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Abstract: In this paper, we analyse a dynamical system taking into account the asymptomatic
infection and we consider optimal control strategies based on a regular network. We obtain basic
mathematical results for the model without control. We compute the basic reproduction number (R) by
using the method of the next generation matrix then we analyse the local stability and global stability
of the equilibria (disease-free equilibrium (DFE) and endemic equilibrium (EE)). We prove that DFE
is LAS (locally asymptotically stable) when R < 1 and it is unstable when R > 1. Further, the
existence, the uniqueness and the stability of EE is carried out. We deduce that when R > 1, EE exists
and is unique and it is LAS. By using generalized Bendixson-Dulac theorem, we prove that DFE is
GAS (globally asymptotically stable) if R < 1 and that the unique endemic equilibrium is globally
asymptotically stable when R > 1. Later, by using Pontryagin’s maximum principle, we propose
several reasonable optimal control strategies to the control and the prevention of the disease. We
mathematically formulate these strategies. The unique optimal solution was expressed using adjoint
variables. A particular numerical scheme was applied to solve the control problem. Finally, several
numerical simulations that validate the obtained results were presented.

Keywords: COVID-19; SIS epidemic model; asymptomatic and symptomatic individuals; nonlinear
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1. Introduction

COVID-19 is one of the three Coronaviruses that has caused epidemic outbreaks over the last two
decades. It can spread through close contact, coughing, sneezing, or talking. For COVID-19, there are
two types of infected individuals: one is symptomatic infected individuals, defined as those who show
symptoms (such as fever, cough, sore throat, etc.) after obtaining infected. The other is asymptomatic
infected individuals, defined as those who do not show symptoms after obtaining infected [1, 2].
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Asymptomatic cases are not confirmed cases which are divided into two different states. The first one
is the asymptomatic individuals who show no symptoms for the whole time of the infection. The
second one is the asymptomatic individuals who exhibit symptoms after a period of the asymptomatic
infection. In the generally tested subgroup, the proportion of asymptomatic individuals who are found
to be positive for COVID-19 is alarmingly high. Severe Acute Respiratory Syndrome Coronavirus 2
(SARS-CoV-2) shows that asymptomatic and mildly symptomatic infections may be the key to
disease transmission [3, 4]. Most asymptomatic infected individuals do not seek medical help because
they have no obvious clinical signs which leads to the rapid spread of the disease. Therefore, the
prevention and control of this specific type of patient on a global scale is a huge challenge and
requires more attention from the world.

The global health crisis of the Coronavirus Covid-19 has brought to light the role of mathematical
modeling in political and health decision-making [5–8]. We will study the SIS model inspired by the
current Coronavirus outbreak. Mathematical models of infectious diseases have been used for over a
decade to study and understand the mechanism of disease spread, predict the future of epidemics, and
determine the best treatment strategy to protect human health. The famous SIR and SEIR
mathematical epidemic models are the most used models providing good descriptions of infectious
diseases especially when taking account of either symptomatic and asymptomatic infectious or time
delay [9–12].

In this work, we have designed a compartmental ODE model to investigate the COVID-19
spreading dynamics incorporating non-linear saturated incidence rates for both asymptomatic and
symptomatic infection. The incidence rate is an essential component for infectious disease
transmission in a mathematical model for both symptomatic and asymptomatic infectious [13]. In the
epidemiology perception, incidence rate measures the number of new cases of a disease within a
specified time duration as a percentage of the number of persons at threat for the disease [14]. We
have also included two control functions designing quarantine strategies which is used to reduce the
contact among infected individuals. Here we have studied the qualitative nature of the model through
investigation of local and global nature of equilibrium points. Finally we have characterised optimal
control to reduce the outbreak size and the control implementation costs. Results of the optimal
control model show that optimal control provides significant reduction in COVID-19 spread.

The paper is organised as follows: In Section 2, we have formulated the proposed model and have
studied the boundedness and positivity of solutions. Steady state analysis with constant controls have
been done in Section 3 with respect to the basic reproduction number (R). In Section 4, we
characterised the optimal control model and we give an efficiency analysis. Finally, some numerical
simulations and discussions were given in Section 5. The conclusions of our study has been reported
in Section 6.

2. Model development

In this paper, we have studied a compartmental ODE model to investigate the COVID-19
spreading dynamics using non-linear saturated incidences. For this purpose we have formulated an
ODE model by splitting the total host population Λ into three disjoint epidemiological classes
specifically susceptible individuals S (t), asymptomatic infectious individuals Ia(t) and symptomatic
infectious individuals Is(t) i.e. Λ = S (t) + Ia(t) + Is(t).
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Figure 1. Dynamical system taking into account the asymptomatic infection. Circles
describe the compartments S , Ia and Is and the arrows (and labels) correspond to rates of
transition between them.

To formulate the model we have considered the following factors:

• Susceptible individual once infected has a probability 0 < p < 1 to be symptomatic and then a
probability 0 < 1 − p < 1 to be asymptomatic.
• Susceptible individual is infected by asymptomatic infected individuals at a nonlinear increasing

rate fa(Ia)S and by symptomatic infected individuals at a nonlinear increasing rate fs(Is)S . The
importance of these increasing incidence rates is that the rate of effective contacts between
infected individuals and susceptible individuals increases with the increase of number of
infective individuals.
• asymptomatic and symptomatic individuals are recovered at constant rates σa and σs,

respectively.
• Recovered individuals can catch the diseases and then they are added to susceptible compartment.
• asymptomatic individuals become symptomatic individuals at a constant rate γ.
• Susceptible individuals are recruited at constant rate mΛ, natural mortality rate is m.

According to the epidemiological assumptions, we proposed the following mathematical model
Ṡ = mΛ − S ( fa(Ia) + fs(Is)) + σaIa + σsIs − mS ,
İa = (1 − p)S ( fa(Ia) + fs(Is)) − γIa − mIa − σaIa,

İs = p S ( fa(Ia) + fs(Is)) + γIa − mIs − σsIs,

(2.1)

with positive initial condition (S 0, I0
a , I

0
s ) ∈ R3

+ .

3. Mathematical analysis

Assumption 1. fa and fs are bounded, non-negative C1(R+), concave and increasing functions with
fa(0) = fs(0) = 0.
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Table 1. Parameters and variables of system (3.2).

Notation Definition

S (t) Number of susceptible individuals at time t
State variables Ia(t) Number of asymptomatic infected individuals at time t

Is(t) Number of symptomatic infected individuals at time t

Functions fa Saturated incidence rate in the asymptomatic compartment
fs Saturated incidence rate in the symptomatic compartment

Λ Recruitment rate
γ Rate at which an individual enters the symptomatic compartment from

the asymptomatic compartment.
1/γ Duration time spent in compartment Ia

σa Per-capita recovery rate of the infected individual in the asymptomatic
compartment

σs Per-capita recovery rate of the infected individual in the symptomatic
compartment

Parameters m Per-capita natural mortality rate
0 < p < 1 Probability at which those newly infected individuals enter the

symptomatic compartment
(1 − p) Probability at which those newly infected individuals enter the

asymptomatic compartment

Lemma 1. The general non-linear incidence rates fa and fs satisfy f ′a(I)I ≤ fa(I) ≤ f ′a(0)I and f ′s (I)I ≤
fs(I) ≤ f ′s (0)I, ∀I > 0.

Proof. Let I, I1 ∈ R+, and the function g1(I) = fa(I) − I f ′a(I). Since f ′a(I) ≥ 0 ( fa is increasing
function) and f ′′a (I) ≤ 0 ( fa is concave) then g′1(I) = −I f ′′a (I) ≥ 0 and g1(I) ≥ g1(0) = 0. Therefore,
fa(I) ≥ I f ′a(I). Similarly, let g2(I) = fa(I) − I f ′a(0) then g′2(I) = f ′a(I) − f ′a(0) ≤ 0 once fa is a concave
function. Thus g2(I) ≤ g2(0) = 0 and fa(I) ≤ I f ′a(0). Similarly for the function fs. □

It is necessary that the state variables S (t), Ia(t) and Is(t) remain non-negative for all t ≥ 0.

Proposition 1. Ω0 =
{
(S , Ia, Is) ∈ R3

+ / S + Ia + Is = Λ
}

is a positively invariant compact set for
model (2.1).

Proof. Assume that the initial condition (S 0, I0
a , I

0
s ) ∈ R3

+ . If S = 0 then Ṡ = mΛ + σaIa + σsIs > 0
therefore S (t) > 0 for all t > 0. Similarly, assume that Ia = 0 then İa = (1 − p)S fs(Is) ≥ 0 therefore
Ia(t) ≥ 0 for all t > 0. By the same way, assume that Is = 0 therefore İs = pS fa(Ia) + γIa ≥ 0 then
Is(t) ≥ 0 for all t > 0. Therefore the model (3.2) admits a non-negative solution.
By summing the equations of (2.1), we get, for T = S + Ia + Is − Λ, the following equation :

Ṫ = Ṡ + İa + İs = mΛ − mS − mIa − mIs = −mT.

Hence

T (t) = T (0)e−mt. (3.1)

Hence, Ω0 is invariant for the model (2.1) due to all variables are non-negative. □

Mathematical Biosciences and Engineering Volume 20, Issue 3, 5298–5315.



5302

Using the conservation principles, we can compute S as function of Ia and Is :

S = Λ − Ia − Is.

Now, we can reduce the analysis of the original system (2.1) to the analysis of the following two-
dimensional limiting system on the invariant set Ω :{

İa = (1 − p)(Λ − Ia − Is)( fa(Ia) + fs(Is)) − γIa − mIa − σaIa,

İs = p(Λ − Ia − Is)( fa(Ia) + fs(Is)) + γIa − mIs − σsIs,
(3.2)

with positive initial condition (I0
a , I

0
s ) ∈ R2

+ .
Ω =

{
(Ia, Is) ∈ R2

+ / Ia + Is ≤ Λ
}

is a positively invariant compact set for model (3.2). It is obvious that
E0 = (0, 0) is the only disease-free equilibrium of system (3.2).

The global behavior of our system inevitably depends on the basic reproduction number (R), that
is, the average number of secondary cases produced by an infectious individual who is introduced into
an established population only of susceptible.

To drive the basic reproduction number (R) for complex compartmental models, we use the next-
generation operator approach proposed by Diekmann et al. [15,16]. Following the approach of van den
Driessche and Watmough, we can rewrite (3.2)(

İa

İs

)
=

(
(1 − p)(Λ − Ia − Is)( fa(Ia) + fs(Is))
p(Λ − Ia − Is)( fa(Ia) + fs(Is))

)
−

(
(γ + m + σa)Ia

−γIa + (m + σs)Is

)
= F −V (3.3)

where F denotes the rate of appearance of new infections, and V denotes the rate of transfer of
individuals into or out of each population set. Furthermore,

F = DF (E0) =
(

(1 − p)Λ f ′a(0) (1 − p)Λ f ′s (0)
pΛ f ′a(0) pΛ f ′s (0)

)
,V = DV(E0) =

(
(γ + m + σa) 0

−γ (m + σs)

)

V−1 =


1

(γ + m + σa)
0

γ
1

(m + σs)

 , FV−1 = Λ


(1 − p) f ′a(0)
(γ + m + σa)

+ γ(1 − p) f ′s (0)
(1 − p) f ′s (0)

(m + σs)
p f ′a(0)

(γ + m + σa)
+ γp f ′s (0)

p f ′s (0)
(m + σs)

 .
Since det(FV−1) = 0, then one of the eigenvalues is zero. Therefore, we can deduce the second

eigenvalue since their sum is equal to the trace of the matrix FV−1. Then, the basic reproduction
number which is the spectral radius of FV−1 ( the maximum of the absolute values of its eigenvalues)
is given by

R =
(1 − p)Λ f ′a(0)
(γ + m + σa)

+ γ(1 − p)Λ f ′s (0) +
pΛ f ′s (0)
(m + σs)

=
(1 − p)Λ f ′a(0)
(γ + m + σa)

+
(p + γ(1 − p)(m + σs))Λ

(m + σs)
f ′s (0)

≜ R1 + R2.

(3.4)

Proposition 2. The model (3.2) admits a unique disease-free equilibrium E0 = (0, 0) and a unique
endemic equilibrium E∗ = (I∗a, I

∗
s ) such that I∗a, I

∗
s > 0.
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Proof. Equilibria of (3.2) satisfy{
0 = (1 − p)(Λ − Ia − Is)( fa(Ia) + fs(Is)) − γIa − mIa − σaIa,

0 = p(Λ − Ia − Is)( fa(Ia) + fs(Is)) + γIa − mIs − σsIs,
(3.5)

which reduces to

(Λ − Ia − Is)( fa(Ia) + fs(Is)) =
(γ + m + σa)Ia

(1 − p)
=
−γIa + (m + σs)Is

p
, (3.6)

Thus 
Is =

γ + p(m + σa)
(1 − p)(m + σs)

Ia

(Λ − Ia − Is)( fa(Ia) + fs(Is)) =
(γ + m + σa)Ia

(1 − p)
,

(3.7)

We conclude that from (3.6)(
Λ − Ia −

γ + p(m + σa)
(1 − p)(m + σs)

Ia

) (
fa(Ia) + fs

(
γ + p(m + σa)

(1 − p)(m + σs)
Ia

))
=

(γ + m + σa)Ia

(1 − p)
.

We can write this equation on the form

Iag(Ia) = 0

where the function g given by

g(Ia) =
(
Λ − Ia −

γ + p(m + σa)
(1 − p)(m + σs)

Ia

) 
fa(Ia)

Ia
+

fs

(
γ + p(m + σa)

(1 − p)(m + σs)
Ia

)
Ia

 −
(γ + m + σa)

(1 − p)
.

• If Ia = 0, then Is = 0. This equilibrium named the disease-free equilibrium will be noted here by
E0 = (0, 0).
• If Ia , 0, then g(Ia) = 0. Let us calculate the derivative of the function g given by

g′(Ia) = −(1 +
γ + p(m + σa)

(1 − p)(m + σs)
Ia)(

fa(Ia)
Ia
+

fs(
γ + p(m + σa)

(1 − p)(m + σs)
Ia)

Ia
) + (Λ − Ia −

γ + p(m + σa)
(1 − p)(m + σs)

Ia)

(
f ′a(Ia)Ia − fa(Ia)

I2
a

+

f ′s (
γ + p(m + σa)

(1 − p)(m + σs)
Ia) − fs(

γ + p(m + σa)
(1 − p)(m + σs)

Ia)Ia

I2
a

).

The functions fa and fs satisfy f ′a(I)I ≤ fa(I) and f ′s (I)I ≤ fs(I), ∀I ≥ 0 and all variables are
non-negative, hence g is an increasing function and satisfies g′(Ia) < 0.
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An easy calculation gives

lim
Ia→ 0

g(Ia) = lim
Ia→ 0

(Λ − Ia −
γ + p(m + σa)

(1 − p)(m + σs)
Ia)(

fa(Ia)
Ia
+

fs

(
γ + p(m + σa)

(1 − p)(m + σs)
Ia

)
Ia

) −
(γ + m + σa)

(1 − p)

= Λ

(
f ′a(0) +

γ + p(m + σa)
(1 − p)(m + σs)

f ′s (0)
)
−

(γ + m + σa)
(1 − p)

=
(γ + m + σa)

(1 − p)

(
Λ(1 − p)

(γ + m + σa)
f ′a(0) +

Λ(γ + p(m + σa))
(γ + m + σa)(m + σs)

f ′s (0) − 1
)

=
(γ + m + σa)

(1 − p)
(R − 1) ,

and

g (Λ) = −
γ + p(m + σa)

(1 − p)(m + σs)
Λ


fa(Λ)
Λ
+

fs

(
γ + p(m + σa)

(1 − p)(m + σs)
Λ

)
Λ

 −
(γ + m + σa)

(1 − p)
< 0.

Since R > 1, g(Λ) < 0 and lim
Ia→ 0

g(Ia) < 0, then g(Ia) = 0 has a unique positive solution I∗a in (0,Λ)

and therefore the equilibrium state E∗ = (I∗a, I
∗
s ) is unique with I∗s =

γ + p(m + σa)
(1 − p)(m + σs)

I∗a.

□

3.1. Local analysis

In this subsection, the local stability behaviours of equilibria are discussed.

Theorem 1. E0 is LAS when R < 1 and it is unstable when R > 1.

Proof. The Jacobian matrix given at the equilibrium point E0 is

J0 =

(
(1 − p)Λ f ′a(0) − (γ + m + σa) (1 − p)Λ f ′s (0)

pΛ f ′a(0) + γ pΛ f ′s (0) − (m + σs)

)
.

The trace is given by

Trace (J0) = (1 − p)Λ f ′a(0) + pΛ f ′s (0) − (γ + m + σa) − (m + σs).

Since R =
pΛ f ′s (0)
(m + σs)

+
(1 − p)Λ f ′a(0)
(γ + m + σa)

+
(1 − p)γΛ f ′s (0)

(γ + m + σa)(m + σs)
then when R < 1, it is obvious that

pΛ f ′s (0)
(m + σs)

< 1,
(1 − p)Λ f ′a(0)
(γ + m + σa)

< 1 therefore Trace (J0) < 0. The determinant is given by

Det (J0) =
(
(1 − p)Λ f ′a(0) − (γ + m + σa)

) (
pΛ f ′s (0) − (m + σs)

)
− (1 − p)Λ f ′s (0)

(
pΛ f ′a(0) + γ

)
= − p(γ + m + σa)Λ f ′s (0) + (γ + m + σa)(m + σs) − (1 − p)(m + σs)Λ f ′a(0) − (1 − p)γΛ f ′s (0)

= (γ + m + σa)(m + σs)
(
1 −

pΛ f ′s (0)
(m + σs)

−
(1 − p)Λ f ′a(0)
(γ + m + σa)

−
(1 − p)γΛ f ′s (0)

(γ + m + σa)(m + σs)

)
= (γ + m + σa)(m + σs)(1 − R) > 0 if R > 1.

If R < 1, then we have negative eigenvalues. Therefore, E0 is LAS. Whereas, if R > 1, E0 is therefore
unstable. □
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Theorem 2. E∗ is LAS when R > 1.

Proof. For the equilibrium point E∗, the Jacobian is given by J∗ =
(

a11 a12

a21 a22

)
where

a11 = −(1 − p)( fa(I∗a) + fs(I∗s )) + (1 − p)(Λ − I∗a − I∗s ) f ′a(I∗a) − (γ + m + σa)

= −(1 − p)( fa(I∗a) + fs(I∗s )) + (1 − p)(Λ − I∗a − I∗s ) f ′a(I∗a) − (1 − p)(Λ − I∗a − I∗s )
( fa(I∗a) + fs(I∗s ))

I∗a
= −(1 − p)( fa(I∗a) + fs(I∗s )) + (1 − p)(Λ − I∗a − I∗s )

(
f ′a(I∗a) −

fa(I∗a)
I∗a

)
− (1 − p)(Λ − I∗a − I∗s )

fs(I∗s )
I∗a

≤ −(1 − p)( fa(I∗a) + fs(I∗s )) − (1 − p)(Λ − I∗a − I∗s )
fs(I∗s )

I∗a
,

a22 = −p( fa(I∗a) + fs(I∗s )) + p(Λ − I∗a − I∗s ) f ′s (I∗s ) − (m + σs)

= −p( fa(I∗a) + fs(I∗s )) + p(Λ − I∗a − I∗s ) f ′s (I∗s ) − p(Λ − I∗a − I∗s )
( fa(I∗a) + fs(I∗s ))

I∗s
− γ

I∗a
I∗s

= −p( fa(I∗a) + fs(I∗s )) + p(Λ − I∗a − I∗s )
(

f ′s (I∗s ) −
fs(I∗s )

I∗s

)
− p(Λ − I∗a − I∗s )

fa(I∗a)
I∗s
− γ

I∗a
I∗s

≤ −p( fa(I∗a) + fs(I∗s )) − p(Λ − I∗a − I∗s )
fa(I∗a)

I∗s
− γ

I∗a
I∗s
,

a12 = −(1 − p)( fa(I∗a) + fs(I∗s )) + (1 − p)(Λ − I∗a − I∗s ) f ′s (I∗s ),
a21 = −p( fa(I∗a) + fs(I∗s )) + p(Λ − I∗a − I∗s ) f ′a(I∗a) + γ.

The trace is given by

Trace (J∗) ≤ −( fa(I∗a) + fs(I∗s )) − (1 − p)(Λ − I∗a − I∗s )
fs(I∗s )

I∗a
− p(Λ − I∗a − I∗s )

fa(I∗a)
I∗s
− γ

I∗a
I∗s
< 0

and the determinant is given by

Det (J∗) ≥
(
− (1 − p)( fa(I∗a) + fs(I∗s )) − (1 − p)(Λ − I∗a − I∗s )

fs(I∗s )
I∗a

)
×(

− p( fa(I∗a) + fs(I∗s )) − p(Λ − I∗a − I∗s )
fa(I∗a)

I∗s
− γ

I∗a
I∗s

)
−
(
− (1 − p)( fa(I∗a) + fs(I∗s )) + (1 − p)(Λ − I∗a − I∗s ) f ′s (I∗s )

)
×(

− p( fa(I∗a) + fs(I∗s )) + p(Λ − I∗a − I∗s ) f ′a(I∗a) + γ
)

= p(1 − p)(Λ − I∗a − I∗s )( fa(I∗a) + fs(I∗s ))(
fa(I∗a)

I∗s
+

fa(I∗s )
I∗a

)

+p(1 − p)(Λ − I∗a − I∗s )2

(
fs(I∗s )

I∗a

fa(I∗a)
I∗s
− f ′a(I∗a) f ′s (I∗s )

)
+γ(1 − p)( fa(I∗a) + fs(I∗s ))

(
I∗a
I∗s
+ 1

)
+ γ(1 − p)(Λ − I∗a − I∗s )

(
fs(I∗s )

I∗s
− f ′s (I∗s )

)
+p(1 − p)(Λ − I∗a − I∗s )( fa(I∗a) + fs(I∗s ))( f ′a(I∗a) + f ′s (I∗s )) > 0

By Lemma 1, the functions fa and fs satisfy f ′a(I)I ≤ fa(I) and f ′s (I)I ≤ fs(I), ∀I ≥ 0 and since
(Λ− I∗a− I∗s ) > 0, then, all terms of Det(J∗) are either positive or non-negative and therefore Det(J∗) > 0
and the equilibrium point E∗ (which exists only if R > 1) is LAS. □
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3.2. Global analysis

Here, we discuss the global behaviour of the equilibrium points. For proving the global stability
of the positive equilibrium points E0 and E∗, we will exclude the existence of periodic solutions of
system (3.2) by using generalized Bendixson-Dulac theorem. We first prove that the system (3.2) has
no periodic orbit nor poly-cycle on Ω

Theorem 3. System (3.2) has no periodic orbits nor poly-cycles on Ω.

Proof. Consider a solution of system (3.2) onΩ. Let ξ1 = ln(Ia) and ξ2 = ln(Is) then the transformation
of (3.2) gives the following new system:{

ξ̇1 = h1(ξ1, ξ2) := (1 − p)(Λ − eξ1 − eξ2)( fa(eξ1) + fs(eξ2))e−ξ1 − (γ + m + σa),
ξ̇2 = h2(ξ1, ξ2) := p(Λ − eξ1 − eξ2)( fa(eξ1) + fs(eξ2))e−ξ2) + γeξ1e−ξ2 − (m + σs).

(3.8)

We have

∂h1

∂ξ1
+
∂h2

∂ξ2
= −

(
fa(eξ1) + fs(eξ2)

)
− γeξ1e−ξ2 − (Λ − eξ1 − eξ2)

(
(1 − p) fs(eξ2)e−ξ1 + p fa(eξ1)e−ξ2

)
−(1 − p)(Λ − eξ1 − eξ2)

(
fa(eξ1) − f ′a(eξ1)eξ1

)
e−ξ1 − p(Λ − eξ1 − eξ2)

(
fs(eξ2) − f ′s (eξ2)eξ2

)
e−ξ2

< 0 ∀ ξ1, ξ2 ∈ R.

Thus using Dulac criterion [17,18], system (3.8) has no periodic trajectory. Therefore system (3.2) has
no periodic orbit inside ⊗. □

Theorem 4. The solution of (3.2) converges asymptotically to :

• E0 if R < 1.
• E∗ if R > 1.

Proof. We restrict the proof to the case where R > 1. The other case can be done similarly. The
system (3.2) admits two equilibrium points E0 and E∗. E0 is an unstable node, and only E∗ is a stable
node. We aim to prove that E∗ is globally asymptotically stable. Let Ia(0) > 0, Is(0) > 0 and ω the
ω-limit set of (Ia(0), Is(0)). ω is an invariant compact set and ω ⊂ Ω̄. M can’t be E0 because E0 is
an unstable node and can’t be a part of the ω-limit set of (Ia(0), Is(0)). System (3.2) has no periodic
orbit inside Ω. Using the Poincaré-Bendixon Theorem [17, 18], E∗ is a globally asymptotically stable
equilibrium point for system (3.2). □

4. Optimal control problem

The necessary conditions that an optimal pair must satisfy come from Pontryagin’s Maximum
Principle. Our goal is to minimize the number of infected individuals either asymptomatic or
symptomatic while keeping those corresponding cost of the quarantine strategies low during the
epidemic. Thus, we define a control function set as V = {v1, v2} where v1(t) and v1(t) are the control
variables for the quarantine strategies measuring the effort to reduce the contact between susceptible
individuals and both kind of infected individuals (asymptomatic and symptomatic), respectively.
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Therefore the model (2.1) is modified to the following new model:


Ṡ = mΛ − S ((1 − v1) fa(Ia) + (1 − v2) fs(Is)) + σaIa + σsIs − mS ,
İa = (1 − p)S ((1 − v1) fa(Ia) + (1 − v2) fs(Is)) − γIa − mIa − σaIa,

İs = p S ((1 − v1) fa(Ia) + (1 − v2) fs(Is)) + γIa − mIs − σsIs,

(4.1)

Several optimal strategies for epidemic models were proposed in several previous works [19–22].
In our case, we discussed an optimal strategy that reduces the contact between infected and uninfected
individuals to optimise the number of infective individuals.

Recall that the set Ω = {(S , Ia, Is) ∈ R3
+ / S + Ia + Is = Λ} is a positively invariant compact set for

(4.1).
Assume that fa and fs are globally Lipschitz with Lipschitz constants La and Ls where f̄a = sup

I>0
fa(I)

and f̄s = sup
I>0

fs(I). Define the space

vad =
{
(v1, v2)| v1, v2 Lebesque measurable, 0 < v̄1 ≤ v1 ≤ 1, 0 < v̄2 ≤ v2 ≤ 1, 0 ≤ t ≤ T

}
where v̄1 and v̄1 are two non-negative constants.

Our goal is to control the number infected individuals and minimize the cost of the effort to reduce
the contact between susceptible and infected individuals (v1, v2). The optimal control problem
considered here is by minimizing an objective functional J(v1, v2) as following

min
v1,v2∈vad

J(v1, v2) = min
v1,v2∈vad

∫ T

0

(α1

2
v2

1(t) +
α2

2
v2

2(t) + β1Ia(t) + β2Is(t)
)

dt subject to (4.1). (4.2)

β1 and β2 are two constants.
Let φ = (S , Ia, Is)t, then we express (4.1) as

φ̇ = Bφ + ψ(φ) = Z(φ) (4.3)

where B =


−m σa σs

0 −(m + σa + γ) 0
0 γ −(m + σs)

 and

ψ(φ) =


mΛ − S ((1 − v1) fa(Ia) + (1 − v2) fs(Is))
(1 − p)S ((1 − v1) fa(Ia) + (1 − v2) fs(Is))

pS ((1 − v1) fa(Ia) + (1 − v2) fs(Is))

.
Proposition 3. Z(φ) is a Lipschitz continuous function.
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Proof. First we shall prove that the function ψ is uniformly Lipschitz and continuous since

|ψ(φ1) − ψ(φ2)| = 2(1 − v1)
∣∣∣∣ fa(Ia1)S 1 − fa(Ia2)S 2

∣∣∣∣ + 2(1 − v2)
∣∣∣∣ fs(Is1)S 1 − fs(Is2)S 2

∣∣∣∣
= 2(1 − v1)

∣∣∣∣S 1( fa(Ia1) − fa(Ia2)) + fa(Ia2)(S 1 − S 2)
∣∣∣∣

+2(1 − v2)
∣∣∣∣S 1( fs(Is1) − fs(Is2)) + fs(Is2)(S 1 − S 2)

∣∣∣∣
≤ 2(1 − v̄1)Λ

∣∣∣∣ fa(Ia1) − fa(Ia2)
∣∣∣∣ + 2(1 − v̄1) f̄a

∣∣∣∣(S 1 − S 2)
∣∣∣∣

+2(1 − v̄2)Λ
∣∣∣∣ fs(Is1) − fs(Is2)

∣∣∣∣ + 2(1 − v̄2) f̄s

∣∣∣∣(S 1 − S 2)
∣∣∣∣

≤ 2(1 − v̄1)ΛLa

∣∣∣∣Ia1 − Ia2

∣∣∣∣ + 2(1 − v̄1) f̄a

∣∣∣∣(S 1 − S 2)
∣∣∣∣

+2(1 − v̄2)ΛLs

∣∣∣∣Is1 − Is2

∣∣∣∣ + 2(1 − v̄2) f̄s

∣∣∣∣(S 1 − S 2)
∣∣∣∣

≤ M|φ1 − φ2|

where M = 2 max
(
2(1 − v̄1)ΛLa, 2(1 − v̄1) f̄a, 2(1 − v̄2)ΛLs, 2(1 − v̄2) f̄s

)
.

|Bφ1 − Bφ2| ≤ ∥B∥|φ1 − φ2| (4.4)

where ∥.∥ is the matrix norm. Then |Z(φ1) − Z(φ2)| ≤ H|φ1 − φ2| where the constant H = max(M, ∥B∥).
Therefore Z is Lipschitz continuous function. □

As the function ψ is uniformly Lipschitz and continuous then there exists a unique solution for the
system (4.3). First, introduce the Lagrangian for the optimal problem (4.1) and (4.2)

L(S , Ia, Is, v1, v2) =
α1

2
v2

1 +
α2

2
v2

2 + β1Ia + β2Is. (4.5)

We derive necessary conditions on the optimal control by applying Pontryagin’s Maximum
Principle [23]. Let the Hamiltonian H for the control problem (4.1) and (4.2):

H(S , Ia, Is, v1, v2, λ1, λ2, λ3) =
α1

2
v2

1 +
α2

2
v2

2 + β1Ia + β2Is + λ1Ṡ + λ2 İa + λ3 İs

=
α1

2
v2

1 +
α2

2
v2

2 + β1Ia + β2Is

+λ1

(
mΛ − S ((1 − v1) fa(Ia) + (1 − v2) fs(Is)) + σaIa + σsIs − mS

)
+λ2

(
(1 − p)S ((1 − v1) fa(Ia) + (1 − v2) fs(Is)) − γIa − mIa − σaIa

)
+λ3

(
pS ((1 − v1) fa(Ia) + (1 − v2) fs(Is)) + γIa − mIs − σsIs

)
(4.6)

where λ1, λ2 and λ3 are the adjoint variables satisfying the following adjoint equations
λ̇1 = −

∂H
∂S
= mλ1 +

(
(1 − v1) fa(Ia) + (1 − v2) fs(Is)

)(
λ1 − (1 − p)λ2 − pλ3

)
,

λ̇2 = −
∂H
∂Ia
= −β1 − σaλ1 + (γ + m + σa)λ2 − γλ3 + S (1 − v1) f ′a(Ia)

(
λ1 − (1 − p)λ2 − pλ3

)
,

λ̇3 = −
∂H
∂Is
= −β2 + S ((1 − v2) f ′s (Is)

(
λ1 − (1 − p)λ2 − pλ3

)
− σsλ1 + λ3(m + σs).

(4.7)

Final conditions are given as follows: λ1(T ) = 0, λ2(T ) = 0, λ3(T ) = 0.
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The Hamiltonian is minimized with respect to the control variables as following:

min
v1,v2,λ1,λ2,λ3

H(S , Ia, Is, v1, v2, λ1, λ2, λ3, t). (4.8)

The derivative of the Hamiltonian H with respect to v1, and v2 is given by

∂H
∂v1
= α1v1 + S fa(Ia)(λ1 − (1 − p)λ2 − pλ3),

∂H
∂v2
= α2v2 + S fs(Is)(λ1 − (1 − p)λ2 − pλ3). (4.9)

The optimal control is obtained by resolving the necessary conditions:
∂H
∂v1
= 0 and

∂H
∂v2
= 0 on

some non-trivial intervals. In this case, the controls are expressed as

v∗1(t) =
S fa(Ia)(−λ1 + (1 − p)λ2 + pλ3)

α1
and v∗2(t) =

S fs(Is)(−λ1 + (1 − p)λ2 + pλ3)
α2

once

v̄1 ≤
S fa(Ia)(−λ1 + (1 − p)λ2 + pλ3)

α1
≤ 1 and v̄2 ≤

S fs(Is)(−λ1 + (1 − p)λ2 + pλ3)
α2

≤ 1.

5. Numerical simulations

For all numerical simulations, we used the Monod function as a non-linear incidence rates satisfying

the assumption 1 fa(I) =
ηaI
κa + I

and fs(I) =
ηsI
κs + I

. Here ηa, κa, ηs and κs are non-negative constants.

The parameters used for the numerical simulations are given in Table 1. We begin by some numerical

Table 2. Used parameters for numerical simulations.

Parameter κa κs σa σs m γ Λ α1 α2 β1 β2

Value 2 1 0.4 0.5 1.5 0.1 8 1 1 1 1

results that confirm the stability of the equilibrium points of (3.2). In Figure 2, we give the results for
the case where R < 1. The numerical solution of the given model (3.2) approaches to the DFE = (0, 0),
which confirms that DFE is GAS when R < 1.

In Figures 3 and 4, we give the results for the case where R > 1. The numerical solution of given
model (3.2) approaches asymptotically to the EE, which confirms that EE is GAS when R > 1.

Sensitivity analysis can be helpful as to how the variability in the output of a mathematical model
can be allocated to different sources of uncertainty in its input parameters [24,25]. Sensitivity analysis
has several purposes; one is to determine the input parameters that most contribute to the system’s
dynamics. The other is to detect the impacts of each parameter on the other parameters and then
determine the potential to simplify the model. In this study, the sensitivity study can be helpful as it
will inform us how essential each parameter is to the transmission of the disease. We must discover the
highest effect on the R. Therefore, these input parameters will be critical targets for future intervention
strategies. A fundamental approach expresses a relative change of a variable by a relative change of a
parameter. Consequently, if the sensitivity index is positive, increasing the parameter value will cause
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Figure 2. For ηa = 0.1 and ηs = 0.2 then R = 0.58 < 1.

Figure 3. For ηa = 1 and ηs = 2 then R = 5.8 > 1.

Figure 4. For ηa = 1 and ηs = 0.2 then R = 1.48 > 1.

an increase in the R value. Further, if the result is negative, then the parameter value and the R are
inversely proportional.

Figure 5 shows that Λ, p and γ are the only three parameters with a positive sign. Therefore, as the
value of Λ, p and γ increase, the value of R increases. Furthermore, since the remaining parameters
increases, the value of R decreases. Figure 5 shows the behaviour of the R with respect to the model
parameters.
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Figure 5. Sensitivity of the reproduction number R with respect to the model parameters.

The numerical results of the control problem were obtained using the an association between the
Gauss-Seidel-like implicit finite-difference scheme and the first-order backward-difference.
We used the same parameters for systems (4.1) and (4.2) as for the direct problem (3.2) with ηa = 1
and ηs = 2 (left) and with ηa = 1 and ηs = 0.2 (where EE is GAS) with variables v1 and v2 such that
the initial condition v1(0) = v2(0) = 0.5. We plot in Figure 6 the behaviours S (t), Ia(t) and Is(t) with
respect to time.

As seen in Figure 2, susceptible compartment increases about 21%, however, the infected

Figure 6. Behaviours for ηa = 1 and ηs = 2 (left) and for ηa = 1 and ηs = 0.2 (right).

compartment decreases about 14% for the asymptomatic infected compartment and 14% for the
asymptomatic infected compartment of their values at steady state in Figure 2. Note that there is no
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considerable influence of the values of α1, α2, β1 and β2 on the final values of susceptible and both
infected compartments.

6. Conclusions

In the present paper, a generalized “SIS” model with a non-linear incidence rate including
asymptomatic and symptomatic infection was presented and analyzed. The basic reproduction
number (R) was calculated for the proposed system using the next generation matrix method. The
system admits at most two equilibria: the disease-free equilibrium (E0) and the endemic equilibrium
(E∗). Local and global stability was carried. If R < 1, the disease-free equilibrium E0 is locally and
globally asymptotically stable; if R > 1, the endemic equilibrium E∗ is locally and globally
asymptotically stable. Furthermore, we find several reasonable optimal control strategies to the
prevention and control the disease. Finally, numerical simulations are presented to verify the above
theoretical results are given. It is concluded that asymptomatic infections have a greater contribution
to the diseases spread even in the case where the asymptomatic infections are less infectious.

One of the compartmental models’ limitations is the assumption of a homogeneous population.
However, variations in individuals in epidemiological characteristics are more realistic to consider.
Further, the influences of time delay and intrinsic fluctuations are considered limitations to the
compartmental models.
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Appendix

Used numerical scheme (control problem)

Subdividing the interval [0,T ] as the following [0,T ] =
⋃N−1

n=0 [tn, tn+1] where tn = ndt and dt =
T/N. Let S n, In

a , In
s , λn

1, λn
2, λn

3, vn
1 and vn

2 approximate S (t), Ia(t), Is(t), λ1(t), λ2(t), λ3(t), v1(t) and v2(t),
respectively at the time tn. S 0, I0

a , I
0
s , λ0

1, λ
0
2, λ

0
3, v

0
1 and v0

2 be their values at initial time (t = 0). S N , IN
a , I

N
s ,

λN
1 , λ

N
2 , λ

N
3 , v

N
1 and vN

2 be the values at t = T . Then, we use the following scheme [6, 8, 21, 22]

S n+1 − S n

δt
= mΛ − S n+1((1 − vn

1) fa(In
a) + (1 − vn

2) fs(In
s )) + σaIn

a + σsIn
s − mS n+1,

In+1
a − In

a

δt
= (1 − p)S n+1((1 − vn

1) fa(In
a) + (1 − vn

2) fs(In
s )) − γIn+1

a − mIn+1
a − σaIn+1

a ,

In+1
s − In

s

δt
= p S n+1((1 − vn

1) fa(In+1
a ) + (1 − vn

2) fs(In
s )) + γIn+1

a − mIn+1
s − σsIn+1

s ,

λN−n
1 − λN−n−1

1

δt
= mλN−n−1

1 +
(
(1 − vn

1) fa(In+1
a ) + (1 − vn

2) fs(In+1
s )

)(
λN−n−1

1 − (1 − p)λN−n
2 − pλN−n

3

)
,

λN−n
2 − λN−n−1

2

δt
= −β1 − σaλ

N−n−1
1 + (γ + m + σa)λN−n−1

2 − γλN−n
3

+S n+1(1 − vn
1) f ′a(In+1

a )
(
λN−n−1

1 − (1 − p)λN−n−1
2 − pλN−n

3

)
,

λN−n
3 − λN−n−1

3

δt
= −β2 + S n+1(1 − vn

2) f ′s (In+1
s )

(
λN−n−1

1 − (1 − p)λN−n−1
2 − pλN−n−1

3

)
− σsλ

N−n−1
1

+λN−n−1
3 (m + σs).

Therefore the following algorithm will be applied.
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S 0 ← S 0, I0
a ← Ia0, I0

s ← Is0, λN
1 ← 0, λN

2 ← 0, λN
3 ← 0,

for n = 0 to N − 1 do

S n+1 ←
S n + δt(mΛ + σaIn

a + σsIn
s )

1 + δt(m + (1 − vn
1) fa(In

a) + (1 − vn
2) fs(In

s ))
,

In+1
a ←

In
a + δt(1 − p)S n+1((1 − vn

1) fa(In
a) + (1 − vn

2) fs(In
s ))

1 + δt(γ + m + σa)
,

In+1
s ←

In
s + δt(p S n+1((1 − vn

1) fa(In+1
a ) + (1 − vn

2) fs(In
s )) + γIn+1

a )
1 + δt(m + σs)

,

λN−n−1
1 ←

λN−n
1 + δt

(
(1 − vn

1) fa(In+1
a ) + (1 − vn

2) fs(In+1
s )

)(
(1 − p)λN−n

2 + pλN−n
3

)
1 + δt

(
m + (1 − vn

1) fa(In+1
a ) + (1 − vn

2) fs(In+1
s )

) ,

λN−n−1
2 ←

λN−n
2 + δt(β1 + σaλ

N−n−1
1 + γλN−n

3 − S n+1(1 − vn
1) f ′a(In+1

a )
(
λN−n−1

1 − pλN−n
3

)
1 + δt(γ + m + σa − (1 − p)S n+1(1 − vn

1) f ′a(In+1
a ))

,

λN−n−1
3 ←

λN−n
3 + δt(β2 − S n+1(1 − vn

2) f ′s (In+1
s )

(
λN−n−1

1 − (1 − p)λN−n−1
2

)
+ σsλ

N−n−1
1

1 + δt(m + σs − pS n+1(1 − vn
2) f ′s (In+1

s ))
,

vn+1
1 ← max(min(

S n+1 fa(In+1
a )(−λN−n−1

1 + (1 − p)λN−n−1
2 + pλN−n−1

3 )
α1

, 1), 0),

vn+1
2 ← max(min(

S n+1 fs(In+1
s )(−λN−n−1

1 + (1 − p)λN−n−1
2 + pλN−n−1

3 )
α2

, 1), 0).

end
Algorithm 1: Optimal control resolution
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