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Abstract: Liver cancer is a common cause of death from cancer in the population, with the 4th 
highest mortality rate from cancer worldwide. The high recurrence rate of hepatocellular carcinoma 
after surgery is an important cause of high mortality among patients. In this paper, based on eight 
scheduled core markers of liver cancer, an improved feature screening algorithm was proposed based 
on the analysis of the basic principles of the random forest algorithm, and the system was finally 
applied to liver cancer prognosis prediction to improve the prediction of biomarkers for liver cancer 
recurrence, and the impact of different algorithmic strategies on the prediction accuracy was 
compared and analyzed. The results showed that the improved feature screening algorithm was able 
to reduce the feature set by about 50% while ensuring that the prediction accuracy was reduced 
within 2%. 
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1. Introduction 

Liver cancer is a common cause of death from cancer in the population and its mortality rate is 
the 4th highest among cancer deaths worldwide [1]. The high recurrence rate of liver cancer after 
surgery is an important cause of high mortality among patients, and the recurrence rate after radical 
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resection of liver cancer remains high, with a recurrence rate of 60–70% at 5 years after surgery, and 
overall survival rates remain unsatisfactory [2]. 

The development of gene chips, gene sequencing, and information technology has made it 
possible to obtain, store and share gene expression data. In-depth studies on genetic data can provide 
big data-based findings for medical research from multiple perspectives and provide new molecular 
biomarkers for early diagnosis and treatment of tumors, etc. [3]. Clinically, the problem facing the 
application of cancer biomarkers is how to organically integrate various cancer biomarkers for cancer 
diagnosis and treatment, and ensure certain predictive effect. Extensive clinical studies are an essential 
step in the investigation of tumor biomarkers, and artificial intelligence techniques [4] are needed to 
integrate tumor biomarkers and build tumor prediction models to improve the early detection of 
malignant tumors and to effectively assess patient prognosis. 

From the results of domestic and international studies on biomarkers of liver cancer recurrence, 
Peng et al. [5] found that an increase in AFP-L3 was closely related to the strong invasiveness of liver 
cancer cells, and that AFP-L3 could be used as an indicator for the early diagnosis of liver cancer. 
However, the specificity and sensitivity of AFP for the diagnosis of recurrent liver cancer are not very 
satisfactory. In a study by Yang et al. [6], the overall survival of patients in the VEGF positive 
expression group was significantly lower compared to the negative expression group, and the 
upregulation of VEGF expression increased the aggressiveness of hepatocellular carcinoma cells. It 
was demonstrated that TGF-β could inhibit the recurrence of hepatocellular carcinoma by 
suppressing the expression of Sox2, and the detection of TGF-β expression level could help predict 
the risk of recurrence of hepatocellular carcinoma [7]. Shinichi et al. [9] found that G protein-coupled 
receptor 155 (GPR155) predicted the initial site of recurrence of hepatocellular carcinoma and that 
patients with downregulated GPR155 had a worse prognosis after therapeutic resection. Roessler et al. 
analyzed gene expression data from two independent cohorts of patients with hepatocellular carcinoma 
and identified 161 genetic biomarkers to assess the risk of postoperative recurrence and overall 
survival in patients with HCC using a Cox proportional risk regression model with principal 
component analysis [10]. 

In the past, many scholars focused on individual biomarkers and investigated the impact of 
individual markers on the recurrence mechanism of liver cancer, but it has the disadvantage of 
requiring a large number of clinical samples for validation and lacking in model accuracy. However, 
if machine learning methods are used to screen biomarkers, they have some predictive accuracy, but 
the screening process does not provide a good explanation of the biology of the biomarkers. 

Therefore, in view of the large amount of gene sequencing data, a suitable screening process is 
needed to select biomarkers and establish a predictive model with certain predictive effect for clinical 
research and targeted therapy for patients with recurrent liver cancer. Therefore, in this study, we 
proposed a combination method to screen genetic biomarkers related to recurrence of hepatocellular 
carcinoma after resection by analyzing the genetic sequencing data of hepatocellular carcinoma 
patients, and constructed a recurrence prediction model based on biomarkers with a random forest-
based improved feature screening method. The obtained biomarkers are rich in biological meaning and 
can significantly narrow the feature set with little reduction in accuracy, providing a reference for 
diagnosis and treatment of patients after resection. 
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2. Combination of biomarker screening for recurrence of hepatocellular carcinoma 

2.1. Data sources 

The main data in this paper are the gene sequencing data of liver cancer patients, which are 
obtained from the open database TCGA by transcriptome sequencing and the clinical data of the 
corresponding samples. A total of 409 patients with hepatocellular carcinoma were documented, 
including gene expression in cancerous tissues, gene expression in normal tissues and the 
corresponding clinical data of the patients. 

2.2. Data processing 

The samples selected from TCGA liver cancer patients were screened according to the 
following criteria: 
1) Normal tissue samples were excluded to ensure that all samples analyzed were liver cancer 
tissue samples. 
2) Selecting samples from patients with R0 resection of liver cancer tissue for the surgical procedure 
will exclude the possibility of recurrence of liver cancer due to invasion of residual tumor cells and 
enhance the interpretation and rigor of the analysis of the effect of genetic biomarkers on recurrence 
of liver cancer. 
3) Excluding samples with missing information on both recurrence and eventual survival. Based 
on the clinical information of the patients, the above screening process was completed and 327 
usable samples were obtained, including 163 recurrence samples and 164 non-recurrence samples 
after hepatectomy. 

2.3. Combined methods for screening biomarkers 

Each sample of liver cancer patients contains up to 30,000 genes. To address the large amount of 
data, a combinatorial approach is proposed to screen genes as biomarkers of liver cancer recurrence, 
as shown in Figure 1. 

First, the gene expression data from two groups of samples with and without recurrence of liver 
cancer were analyzed by the ploidy expression method and hypothesis testing to initially screen for 
biomarkers of liver cancer recurrence, which was achieved by DESeq and edgeR methods. Next, a 
protein interaction network of differential genes was constructed. Four network topology algorithms, 
Degree, MNC, MCC, and BottleNeck, were used to rank the importance of each node in the protein 
interaction network, and the intersection of the important genes selected by each algorithm was taken 
to screen the core biomarkers of liver cancer recurrence. 

2.3.1. Preliminary screening 

The edgeR package and DESeq package of R language were used to process and calculate the 
differential genes of relapsed samples and non-recurrence samples, and the genes with log2FC absolute 
value greater than 1 and P value less than 0.05 were used as the differential genes between the liver 
cancer recurrence group and the non-recurrence group, and the FDR (False Discovery Rate) and false 
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discovery rate were increased. Since the differential expression analysis of transcriptome sequencing 
is an independent statistical hypothesis test for a large number of gene expression values, there will be 
a problem of false positives, so in the process of differential expression analysis, the recognized 
Benjamini-Hochberg correction method is used to correct the significance p-value obtained by the 
original hypothesis test, and finally, FDR is used as the key indicator of differential expression gene 
screening. Generally, FDR < 0.01 or 0.05 is used as the default standard. See Figures 2 and 3, where 
red indicates up-regulated differential genes expressed in patients with liver cancer recurrence, green 
indicates down-regulated differential genes expressed in patients with liver cancer recurrence, and gray 
dots indicate genes that do not differ significantly between the two groups. 

 

Figure 1. Combined biomarker screening method for liver cancer recurrence. 

 

Figure 2. Differential genes in the recurrence group. 
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Figure 3. Differential genes in the non-recurrence group. 

The specific number of differential genes screened by DESeq and edgeR is shown in Table 1. The 
total number of differential genes screened by the two methods differed significantly, with the number 
of down-regulated differential genes much higher than the number of up-regulated differential genes 
in the recurrent liver cancer group. 

Table 1. The number of differential genes identified. 

Method Up-regulated genes Down-regulated genes Total
DESeq 59 168 227
edgeR 36 92 128

 

Figure 4. Heat map of gene correlation coefficients. 
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Correlation analysis was performed on the common difference genes made by DESeq and 
edgeR. 22 genes were intersected between the two, and the correlation coefficients between each gene 
were calculated and correlation plots were drawn, and the correlation plots are shown in Figure 4. The 
blue color in the correlation plot indicates a positive correlation between genes and the red color 
indicates a negative correlation between genes. From Figure 4, it can be seen that there is a strong 
correlation between some of the differential genes and the correlation is very significant. 

The blue cluster contains a number of IGHV, IGKV, and IGLV related genes that show a high 
positive correlation. These related genes are immunoglobulin-related genes, which are antigen-
recognition molecules for B lymphocytes and are closely related to the immune function of the body. 
This suggests that alterations in immune-related genes among patients with liver cancer may lead to 
differences in immune function, which may affect the likelihood of recurrence of liver cancer, and that 
there is an interaction between the differential genes 

Therefore, protein interaction networks were performed to further explore the differential genes 
and demonstrate the interaction between genes. A small number of genes were further screened based 
on the protein interaction network as core biomarkers of liver cancer recurrence, aiming to predict the 
risk of liver cancer recurrence with a small number of genetic markers and reduce the cost of testing 
for patients. 

2.3.2. Construction of protein interactions network 

DESeq and edgeR were taken together and then the network relationships were constructed using 
the background data provided by the string database, as shown in Figure 5, where brown is the up-
regulated gene and green is the down-regulated gene, and each network node acts as the protein product 
of a gene, with the connections of the edges showing the interactions between the nodes. 

 

Figure 5. Protein interaction network diagram. 
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2.3.3. Core biomarker screening 

The network was then analyzed using the cytohubba plugin, screening Degree, MNC, MCC, and 
BottleNeck, respectively, to score and rank the protein nodes in the protein interactions network. 

Table 2. Ranking table of gene scores for different topological algorithms. 

Scoring order Topology algorithm 

Degree MCC MNC BottleNeck 

1 CRH CRH CRH CALCA 
2 MUC6 MUC6 MUC6 CEACAM5
3 MUC1 MUC1 MUC1 WNT3A 
4 TAC1 TAC1 TAC1 FGF8 
5 CALCA CALCA CALCA FGF23 
6 MUC5B MUC5B MUC5B CRH 
7 MUCL1 MUCL1 MUCL1 MUC1 
8 GALNT17 GALNT17 GALNT17 KLK3 
9 SST SST SST LEP 
10 NTS NTS NTS ACP3 
11 WNT3A WNT3A WNT3A CYP24A1 
12 WNT2B WNT2B WNT2B MSMB 
13 WNT7A WNT7A WNT7A RGS11 
14 SFRP1 SFRP1 SFRP1 TWIST1 
15 FZD9 FZD9 FZD9 MAGEA4 
16 LEP FGF8 LEP JPH2 
17 ADIPOQ LEP ADIPOQ MLANA 
18 KLK3 ADIPOQ KLK3 NKX2-5 
19 ACP3 KLK3 ACP3 ATP1A2 
20 MYL9 ACP3 MYL9 MUC6 

 

Figure 6. Intersection of the top 20 genes ranked by different topology algorithms. 
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The top 20 genes calculated by each algorithm were intersected, i.e., the genes ranked in the top 20 
in all four topological algorithms were used as the core biomarkers for the screening, which increased 
the reliability of the gene ranking (as shown in Figure 6). Eight genes were identified as core 
biomarkers for postoperative recurrence of hepatocellular carcinoma: CRH, MUC6, MUC1, CALCA, 
WNT3A, LEP, KLK3, and ACP3. 

3. Biomarker functional studies 

The GO enrichment analysis was performed on the above 8 biomarker genes and 22 intersecting 
genes, and the GO categories with a test P value less than 0.05 were used as the enriched functional 
categories, and the enrichment results obtained are shown in Figures 7 and 8. The enrichment results 
are shown in Figures 7 and 8. It can be seen from Figure 7 that the differential genes were significantly 
enriched in 36 biological functional categories, of which the most enriched categories were biological 
process (BP) functional categories with 22 categories, while the significantly enriched cellular 
component (CC) and molecular function (MF) functional categories were 6 and 8 respectively. 

  

Figure 7. Map of GO functional categories for differential gene enrichment. 

Further analysis of the GO functional categories that were significantly enriched for the selected 
differential genes in Figure 8 showed that the three GO functional categories with the highest 
enrichment scores were the extracellular region, the plasma membrane, the complement activation, 
and the classical pathway. classical pathway). It is hypothesized that the abnormal expression of 
differential genes in patients with hepatocellular carcinoma undergoing R0 resection leads to altered 
immune function and thus affects the likelihood of recurrence of hepatocellular carcinoma after 
resection. This finding explains well the mechanism of biomarkers’ influence on the development of 
liver cancer. 

Using the NCBI gene font library to query the biological functions of 8 core genes, see Table 3, 
some biomarkers are associated with the occurrence and development of cancer, making the adhesion 
ability of cancer cells reduced and thus more likely to metastasize and recur, some markers affect the 
immune function of the organism, and then may affect the body’s anti-cancer function. Some 
biomarkers play a role in the formation of cells. 
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Figure 8. Differential gene GO enrichment scores. 

Table 3. Direction of modulation and biological functions of the eight genes. 

Gene Gene modulation 
direction 

Genetic function 

CRH Downregulated Encoding adrenocorticotropic release factors, protein levels are 
associated with Alzheimer’s disease

MUC6 Upregulated A member of the family encodes mucins, secretes, and forms an 
insoluble mucus barrier that protects the intestinal lumen 

MUC1 Upregulated Plays an important role in the formation of a protective mucosal 
barrier on the surface of the cell epithelium

CALCA Downregulated Encodes the peptide hormone calcitonin, which is involved in 
calcium regulation and plays a role in regulating phosphorus 
metabolism

WNT3A Downregulated It is related to tumorigenesis and developmental processes, 
including regulating cell fate and patterns during embryogenesis.

LEP Downregulated Mutations in the gene and its regulatory region, which play a major 
role in regulating energy homeostasis, can lead to severe obesity in 
human patients and pathological obesity with hypogonadism

KLK3 Downregulated It has the potential to act as a biomarker for novel cancers and other 
diseases and can be used to diagnose and monitor prostate cancer

ACP3 Downregulated Encode longer variants of the same type of variable splicing 
transcription

4. Model building and analysis of results 

4.1. Algorithm improvement 

For high-dimensional data, dimensionality reduction or feature selection is generally performed 
in order to reduce the difficulty of model learning [11]. The presence of redundant features makes 
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feature selection more necessary, and removing these irrelevant features not only reduces the learning 
effort, but also facilitates data collection. 

In this paper, a faster feature selection algorithm is designed based on the basic method of feature 
selection using random forests proposed by Genuer R et al. in 2010 and Yao Dengju et al. in 2014 [12]. 
The set of features from the previous round is used as the result. 

The essence of this strategy is to prioritize the smallest subset of features within a given error 
range, rather than the one with the highest test accuracy, thus allowing the screening to be stopped 
early and saving a lot of time. 

Let the original feature set be A and the sample set be D. The algorithm design is described by a 
pseudo code as follows:  

Minimum number of features to be initialized m  

Total number of initialized cross-validations k  

Initialize the proportion of features removed each time r  

Initialize the maximum error increment δ 

def ChooseFeatures (D, A)  

Let the candidate feature set A′ = A  

while |A′| ≥ m  

bestAcc = 0  

for i in range (k)  

Divide the training set D1, test set D2 from D  

RF = CreateRandomForest (D1, A′)  

Calculate the accuracy of RF on D2 acci  

if acci > bestAcc  

bestAcc = acci  

bestRF = RF  

# Random forest with highest accuracy for labeling test to rank features Accuracy of this round is 

taken as mean, accuracy = mean (acci)  

if first time in the loop  

Benchmarking accuracy baseAcc = accuracy  

elif baseAcc - accuracy > δ  # Stop iteration if error increment is too large  

break  

Let current filter Abest = A′  

The features in A′ are sorted by importance using bestRF to obtain the sequence L. A portion of the 

features are removed from the end of L in proportion r, and the remaining features are used as A′  

return Abes 

As the cross-validation process generates multiple random forests, the one with the highest test 
accuracy is selected to calculate the feature importance order for the current round. The flow chart for 
calculating feature importance is shown in Figure 9. 
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Figure 9. Flow chart of feature importance calculation. 

4.2. Model evaluation 

Since this is a classification problem, the loss function of the model is 0–1 loss, and the test error 
of the model is its average loss over the test set [13]. Let the input to the model f be X, Y be the true 
value of the corresponding X, and the test sample size be N. The formal definitions of the loss function 
L, the test error e and the test accuracy r are as follows: 

𝐿ሾ𝑌, 𝑓ሺ𝑋ሻሿ ൌ ൜
1,   𝑌 ് 𝑓ሺ𝑋ሻ
0,   𝑌 ൌ 𝑓ሺ𝑋ሻ 
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where I is the indicator function. 
The complexity of the model can be measured directly by the running time of the code segment 

on the same computer, or it can be compared by the number of leaf nodes in the decision tree. Recorded 
runtimes are obtained from a Python timer. The model was evaluated using a leave-out method, 
whereby 70% of the sample was divided into a training set and 30% into a test set; if an independent 
pruning set was required, both the training and pruning sets were 40% and the remaining 20% was the 
test set. In order to obtain stable evaluation results, random partitioning is repeated for training and 
testing, with the final observations averaged over five tests for simple cross-validation purposes. 

4.3. Analysis of results 

The random forest was tested and analyzed in the following areas: comparison with ordinary 
decision trees, testing the effect of generalization of the number of weak classifiers, and feature 
selection algorithms. 

4.3.1. Comparison of ordinary decision trees 

The sample sets were divided as follows: training set sample size 229; test set sample size 98. 
The construction parameters of the random forest and decision tree were all default, and the decision 
trees for comparison were no pruning and pessimistic error pruning, respectively, as shown in Table 4. 

Table 4. Comparative analysis of decision trees and random forests. 

Models Pruning 

algorithm 

Training time Prediction 

time (ms) 

Test accuracy 

(%) 

No pruning decision tree / 7.18 s 1.73 86.12 

Pessimistic error pruning decision tree PEP 7.18 s + 3.78 ms 0.76 89.19 

Random forest / 1.56 s 17.73 92.14 

4.3.2. Feature filtering algorithm 

The iteration stopping parameters are the minimum number of features and the permissible error 
increment, which have default values of 5 and 2.5% respectively. Other parameters that affect the 
execution time are the number of decision trees included in the random forest (default 10), the number 
of cross-validations (default 3), and the proportion of features rejected in each round (default 0.15). 
Because of the limited number of cases obtained, most of the parameters do not have a significant 
impact on the final results, so only the error increments are adjusted and the results are analyzed. The 
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eight feature genes CRH, MUC6, MUC1, CALCA, WNT3A, LEP, KLK3, and ACP3 were coded in 
the order of bits 1–8. The column shows the test accuracy of the resulting model trained using the 
screening results. 

Table 5. Results of feature selection. 

maxAccurDesc Filtered features (in order of importance) Test precision accuracy (%) 

2.5 (default) 3, 7, 4, 6 90.38 
4, 8, 6 91.32 

4, 5, 8, 1, 6 91.28 

8, 4, 5, 3, 6 90.78 

1.5 4, 5, 8, 6, 7, 3 92.08 

8, 4, 6, 5, 3, 1 92.19 

8, 5, 4, 6 92.58 

0.5 8, 4, 6, 3, 1, 6 92.01 

4, 8, 1, 7 92.62 

In general, the size of the filtered feature sets ranged from 3 to 6 (4.3 on average), which was 
higher than the original feature size; and their corresponding test accuracy did not decrease much 
compared to that before the screening (92.14%), but was within 2%, and could be the same as before 
the screening after adjusting the parameters. This proves that the algorithm used is effective and gives 
more accurate screening results, which are more accurate and feasible. Looking at the latter two cases 
in Table 5, it can be seen that they are both comparable to the pre-screening accuracy, but with 
maxAccurDesc of 2.5, fewer features are screened out overall, making this setting more appropriate 
for the current dataset. 

5. Prognostic effect of biomarkers of liver cancer recurrence 

Table 6. Categorical variable display table. 

Clinical variables category quantity 

Survival state Survive 204 
Death 98 

Gender Female 99 

Male 203 

Tumor grade G1 45 

G2 142 

G3 105 

G4 10 

TMN staging Ⅰ 154 

Ⅱ 78 

Ⅲ-Ⅳ 70 
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The influence of the screened biomarkers on the prognosis of patients is explored here, so the 
eight gene expression levels screened above are included as the independent variables of the Cox 
regression model, namely CRH, MUC6, MUC1, CALCA, WNT3A, LEP, KLK3, ACP3. In addition, 
because the prognosis of liver cancer patients may be related to some clinical factors, some clinical 
indicators of patients are also included, including the patient’s age, gender, tumor grade and TMN 
stage. The distribution of sample data is shown in Table 6. 

5.1. Univariate Cox regression analysis 

First, univariate Cox regression is performed separately for each variable, and the individual 
impact of each variable on survival is considered. The univariate Cox regression results for each 
variable are shown in Table 7. Univariate Cox regression showed that MUC1, CALCA, age, and TMN 
staging had a significant impact on patient survival. The effect of variables on a patient’s risk of death 
can be seen by the coefficients and HR values. A coefficient greater than 0 indicates that an increase 
in the value of the variable has a positive effect on the risk of death, and a decrease below 0 indicates 
that an increase in the value of the variable has a negative effect on the risk of death. An HR value 
greater than 1 indicates that an increase in the value of the variable increases the risk of death, and an 
increase in the value of the variable decreases the risk of death. 

Table 7. Results of single-factor Cox proportional hazard regression. 

Variable Coefficient 
 

HR value Lower HR limit 
(95%CI) 

Higher HR limit 
(95%CI) 

P value 

CRH 0.097 1.102 0.973 1.248 0.126 
MUC6 -0.030 0.971 0.814 1.158 0.739 

MUC1 -0.123 0.882 0.786 0.991 0.035* 

CALCA 0.157 1.170 1.019 1.343 0.026* 

WNT3A -0.068 0.934 0.793 1.100 0.416 

LEP -0.023 0.978 0.887 1.078 0.650 

KLK3 0.059 1.061 0.955 1.179 0.272 

ACP3 -0.051 0.950 0.866 1.043 0.283 

Age 0.016 1.017 1.000 1.033 0.044* 

Gender (female)      

Male -0.235 0.791 0.529 1.183 0.253 

Tumor grade (G1)      

G2 0.301 1.351 0.714 2.556 0.355 

G3 0.382 1.465 0.761 2.818 0.253 

G4 0.750 2.117 0.679 6.604 0.196 

TMN staging (Ⅰ)      

Ⅱ 0.548 1.730 1.051 2.847 0.031* 

Ⅲ-Ⅳ 1.063 2.896 1.819 4.611 <0.001***

Note: p < 0.05*, p < 0.01**, p < 0.001***. 
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From the results of univariate Cox regression analysis, it can be seen that the risk of death is 
significantly increased by the decrease of MUC1 expression, and the increase of CALCA expression 
is significantly increased in the risk of death. Age is also an indicator of a significant impact on the 
risk of death, and older patients have a higher risk of death after resection of liver cancer. Although 
the tumor grade was not significant, the patients with G2, G3, and G4 had higher HR values and 
increased risk of death compared with patients with G1. Patients with TMN stage II, III, and IV had a 
significantly higher risk of death than patients with stage I. TMN staging had a significant effect on 
survival, indicating that even after surgical resection, the development and malignancy of the tumor 
before resection would significantly affect the survival of patients after resection. 

5.2. Multivariate Cox regression analysis 

Univariate Cox regression identified variables that had a significant impact on survival, namely 
MUC1, CALCA, age, and TMN stage. Next, these variables were incorporated into multivariate Cox 
regression to jointly construct a postoperative prognosis model for patients with liver cancer. The 
results of the multivariate Cox regression analysis are shown in Table 8. 

Table 8. Multivariate Cox proportional hazard regression results. 

Variable Coefficient 
 

HR value Lower HR limit 
(95%CI) 

Higher HR limit 
(95%CI) 

P value 

MUC1 -0.132 0.877 0.777 0.989 0.032* 

CALCA 0.175 1.192 1.036 1.371 0.014* 

Age 0.020 1.020 1.004 1.036 0.015* 

TMN staging (Ⅰ)      

Ⅱ 0.385 1.470 0.881 2.453 0.140 

Ⅲ-Ⅳ 1.051 2.862 1.795 4.563 <0.001***

As can be seen from Table 8, the HR value of MUC1 is less than 1, while the HR value of GLI2, 
Age, and TMN Staging II, III-IV is greater than 1. Explanations The increased expression of MUC1 
reduces the risk of postoperative death in patients with liver cancer. Increased expression of CALCA, 
as well as an increase in age and TMN stage, significantly increase the risk of postoperative death in 
patients with liver cancer. 

6. Conclusions 

In this paper, a method was developed to screen for genetic biomarkers of hepatocellular 
carcinoma recurrence by combining differential ploidy, hypothesis testing, and network topology 
analysis, and to obtain and integrate genetic sequencing data and clinical data from the TCGA database. 
The differential genes were examined and GO enrichment analysis was performed to investigate the 
functional mechanisms of these differential genes, which were found to play an important role in the 
immune function and cellular constitutive function of the body. Further, a protein interaction network 
of differential genes was constructed using the String database, and eight genetic biomarkers for liver 
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cancer recurrence were identified by ranking the importance of the nodes in the network using four 
topological algorithms and taking the intersection. 

The results showed that the random forest has better generalization ability and training speed than 
the pruned decision tree, and the improved feature screening algorithm can significantly reduce the 
feature set while maintaining the prediction accuracy. 

This study was conducted only for one cancer type, liver cancer, and the screening method and 
model construction process of this paper can be applied to other cancer types in order to obtain a 
universal method that can be applied to many different cancer types. 
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