules [21] into the model and use the rules to guide the representation learning of
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entities and relations. The rules are interpretable and contain rich semantic information [22], showing
the power of knowledge reasoning. The process of reasoning can be defined as r ⇐ (r3, r4), where r3

and r4 denote rule-based relations, and r can be inferred by these two rule-based relations.
Even though the above methods can achieve good performance, it remains challenging to conduct

KGC tasks. There are two limitations: First, most knowledge graph completion models only consider
the single form of relations since they only embed direct relations or multi-hop paths to capture
semantic information of relations. From the perspective of natural language processing, different
forms of the same relation are semantically related and complementary. Therefore, multiple (direct,
multi-hop, and rule-based) relations can potentially be exploited to capture adequate semantic
information and advance the performance of KGC. Second, the data-sparse problem of knowledge
graphs would make part of relations challenging to embed since very little data is involved. To
address these issues, we propose a novel knowledge graph completion model called multiple relation
embedding (MRE), which can simultaneously embed multiple relations and jointly learn embeddings
of entities and relations.

In this paper, we reconfirm that translational KGC methods are effective and apply the main idea
of TransE [12] in our proposed work. MRE aims to take advantage of multiple relations to perform
knowledge graph completion. Specifically, MRE mainly consists of four steps. MRE first extracts
multi-hop and rule-based relations through corresponding tools. Then, MRE proposes different
encoders to encode multi-hop and rule-based relations. Note that our proposed encoders of multiple
relations do not learn each relation in isolation but continuously interact with entities during the
learning process and use pre-trained embeddings as supervision to maximize the restoration of the
semantic information of multiple relations. Next, MRE defines new energy functions to model
knowledge graphs. Finally, a joint training method is adopted to train our proposed MRE.

In summary, the proposed KGC method can better use multiple relations and fully capture semantic
information of knowledge graphs. Our contributions can be summarized as follows:

• We propose a novel method for knowledge graph completion that simultaneously embeds
multiple relations (direct, multi-hop and rule-based) in a unified framework and defines new
energy functions to learn representations of entities and relations.
• Our proposed multiple relation encoders can continuously interact with connected entities in the

process of relation encoding, which is rarely considered in most knowledge graph completion
methods.
• This paper evaluates the MRE on two benchmark datasets of FB15K-237 and NELL-995 with

knowledge graph completion. Experimental results show that MRE has achieved the best
performance on all evaluation metrics compared to several baselines.

The rest of this paper is organized as follows: Section 2 summarizes the related work of knowledge
graph completion. Section 3 introduces some notations and definitions used in this paper. Section 4
introduces the details of our proposed MRE. Section 5 shows and analyzes our experimental results,
including comparisons with current methods, further evaluations and visualization analysis. Section 6
concludes our work and points out future research directions.
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2. Related work

This section introduces KGC models that embed KGs into continuous low-dimensional spaces to
capture latent semantic representations, including translational and semantic matching methods.

Translational methods: Translational models leverage distance-based scoring functions and
measure the plausibility of a triple as the distance between head entities and tail entities, specifically
after the relations through a translation. TransE [12] is inspired by word2vec, where relations can be
regarded as translations between head entities and tail entities in implicit semantic embedding space.
However, TransE has its drawbacks in handling complex relations, such as one head entity and one
relation corresponding to multiple tail entities. To tackle this problem, TransH [13] is proposed, in
which each relation has a specific hyperplane while projecting the head entity and the tail entity onto
the hyperplane. Since there may be infinite hyperplanes in each relation, TransH uses approximate
orthogonality to select a hyperplane which may prevent the model from dealing with entities and
relations properly. TransR [14] extends TransH [13] by using relation-specific spaces to complete a
KGC task. PTransE [19] is an extension of TransE which proposes a path constraint resource
allocation method to extract multi-hop paths and compose all the relations in each multi-hop path.

Semantic matching methods: Semantic matching models use similarity-based scoring functions
that measure the plausibility of triples through matching implicit semantics of KGs embedded in
continuous low-dimensional vector space. RESCAL [15] can capture KGs’ implicit semantic
information by associating each entity with a vector and each relation with a matrix to realize bilinear
interactions. DistMult [16] is based on RESCAL [15], and each relation is restricted by a diagonal
rather than a full matrix. DistMult can capture bilinear interactions between head and tail entities
through the same embedding space and reduce training parameters. HolE [23] represents both entities
and relations as vectors by utilizing the circular correlation operation based on RESCAL and
DistMult. This allows the model to deal with irreflexive or similar relations in KGs.

In addition to the above methods, there are still many ways to conduct knowledge graph completion
tasks, such as RUGE [20], which iteratively learns entity and relation embeddings from labeled triples,
unlabeled triples and soft rules, or MADLINK [24], which considers contextual information as well as
the textual descriptions of the entities to perform KGC.

Although the experimental results of the above models are all impressive, they only use direct
relations or multi-hop paths, limiting the models’ representational power. Translational methods are
one of the most valuable methods for KGC. Thus, our work, while building upon translational methods,
is distinguished based on the following properties:

• Unlike most KGC methods that only embed single-form relations, MRE simultaneously embeds
multiple relations and obtains multiple semantics of relations.
• Different from current KGC methods, MRE considers an interactive process in the relation

encoding phase to obtain accurate relation representations.

3. Background

Notations: Table 1 shows the important symbols of this article. This paper uses lower-case boldface
letters to denote vectors (e.g., h) and boldface upper-case letters to represent matrices (e.g., W). We
use ∥x∥ to denote the ℓ2 norm.

Mathematical Biosciences and Engineering Volume 20, Issue 3, 5881–5900.



5885

Knowledge graph: For a given knowledge graph G= {E,R}, we represent entities by E and
relations by R. A KG G includes many factual triples, and each triple is in the form of (h, r, t), with
h,t ∈ E and r ∈ R.

Knowledge graph completion: Knowledge graph completion tasks can be carried out simply by
predicting if a triple (h, r, t) is valid or not. In our work, valid triples obtain lower energy (scores) than
invalid triples.

Multiple relations: Multiple relations consist of direct relations, multi-hop relations and rule-based
relations. The direct relations are derived from the given knowledge graphs. The multi-hop and rule-
based relations are extracted from the given knowledge graphs.

Table 1. A summary of symbols used in this paper.

Symbols Notations
E a set of entities that include head and tail entities
R a set of relations
G a knowledge graph which can be denoted as {E,R}
(h, r, t) a fact which contains a subject entity, a relation, and an object entity
KGC knowledge graph completion
KRL knowledge representation learning
CNN convolution neural network
MLP multilayer perceptions
MRE multiple relation embedding

4. Proposed work

Knowledge graph completion aims to predict whether a triple is correct or not. Although much
research has been devoted to KGC, most models cannot take advantage of the multiple relations and fail
to capture multiple semantic information. This paper proposes a novel knowledge graph completion
method called MRE to compensate for existing methods’ deficiencies. We attempt to simultaneously
embed multiple relations (direct, multi-hop and rule-based) in our model. The overall architecture of
MRE is shown in Figure 2. First, we extract different kinds of relations from given triples (4.1). After
vector initialization, we propose different encoders to capture multi-hop and rule-based semantics of
relations (4.2). Furthermore, we embed multiple relations into the same semantic space based on
the translational assumption (4.3). Finally, a joint training method is implemented for optimizing the
objective of MRE (4.4). The following section shows the details of our work.

4.1. Compositions of multiple relations

In this paper, multiple relations include direct, multi-hop and rule-based relations. The direct
relations come from given triples. The multi-hop and rule-based relations are derived from the
following procedures.

Multi-hop relations: We follow the paths extraction procedure provided by PTransE [19] to extract
multi-hop paths. In PTransE, each multi-hop path is extracted together with its reliability, which is
achieved by the path-constraint resource allocation mechanism. The path-constraint resource allocation
mechanism can extract different paths and compute a reliability metric for each path that flows from
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the head entity to the tail entity. A multi-hop path can be linked by a head entity, multi-hop relations,
intermediate entities and a tail entity. For a given entity pair, we manually select the path with the
largest reliability metric as the optimal path and limit the path length to 2. In this paper, we regard
path-determined relations as multi-hop relations. Given a triple (h, r, t), a 2-hop path r1−→e−→r2

can be generated from (h, r1, e) and (e, r2, t), where r1 and r2 are 2-hop relations, and e denotes an
intemedioate entity.

Rule-based relations: Rule-based relations can be generated using the rule extraction tool
AMIE+ [25] which extracts relations based on horn rules. A horn rule can be defined as r ⇐ (r3, r4),
where r3 and r4 denote rule-based relations. Each rule has a confidence level to measure the matching
degree of the rule. The higher the confidence level is, the higher the matching degree of the rule. In
this paper, we limit the length of rules to 2 and select the highest confidence level to extract rule-based
relations. For the relation ‘/film/film/country’, there are two horn rules:
/ f ilm/ f ilm/country ⇐ (/ f ilm/ f ilm/executive produced by, / f ilm/ f ilm/ f ilm f ormat) and
/ f ilm/ f ilm/country ⇐ (/ f ilm/ f ilm/music, /people/person/nationality). Since the confidence level
of the former is greater than that of the latter, we select the former as the rule-based relations, i.e.,
/ f ilm/ f ilm/executive produced by and / f ilm/ f ilm/ f ilm f ormat are rule-based relations.

     Vector    Initialization

 Given    Triples

Translational  Assumption

Rule-based Relation ExtractionMulti-hop Relation Extraction

EncoderEncoder

Knowledge Graph Completion

L2 L3

Joint  Training

L1

Figure 2. The overall architecture of MRE. L1 denotes pairwise ranking loss, L2 denotes
error loss of multi-hop encoder, and L3 denotes error loss of rule-based encoder.

4.2. Encoders of multiple relations

Through corresponding relation extraction procedures, we can obtain multi-hop and rule-based
relations. To make better use of multiple relations, we propose two encoders that can encode different
kinds of relations and achieve interactions between entities and relations.
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4.2.1. Multi-hop relation encoding

A multilayer perceptron (MLP) [26] is a simple feedforward neural network that can map a set
of input vectors to output vectors and learn the best of the parameters of neural networks. To encode
multi-hop relations, we use two MLP structures that load pre-trained embeddings as inputs and achieve
multiplicative interactions between entities and relations. The encoder of multi-hop relations is shown
in Figure 3. The specific process is as follows:

r′1 = σ(W11hr1 + b11) (4.1)

r′′1 = σ(W12r′1e + b12) (4.2)

r′2 = σ(W21er2 + b21) (4.3)

r′′2 = σ(W22r′2t + b22) (4.4)

r′′′12 = r′′1 + r′′2 (4.5)

where r1 represents the first multi-hop relation embedding, and h represents a head entity embedding.
W11, W12, W21 and W22 are the weights of MLP structures, and b11, b12, b21 and b22 are the biases of
MLP structures. σ denotes a non-linear activation (Tanh), r2 represents the second multi-hop relation
embedding, e represents an intermediate entity embedding, t represents a tail entity embedding, and
r′′′12 denotes the encoded multi-hop relation embedding. It can be seen from the above formula that the
multi-hop relation embeddings are obtained by encoding complete link information, since we attempt
to capture the semantic information before and after each multi-hop relation.

r1

h

r1′ 

e

r2

r2′ 

t

+

r1′ ′ 

r2′ ′ 

W11

W21

W12

W22

r12′ ′ ′ 

Entity Embeddings

Relation Embeddings

Encoded Embeddings

Figure 3. The architecture of the encoder for multi-hop relations. Squares represent
embedding vectors, and circles represent neural networks. The encoding process of multi-
hop relations is realized by continuously interacting entities and relations through MLP.

4.2.2. Rule-based relation encoding

Similarly, we use two MLP structures to obtain rule-based relation embeddings. The encoder of
rule-based relations is shown in Figure 4. The specific process is as follows:
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r′3 = σ(W31r3 + b31) (4.6)

r′′3 = σ(W32hr′3 + b32) (4.7)

r′4 = σ(W41r4 + b41) (4.8)

r′′4 = σ(W42r′3t + b42) (4.9)

r′′′34 = r′′3 + r′′4 (4.10)

where r3 represents the first rule-based relation embedding. W31, W32, W41 and W42 are the weights
of MLP structures, and b31, b32, b41 and b42 are the biases of MLP structures. r4 represents the second
rule-based relation embedding, and r′′′34 denotes the encoded rule-based relation embedding. It can
be seen from the above formula that the process of rule-based relations encoding is realized by the
interactions between entities and relations in essence.

r4

r4′ 

+

r4′ ′ 
W41

W42

r34′ ′ ′ 

r3

r1′ 

r3′ ′ W31 W32

h

r3′ 

t

Entity Embeddings

Relation Embeddings

Encoded Embeddings

Figure 4. The architecture of the encoder for rule-based relations. Squares represent
embedding vectors, and circles represent neural networks. The encoding process of rule-
based relations is not affected by intermediate entities due to the composition of the rules.

4.3. Energy functions

TransE [12] is the most representative model in knowledge graph completion. Previous work shows
that TransE and its extensions [13, 14] can obtain very competitive results. We reconfirm that TransE
is a robust model and apply this structure to our method. In TransE, relations can be regarded as
translations between head entities and tail entities in implicit semantic embedding space. The energy
function of TransE is defined as

E1 = ∥h + r − t∥ (4.11)

where h represents a head entity embedding, r represents a relation embedding, t represents a tail entity
embedding, and E1 is an energy function of given triples.
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Next, we transfer the energy function of given triples to the multi-hop information, incorporating
the multi-hop relations under the translational assumption. The energy function can be defined as

E2 = ∥h + r′′′12 − t∥ (4.12)

where r′′′12 represents an encoded multi-hop relation embedding. The energy function E2 can be
regarded as an additional constraint for the given triples.

Following the above energy function E2, we transfer the energy function of given triples to the
rule-based information, incorporating the rule-based relations under the translational assumption. The
energy function can be defined as

E3 = ∥h + r′′′34 − t∥ (4.13)

where r′′′34 represents an encoded rule-based relation embedding. The energy function E3 can be
regarded as another additional constraint for the given triples.

Therefore, the overall energy function of a triple can be defined as

E = E1 + E2 + E3 (4.14)

4.4. Objective formalization

Based on the above energy functions, we propose a joint training method to take advantage of
multiple relations and train our model. The overall loss function is defined as

L = L1 + L2 + L3 (4.15)

where L1 denotes pairwise ranking loss, L2 denotes error loss of multi-hop encoder, and L3 denotes
error loss of rule-based encoder. Given the positive triples G and negative triples G′ constructed
accordingly, we define the pairwise ranking loss as

L1 =
∑

(h,r,t)∈G

∑
(h′,r,t′)∈G′

max(γ + E(h, r, t) − E(h′, r, t′), 0) (4.16)

where γ is a margin parameter that separates positive and negative triples. Following TransE [12],
negative triples can be generated by changing the head entity or the tail entity at random, i.e.,

G′ =
{(

h′, r, t
)
| h′ ∈ E

}
∪
{(

h, r, t′
)
| t′ ∈ E

}
, (h, r, t) ∈ G. (4.17)

Our method uses TransE to obtain pre-trained embeddings of entities and relations. In order to
reduce the semantic errors of the encoders, we use pre-trained relation embeddings to supervise the
encoded embeddings. The error loss function is defined as follows:

L2 =
∥∥∥r′′′12 − rpre

∥∥∥ (4.18)

L3 =
∥∥∥r′′′34 − rpre

∥∥∥ (4.19)

where rpre denotes pre-trained relation embeddings.
The central insight in developing MRE is as follows: Given three input embeddings, we view the

KGC task as a predicting problem. To predict whether a triple is valid, MRE first selects multi-hop
and rule-based relations through different extraction tools. Then, MRE encodes extracted relations by
leveraging MLP structures. Next, MRE models the whole knowledge graphs based on the TransE. At
last, the optimization objective is proposed to train MRE jointly.
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5. Experiments

5.1. Datasets

The statistics of the two KGC datasets evaluated in this paper are given in Table 2. FB15K-237
and NELL-995 are created from FB15K [12] and NELL [7]. FB15K comes from the large real-world
knowledge base Freebase [6]. FB15K-237 contains 237 relations, 14,541 entities and 310,116 triples;
and the approximate ratio of the train set, valid set and test set is 14:1:1. NELL-995 is a subset of
NELL created from the 995th iteration of the construction. NELL-995 includes 75,492 entities, 200
relations and 154,208 triples.

Table 2. The statistics of the KGC datasets.

Dataset |E| |R| Train Valid Test
FB15K-237 14,541 237 272,115 17,535 20,466
NELL-995 75,492 200 123,370 15,000 15,838

5.2. Evaluation protocol

Following the convention, we employ mean reciprocal rank (MRR) and Hits@k as evaluation
metrics. MRR is computed by the average reciprocal rank of correct entities. Higher MRR indicates
better performance.

MRR =
1
| G |

∑
i∈G

1
Rank(i)

(5.1)

where | G | represents the total number of triples, and Rank(i) represents the ranking of the correct label
of the i−th test triple. Hits@k computes the proportion of correct entities that appear within the top-k
predictions. Higher Hits@k indicates better performance.

Hits @ k =
| Rank-k |
| G |

(5.2)

where | Rank-k | represents the number of correct labels ranking in the top-k. MRR and Hits@k scores
always range from 0 to 1.

5.3. Experimental settings

We use pre-trained embeddings to initialize our model. To obtain entity and relation embeddings,
we follow the traditional settings initially provided in TransE [12]. After training, we can obtain entity
and relation embeddings with embedding size k = 100. For our proposed MRE, we employed the path
extracted method provided in PTransE to extract multi-hop relations. We employed AMIE+ to extract
rule-based relations. The length of multi-hop and rule are limited to 2. For our proposed MRE, we use
Adam [29] and apply an L2 norm for all the equations. The highest Hits@10 scores are obtained when
using lr = 1e−4, batch size b = 128 and γ = 8 on FB15K-237, and when using lr = 2e−3, batch size b
= 128 and γ = 8 on NELL-995.
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5.4. Results and discussion

To show the effectiveness and superiority of our proposed method, we list ten representative KGC
algorithms as baselines. All the baselines have taken advantage of knowledge representation learning
methods to advance the KGC tasks. These baselines contain translational methods TransE [12], TransH
[13], TransR [14] and PTransE [19], rule-guided method RUGE [20], CNN-based method DMACM
[18], hierarchical reasoning method ConE [27], path-based method MADLINK [24], Transformer-
based method Hitter [28] and graph attention-based method MRGAT [30].

• TransE [12] is the most representative translational model, which embeds components of KGs in
vector space and makes learned entity and relation embeddings follow the translational principle
h + r = t.
• TransH [13] assigns each relation with a specific hyperplane and projects the head and tail entity

onto the hyperplane.
• TransR [14] is an extension of TransH which introduces relation-specific spaces to complete a

KGC task.
• PTransE [19] leverages multi-hop paths to complete knowledge graphs.
• RUGE [20] learns entity and relation representations through iterative guidance of soft rules.
• DMACM [18] captures directional information and the triple’s inherent deep expressive

characteristic using a CNN-based method.
• ConE [27] is a hierarchical reasoning method that embeds entities into hyperbolic cones and then

models relations as conversions between the cones.
• MADLINK [24] incorporates path and contextual information in given knowledge graphs to learn

embeddings.
• HittER [28] can jointly learn entity and relation embeddings based on Transformer structure.
• MRGAT [30] proposes a multi-relational graph attention model to complete knowledge graphs.

The experimental results of different baselines on FB15K-237 and NELL-995 are listed in Table 3.
From the results in Table 3, we have some observations. First, MRE consistently outperforms other
baselines in MRR and Hits@10 on FB15K-237 and NELL-995. For the FB15K-237 dataset, MRE
has achieved an improvement of 0.399 – 0.373 = 0.026 (+7%) in MRR and 0.612 – 0.558 = 0.054
(+9.7%) in Hits@10 when compared to the second-best results. For the NELL-995 dataset, MRE
has achieved an improvement of 0.327 – 0.318 = 0.009 (+2.8%) in MRR and 0.572 – 0.437 = 0.135
(+31%) in Hits@10 when compared to the second-best results. This demonstrates the effectiveness
of our proposed method and supports that embedding multiple relations in a unified semantic space is
beneficial for knowledge graph completion. Second, we find that transitional methods [12–14, 19] can
achieve competitive results on both datasets. This indicates the usefulness of considering transitional
properties in KGC methods. Our proposed MRE differs from these transitional methods in that MRE
can capture semantic information of multiple relations while maintaining translation characteristics
between entities and relations. Third, we observe that HittER [28] can obtain second-best MRR and
Hits@10 on FB15K-237. However, HittER leverages a complex structure to embed knowledge graphs.
Compared with HitER, MRE simply uses MLP structures to encode knowledge graphs. This shows
the superiority of our method. In addition, MRE outperforms path-based models [19, 24] and the rule-
guided method [20] mainly because our model can take advantage of multiple relations and provide
more semantic information to complete knowledge graphs.
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Table 3. Experimental results on FB15K-237 and NELL-995. MRR represents the mean
reciprocal rank and Hits@10 represents the correct predictions appear within the top-10.
The best result is in bold, while the second-best result is in underline.

Model FB15K-237 NELL-995
MRR Hits@10 MRR Hits@10

TransE (2013) [12] 0.294 0.465 0.219 0.352
TransH (2014) [13] - - 0.223 0.358
TransR (2015) [14] 0.199 0.382 0.232 0.382
PTransE (2015) [19] 0.314 0.501 - -
PTransE−RNN (2015) [19] - - 0.286 0.423
PTransE−ADD (2015) [19] - - 0.304 0.437
RUGE (2018) [20] 0.164 0.349 0.318 0.433
DMACM (2021) [18] 0.27 0.489 - -
ConE (2021) [27] 0.345 0.540 - -
MADLINK (2021) [24] 0.347 0.529 - -
HittER (2021) [28] 0.373 0.558 - -
MRGAT(2022) [30] 0.358 0.542 - -
MRE(our) 0.399 0.612 0.327 0.572

5.5. Further evaluations

This paper proposes a multiple relation embedding method to make better use of different kinds of
relations. In this section, we explore the impacts of margin, different numbers of relations and extra
semantic information on our proposed MRE.

Effect of margin Evaluation results are shown in Table 4. From the table, we have two
observations. First, we observe that, like most translational models [12–14, 19], our method is also
affected by the margin, i.e., as the margin value changes, the experimental results of MRE will also
fluctuate. Second, MRE performs well when the margin γ = 6/8/10. This indicates that the setting of a
reasonable margin value is helpful for the model to achieve good performance.

Table 4. Effect of margin γ on FB15K-237 and NELL-995. The best result is in bold.
γ FB15K-237 NELL-995

MRR Hits@k MRR Hits@k
1 3 5 10 1 3 5 10

2 0.319 0.212 0.362 0.433 0.528 0.289 0.184 0.316 0.394 0.502
4 0.348 0.244 0.391 0.46 0.551 0.298 0.186 0.333 0.414 0.534
6 0.355 0.245 0.402 0.474 0.564 0.317 0.199 0.357 0.443 0.556
8 0.399 0.257 0.406 0.474 0.612 0.327 0.208 0.368 0.453 0.572
10 0.36 0.255 0.403 0.471 0.565 0.325 0.206 0.369 0.46 0.569

Effect of different numbers of relations To explore the effect of different numbers of relations,
we randomly select 9 relations in FB15K-237 and NELL-995 to perform further evaluations. These
relations are listed in descending order of quantity as shown in Table 5. Here, our model is trained
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with all the triples and tested on every relation respectively. The performance of different numbers of
relations on FB15K-237 and NELL-995 are shown in Tables 6 and 7. As can be seen from Table 6, for
MRR, the relation ‘/people/person/profession’ with the largest number of relations did not achieve the
best results, and the relation with the least number of relations ‘/business/business operation/industry’
did not obtain the worst result. As can be seen from Table 7, the relation ‘concept:coachesinleague’
which has the second smallest number of relations, achieves most of the best results in the NELL-995
dataset. From the above observations, we can conclude that the performance of MER has no obvious
influence by the amount of training data. This suggests that MRE has the potential to achieve better
experimental results even with a small number of relations, which benefits from the fact that MRE
can simultaneously embed multiple relations. The multiple relation embedding method proposed in
this paper can alleviate the sparsity of relations and provide extra semantic information for a smaller
number of relations.

Table 5. The numbers of different kinds of relations on FB15K-237 and NELL-995.

Relation Name Number Relation Name Number
Train Test Train Test

/people/person/profession 7807 829 concept: mutualproxyfor 2631 119
/location/location/contains 4828 305 concept: agentcontrols 1378 30
/music/genre/artists 4443 513 concept: animalpreyson 1112 240
/film/film/genre 1598 151 concept: academicprogramatuniversity 1033 78
/people/ethnicity/people 1147 137 concept: musicartistgenre 619 52
/people/person/languages 708 86 concept: persongraduatedschool 345 11
/tv/tv program/genre 158 13 concept: ismultipleof 101 14
/location/location/partially contains 126 12 concept: coachesinleague 81 12
/business/business operation/industry 60 10 concept: plantgrowinginplant 73 10

Table 6. The performance of different numbers of relations on FB15K-237. The best result
is in bold.

Relation Name MRR Hits@k
1 3 5 10

/people/person/profession 0.646 0.479 0.771 0.864 0.943
/location/location/contains 0.13 0.066 0.144 0.174 0.249
/music/genre/artists 0.203 0.107 0.228 0.288 0.392
/film/film/genre 0.358 0.199 0.404 0.556 0.728
/people/ethnicity/people 0.096 0.036 0.095 0.117 0.182
/people/person/languages 0.661 0.547 0.709 0.849 0.919
/tv/tv program/genre 0.534 0.385 0.615 0.692 0.846
/location/location/partially contains 0.286 0.167 0.25 0.417 0.583
/business/business operation/industry 0.615 0.5 0.7 0.7 0.9
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Table 7. The performance of different numbers of relations on NELL-995. The best result is
in bold.

Relation Name MRR Hits@k
1 3 5 10

concept:mutualproxyfor 0.1 0.042 0.084 0.151 0.210
concept:agentcontrols 0.143 0.067 0.167 0.2 0.267
concept:animalpreyson 0.247 0.138 0.258 0.35 0.463
concept:academicprogramatuniversity 0.511 0.372 0.603 0.641 0.769
concept:musicartistgenre 0.187 0.058 0.231 0.288 0.462
concept:persongraduatedschool 0.648 0.455 0.818 0.909 0.909
concept:ismultipleof 0.217 0.143 0.143 0.286 0.429
concept:coachesinleague 0.766 0.667 0.833 0.833 0.917
concept:plantgrowinginplant 0.222 0.2 0.2 0.2 0.2

Effect of extra semantic information To analyze the parameter sensitivity of extra semantic
information, we set a threshold Ω to change the overall energy. The changed energy function can be
defined as E = E1 + Ω (E2 + E3), where the larger Ω is, the richer the extra semantic information. The
results are shown in Table 8. We can see that the MRR and Hits@k of MRE will increase with extra
semantic information. This once again confirms that sufficient semantic information helps to improve
the performance of the knowledge graph completion.

Table 8. Parameter sensitivity of extra semantic information. The best result is in bold.

Ω FB15K-237 NELL-995
MRR Hits@k MRR Hits@k

1 3 5 10 1 3 5 10
0.2 0.355 0.215 0.388 0.447 0.548 0.279 0.173 0.311 0.381 0.492
0.4 0.369 0.238 0.393 0.459 0.57 0.292 0.185 0.319 0.4 0.507
0.6 0.374 0.245 0.402 0.461 0.573 0.298 0.189 0.33 0.41 0.525
0.8 0.381 0.253 0.409 0.468 0.582 0.31 0.196 0.346 0.427 0.542
1 0.399 0.257 0.406 0.474 0.612 0.327 0.208 0.368 0.453 0.572

5.6. Visualization analysis

To understand and analyze semantic similarities among different relations, we visualize knowledge
graph completion results of TransE [12] and MRE. We compute the similarities matrices of each two
learned relation embeddings. Figures 5 and 6 show the semantic similarities of different relations on
FB15K-237 and NELL-995, respectively. From the figures, we have three significant observations.
First, heat maps from Figures 5 and 6 show an evident regularity for various relations in FB15K-237
and NELL-995, i.e., semantic similarities exist among various relations. For each two learned relation
embeddings, the darker the heat map color is, the higher the similarity and the tighter the semantic
associations. Second, not all relations have a high degree of semantic similarities. This indicates
that TransE and MRE can obtain semantic differences among different relations. Third, compared
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with TransE, the discrimination degree of heat maps in MRE is more obvious, i.e., the similarity
of some relations in the heat map will be higher. For example, the similarity between the relation
‘/film/film/genre’ and the relation ‘/film/film/genre’ in Figure 5 has increased from 0.37 to 0.47. This
shows that our proposed model can learn more accurate semantic information than TransE.

Table 9. Examples of tail entity prediction. Correctly predicted answers are marked in bold.
Dataset Query Top-5 Prediction Golden Answer Rank

Head Entity Relation
FB15K-237 /m/0418wg /film/film/language /m/06nm1

/m/02h40lc
/m/02bjrlw
/m/064 8sq
/m/04306rv

/m/02bjrlw 3

/m/063g7l /people/person/nationality /m/09c7w0
/m/0d060g
/m/0rh6k
/m/05fkf
/m/05kkh

/m/09c7w0 1

/m/02hnl /music/instrument/instrumentalists /m/01wl38s
/m/05qhnq
/m/050z2
/m/0137g1
/m/01vsyg9

/m/0137g1 4

/m/06pcz0 /people/person/profession /m/018gz8
/m/0dxtg
/m/03gjzk
/m/02krf9
/m/0cbd2 r

/m/0dxtg 2

/m/0190yn /music/genre/artists /m/01wgfp6
/m/01x1cn2
/m/04bbv7
/m/01lqf49
/m/01jfr3y

/m/01x1cn2 2

/m/07rd7 /film/director/film /m/0g56t9t
/m/050xxm
/m/04pk1f
/m/09g7vfw
/m/01jfr3y

/m/09g7vfw 4

To showcase the process of completing knowledge graphs, we regard tail entity prediction as a
simple question-answer system. Different tail entity prediction results are shown in Table 9. Given
a query consisting of a head entity and a relation, the objective is to predict the golden answer (tail
entity). Top-5 predictions are listed in Table 9, and we can compute the rank of the golden answer in
candidate answers. It can be seen from Table 9 that our proposed MRE can generate a list of candidate
answers and predict the golden answer.
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Figure 5. Semantic similarities of different relations on FB15K-237 in TransE (left) and
MRE (right).

Figure 6. Semantic similarities of different relations on NELL-995 in TransE (left) and MRE
(right).
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6. Conclusions

In this paper, we proposed a new kind of knowledge graph completion approach called MRE to
predict if a triple in a knowledge graph is valid or not. Unlike most methods that only consider the
single form of relations in the embedding phase, we embedded multiple relations in a semantic space.
Specifically, we introduced two relation encoders to capture semantic information of multi-hop and
rule-based relations. These two encoders proposed in this paper can realize the interactions between
connected entities and relations in the encoding phase. In addition, we defined corresponding energy
functions for multi-hop and rule-based relations to obtain new representations. Compared with
current KGC methods, MRE can better use multiple relations properties and provide additional
semantic information for single-form relations.

In order to verify the effectiveness and superiority of our work, we conducted massive experiments
on two widely used benchmarks. The experimental results showed that our method could effectively
capture multiple semantics. Further evaluations demonstrated that our work could keep stable when the
margin is within a reasonable range and alleviate the sparse existing in knowledge graphs. Visualization
analysis showed the semantic similarities of different relations and the working principle of MRE.

As for future work, we plan to study follow-up open problems. (i) MRE performs the knowledge
graph completion based on MLP. How can we advance it using sophisticated neural architectures such
as capsule or graph neural networks? (ii) Existing studies have shown that there is still much additional
information in the knowledge graphs that is not used, such as entity types and spatial information. How
can we integrate useful information with MRE to advance knowledge graph completion?
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