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Abstract: In this paper, we consider the quasilinear parabolic-elliptic-elliptic attraction-repulsion
system

u; = V- (Dw)Vu) — xV - (uVv) + €V - (uVw), xeQ, >0,
0=Av—u )+ fi(uw), xeQ, t>0,
0=Aw — (1) + fr(u), xeQ, t>0

under homogeneous Neumann boundary conditions in a smooth bounded domain Q c R”, n > 2. The
nonlinear diffusivity D and nonlinear signal productions f;, f> are supposed to extend the prototypes

D(s) = (1 + s)" !, fil) =+ 9", Hs)=0+5)7, s=0,v1,7,>0,meR.

We proved thatif y; >y, and 1 +y; —m > % then the solution with initial mass concentrating enough in
a small ball centered at origin will blow up in finite time. However, the system admits a global bounded
classical solution for suitable smooth initial datum wheny, < 1 +y; < % + m.
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1. Introduction

Chemotaxis is the property of cells to move in an oriented manner in response to an increasing
concentration of chemo-attractant or decreasing concentration of chemo-repellent, where the former is
referred to as attractive chemotaxis and the later to repulsive chemotaxis. To begin with, it is important
to study the quasilinear Keller-Segel system as follows

u, = V- (Dw)Vu) — xV - (¢(u)Vv), xeQ, t>0,
v, = Av —av + Bu, xeQ, t>0,

(1.1)
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subject to homogeneous Neumann boundary conditions, where the functions D(u) and ¢(u) denote the
strength of diffusion and chemoattractant, respectively, and the function u = u(x, t) idealizes the density
of cell, v = x(x, t) represents the concentration of the chemoattractant. Here the attractive (repulsive)
chemotaxis corresponds to y > 0 (y < 0), and |y| € R\{0} measures the strength of chemotactic response.
The parameters 7 € {0, 1}, and @, 8 > 0 denote the production and degradation rates of the chemical. The
above system describes the chemotactic interaction between cells and one chemical signal (either attractive or
repulsive), and it has been investigated quite extensively on the existence of global bounded solutions or the
occurrence of blow-up in finite time in the past four decades. In particular, the system (1.1) is the prototypical
Keller-Segel model [1] when D(u) = 1, ¢(u) = u. In the case 7 = 1, there are many works to show that the
solution is bounded [2-5], and blow-up in finite time [6—11]. If the cell’s movement is much slower
than the chemical signal diffusing, the second equation of (1.1) is reduced to O = Av — M + u, where
M := Ilﬁl fg u(x, t)dx and the simplified system has many significant results [12—15].

For further information concerning nonlinear signal production, when the chemical signal function is
denoted by g(u), authors derived for more general nonlinear diffusive system as follows

{u, = V- (Du)Vu) — V - ($(u) V), x€Q,1>0, (1.2)

0=Av—-M+ g(u), xeQ, >0,

where M := |13| fQ g(u(x, ))dx. Recently, when D(u) = u™”, ¢(u) = u and g(u) = ', it has been shown
that all solutions are global and uniformly bounded if p + [ < % whereas p + 1 > % implies that the
solution blows up in finite time [16]. What’s more, there are many significant works [17-19] associated
with this system.

Subsequently, the attraction-repulsion system has been introduced in ([20, 21]) as follows

u; = Au—xV-uVv) + &V - (uVw), xe, t>0,
TV, = Av + au — Bv, xeQ, t>0, (1.3)
Tow; = Aw + du — yw, xeQ,t>0,

subject to homogeneous Neumann boundary conditions, where y, &, @, 8,9,y > 0 are constants, and
the functions u(x, 1), v(x, t) and w(x, ) denote the cell density, the concentration of the chemoattractant
and chemorepellent, respectively. The above attraction-repulsion chemotaxis system has been studied
actively in recent years, and there are many significant works to be shown as follows.

For example, if 7; = 7, = 0, Perthame [22] investigated a hyperbolic Keller-Segel system with
attraction and repulsion when n = 1. Subsequently, Tao and Wang [23] proved that the solution of (1.3)
is globally bounded provided &y — ya@ > 0 when n > 2, and the solution would blow up in finite time
provided €y — ya < 0, = 8 when n = 2. Then, there is a blow-up solution when ya — &y > 0,6 > 8
or yao — &yp > 0,6 < B for n = 2 [24]. Moreover, Viglialoro [25] studied the explicit lower bound of
blow-up time when n = 2. In another hand, if 7; = 1, 7, = 0, Jin and Wang [26] showed that the solution
is bounded when n = 2 with £y — ya > 0, and Zhong et al. [27] obtained the global existence of weak
solution when &y — ya > 0 for n = 3. Furthermore, if 7y = 7, = 1, Liu and Wang [28] obtained the
global existence of solutions, and Jin et al. [29-31] also showed a uniform-in-time bound for solutions.
In addition, there are plenty of available results of the attraction-repulsion system with logistic terms
[32-40], and for further information concerning (1.3) based on the nonlinear signal production, it was
used to model the aggregation patterns formed by some bacterial chemotaxis in [41-43].

Mathematical Biosciences and Engineering Volume 20, Issue 3, 5243-5267.



5245

We turn our eyes into a multi-dimensional attraction-repulsion system

u, = Au—xV - (pm)Vv) + €V - W(u)Vw), xeQ, t>0,
TV, = Av — i (1) + f(u), xeQ, t>0, (1.4)
Tow, = Aw — (1) + g(u), xeQ, >0,

where Q € R"(n > 2) is a bounded domain with smooth boundary, u,(1) = |_£12| fQ fdx, ux(t) =
|13| fg gu)dx and 11,7, € {0,1}. Later on, the system (1.4) has attracted great attention of many
mathematicians. In particular, when ¢(u) = ¥(u) = u, f(u) = u* and g(u) = u', Liu and Li [44] proved
that all solutions are bounded if k < %, while blow-up occurs for k > [ and k > % in the case 1 = 7, = 0.

Inspired by the above literature, we are devoted to deal with the quasilinear attraction-repulsion
chemotaxis system

u; = V- (DWw)Vu) — xV - (uVv) + €V - (uVw), xeQ, t>0,

0=Av—wu(t)+ fi(u), xeQ, t>0,

0=Aw— (1) + fr(u), xeQ, t>0, (1.5)
ou Ov ow

I A Q

5 3 oy 0, x€0Q,t>0,

l/l(x, 0) = M()(X), X € Q,

in a bounded domain & C R",n > 2 with smooth boundary, where % denotes outward normal
derivatives on 0. The function u(x, t) denotes the cell density, v(x, t) represents the concentration of
an attractive signal (chemo-attractant), and w(x, ) is the concentration of a repulsive signal (chemo-
repellent). The parameters satisfy y, & > 0, which denote the strength of the attraction and repulsion,
respectively. Here yu,(f) = |512_| fQ Ffilu(x, 0)dx, (1) = |£12_\ fQ fo(u(x,1))dx, and f;, f> are nonnegative
Holder continuous functions.

In the end, we propose the following assumptions on D, fi, f> and u, for the system (1.5).

(1;) The nonlinear diffusivity D is positive function satisfying

D € C*([0, ). (1.6)
(I,) The function f; is nonnegative and nondecreasing and satisfies
fie | €hu10,0)nC'(0,00)) (1.7)
6(0,1)
with i € {1,2}.
(13) The initial datum
— 0
Uy € U C’(Q) is nonnegative and radially decreasing, % = 0 on 0Q. (1.8)
v

0€(0,1)

The goal of the article is twofold. On the one hand, we need to find out the mutual effect of the
nonlinear diffusivity D(u) and the nonlinear signal production f;(u)(i = 1,2). On the other hand, we
need to make a substantial step towards the dynamic of blowing up in finite time. Hence, we draw our
main results concerning (1.5) read as follows.
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Theorem 1.1. Letn > 2, R > 0 and Q = Bg(0) C R" be a ball, and suppose that the function D satisfies
(1.6) and fi, f> are assumed to fulfill (1.7) as well as

D) <d(1 + u)’”_l, fitw) = k(1 +uw), fH(u) < k(1 +u)” forallu >0,
withm € R, ki, ky,v1,72,d > 0 and

2
vi>vand 1 +y, —m> —. (1.9)
n

For any M > 0 there exist € = &(y,, M,R) € (0, M) and r* = r*(y,, M,R) € (0,R) such that if u,

satisfies (1.8) with
qu:Mandf uy>M - ¢,
Q B,+(0)

then the corresponding solution of the system (1.5) blows up in finite time.

Theorem 1.2. Letn > 2, Q C R" be a smooth bounded domain, and suppose that the function D satisfies
(1.6) and fi, f> are assumed to fulfill (1.7) as well as

D) > d(1 +w)™", fiw) <ki(1 +u)", fo(u) = k(1 +u)* forallu >0,
withm € R, ki, ky,v1,v2,d > 0 and
2
Vv <l4+vy <—-+m. (1.10)
n

Then for each uy €  Jge(o.1 Ce(ﬁ), uy > 0 with %‘) = 0 on 0Q, and the system (1.5) admits a unique
global classical solution (u, v, w) with

u,v,w € C>(Q x (0, 00)) N C(Q X [0, c0)).
Furthermore, u,v and w are all non-negative and bounded.

The structure of this paper reads as follows: In section 2, we will show the local-in-time existence of
a classical solution to the system (1.5) and some lemmas that we will use later. In section 3, we will
prove Theorem 1.1 by establishing a superlinear differential inequality. In section 4, we will solve the
boundedness of « in L™ and prove Theorem 1.2.

2. Preliminaries

Firstly, we state one result concerning local-in-time existence of a classical solution to the system (1.5).
Then, we denote some new variables to transfer the original equations in (1.5) to a new system according
to the ideas in [19-25]. In addition, in order to prove the main result, we will state some lemmas which
will be needed later.

Lemma 2.1. Ler Q C R" with n > 2 be a bounded domain with smooth boundary. Assume that D
fulfills (1.6), fi, f> satisfy (1.7) and uy € Uge(o.1) CO(Q) with %if =0 on 0Q as well as uy > 0, then there
exist Tqx € (0, 00] and a classical solution (u,v,w) to (1.5) uniquely determined by

€ COQ X [0, Tar)) N CZHQ X (0, Thar)),
V€ Nyon L0, Tpuar); WH(Q)) N C(Q X (0, Trpar)s
W € Nyon L0, Tpa); WH(Q)) N C2O(Q X (0, Topay))-
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In addition, the function u > 0 in Q X (0, T,.x) and if Typay < o0 then

lim sup |{u(-, O)||z=@) = 0. (2.1)

Moreover,
fv(~, 1 =0, f w(,1) =0 forall t € (0, T ). 2.2)
Q Q

Finally, the solution (u,v,w) is radially symmetric with respect to |x| if uy satisfies (1.8).

Proof. The proof of this lemma needs to be divided into four steps. Firstly, the method to solve the
local time existence of the classical solution to the problem (1.5) is based on a standard fixed point
theorem. Next, we will use the standard extension theorem to obtain (2.1). Then, we are going to use
integration by parts to deduce (2.2). Finally, we would use the comparison principle to conclude that the
solution is radially symmetric. For the details, we refer to [45-48]. O

For the convenience of analysis and in order to prove Theorem 1.1, we set & = yv — éw, then the
system (1.5) is rewritten as

u, =V-(Dw)Vu) =V - (uVh), xeQ, t>0,
0= Ah—u(®) + f(w), x€Q, >0,

2.3
%:%:0, x€eoQ,t>0, @3)
u(x,0) = up(x), xeQ,

where u(r) = yp (0 — € () = 5 o, fQuCx, )dx and f(u) = x fi(u) — Ef>(w).

For the same reason, we will convert the system (2.3) into a scalar equation. Let us assume Q = Bg(0)
with some R > 0 is a ball and the initial data uy = uy(r) with r = |x| € [0, R] satisfies (1.8). In the radial
framework, the system (2.3) can be transformed into the following form

P lu, = (' DWuy), — (P luhy),, re(0,R), t >0,
0=@""h), — ") + ¥ flw), re(0,R), >0, 24
u,=h, =0, r=R, t>0, '
u(r,0) = uy(r), r € (0,R).
Lemma 2.2. Let us introduce the function
y%
U(s,t) = nf p”_lu(p, Ndp, s=1r"€[0,R"], t € (0, T ),
0
then |
Ul(t) = u(sn, 1), Upy(D) = 57" u,(s7, 1), (2.5)
n
and ’
U(s,t) = ns> i D(U)U,, — suUs + Uy - f fWy(o,1)do. (2.6)
0
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Proof. Firstly, integrating the second equation of (2.4) over (0, r), we have

r"_lhr(r,t)=%ﬂ(t)— fo P flulp, D)dp,

SO
1 A
S (55, 1) = St — - f fu(ow, )do, Vs e (O,R"), t € (0, Ta).
n n 0

Then, a direct calculation yields
Uy(s,0) = u(sn, 1), Vs € (0,R), 1 € (0, Ta)s

and |
Us(s,0) = =5 u,(s7,0), Vs € (0,RY), t € (0, Ta),
n

as well as

S

Uds,t) = nf " Yu(p, Hdp
0
= nzsz_%D(US)Um - nsl_%Ush,

= s DU YU, — su(OU, + U, - f f(U(o, t))do
0
forall s€ (O,R")andr€ (0,7,,,). O

Furthermore, by a direct calculation and (1.7), we know that the functions U and f satisfy the
following results

U(s,t) = u(st,£) > 0, s €(0,R"), 1€ (0,T,),

U@0.n=0, UR.f)=— f u(ory =" £ € [0, Tax), 2.7)
wn Q wn

£ £1(9). f(s) < Co, 0<s5<A,Co=Co(A)> 0,

where w, = n|B;(0)| and A is a positive constant.

Lemma 2.3. Suppose that (1.7), (1.8) and (2.7) hold, then we have

h(r,t) = %u(t)r — f r O, D)dp  forallr € (0,R),t € (0, Ty
0

In particular,

h(r,t) < %(,u(t) + Co)r. (2.8)

Proof. By integration the second equation in (2.4), we obtain that
7y = () - f e f P fulp, 0)dp forall r € (0,R), 1 € (0, Tax)-
0 0
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According to (1.9), we can easily get that f(u) > 0if u > C* = max{0, (,’Z—i)ﬁ — 1}, and split

7

fo o flutp, 0)dp = fo Xuutascn®) - 0" flulp, 0)dp + fo Xuto<cn(®) - P flulp, 0)dp.
Combining these we have

1 -n ' n— -n ' n—
h, = —u(@r —r' f Xiut-pn=cryP) - P ' fulp, 0)dp - r! f Xiut-n<cy(0) - P 'fup, 0)dp
0 0

<

ur — rl—”fo X{u(.,t)<c*}(.0) 'pn_lf(u(/)’ 1)dp

SI= 3

[E—

< —u(Or+ Corl_n f(; X{u(.’;)<c*}(p) 'pn_ldp

1 r
< —u(r+ Corl_"f p”_ldp
0

S

S

o

< —(u(@) + Co)r,

S

so we complete this proof. O
To show the existence of a finite-time blow-up solution of (2.4), we need to prove that Uy, is
nonpositive by the following lemma. The proof follows the strategy in [48].

Lemma 2.4. Suppose that D, [ and uy satisfy (1), (I,) and (I5) respectively. Then
u(r,t) <0 forallr € (O,R),t € (0, T)ar)- 2.9)

Moreover,
Us(s,1) <0 forallr € (0,R),t € (0, T ). (2.10)

Proof. Without loss of generality we may assume that 1, € C? ([0, 00)) and f € C([0, 0)). Applying the
regularity theory in ([49, 50]), we all know that u and wu, belong to
C°([0,R] X [0, T)) N C>'((0,R) x (0, T)) and we fixed T € (0, T.ax). From (2.4), we have for r € (0, R)
andr e (0,7)

n-1
o+ =——h, = () = f(u), 210

and from (2.4) we obtain

-1
= (D), + === DG, +uf @) = uu(t) = u,hy),
= (DWu,),r + ar(DWu,), + asut, + bu,,
forall r € (O,R) and r € (0, T), where

n-—1
72

D(u) = (@) = hyr + f(u) + uf'(w),

-1
a(r,1) = ”T w(r,0) = —h,, b(r1) = -
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forall r € (0,R) and 7 € (0, T). Moreover, we have h, < ~(u(t) + Cop) by (2.8) and from (2.11) such that

—h,, = gh,—u(m fay < ; Lio+" ; L Comt(t+ ) < F)+Cy forall r € (0.Ryand £ € (0.T),

then setting ¢y := SUP, e o.r)x.1y (2 () + uf’(u) + Co), we obtain
b(r,t) < ¢, forallr € (O,R)and r € (0,T),

and we introduce

= sup (D)), + a1(D(w)),) < 0,
(r,He(0,R)x(0,T)

and set c3 = 2(c; + ¢ + 1). Since u,(r,¢) = 0 for r € {0, R}, € (0, T) (because u is radially symmetric)
and ug, < 0, the functiony : [0,R] X [0,T] — R, (r,1) = u,(r, 1) — ge**' belongs to C°([0,R] x [0, T])
and fulfills

yi = (D) + £e”),r + ar(D@)(y + £e™), + ary, + b(y + £e') — c38¢™'
= (D(u)y)rr + al(D(u)y)r + axy, + b)’ + Secat((D(u))rr + al(D(u))r +b— C3)

< (DW)y),r + ai(D(W)y), + azy, + by + ge“'(c; + ¢ — c3), in (0,R) x (0, T), (2.12)
y <0, on {0, R} x (0, T),
y(-,0) <0, in (0, R).

By the estimate for y(-, 0) in (2.12) and continuity of y, the time #, := sup{t € (0,7) : y < 01in [0, R] X
(0,T)} € (0,T] is defined. Suppose that ty < T, then there exists ry € [0, R] such that y(rg, ) = 0
and y(r,t) < 0 for all r € [0, R] and ¢ € [0, #5]; hence, y;(r9,%)) = 0. As D > 0 in [0, c0), not only
v(-,tp) but also z : (0,R) — R, r — D(u(r, ty))y(r, ty) attains its maximum O at ry. Since the second
equality in (2.12) asserts ry € (0, R), we conclude z,,(r9) < 0, z,(ro) = 0 and y,(ro, tp) = 0. Hence, we
could obtain the contradiction

0 < yi(ro, )
< z,,(ro) + a1(ro, t0)z,(ro) + ax(ro, to)y,(ro, to) + b(ro, t0)y(ro, to) + £ (c1 + ¢ — ¢3)

C3
< —58663’0 <0,

since we have c
3

cir+c < —.
2

So that t, = T, implying y < 0in [0, R] X [0, T'] and hence u, < ge®* in [0, R] X [0, T']. Letting first £ \, 0
and then T T, this proves that u, < 0 1in [0, R] X [0, T},..»), and we have U, < 0 because of (2.5). O

3. Finite-time blow-up
In this section our aim is to establish a function and to select appropriate parameters such that the

function satisfies ODI, which means finiteness of 7,,,, by counter evidence. Firstly, we introduce a
moment-like functional as follows

(1) ;= fso S V(so— HU(s,Dds, t €0, Thar), (3.1
0
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with y € (o0, 1) and sy € (0, R"). As a preparation of the subsequent analysis of ¢, we denote

. nM — sy 2y
Sy = {te O T 2 == 5} } (3.2)

The following lemma provides a lower bound for U.
Lemma 3.1. Lety € (00, 1) and sy € (0, R"), then
4S0

1
U(%,t) > — - (nM - m). (3.3)

Proof. If (3.3) was false for some r € S such that U ( ) < - (nM - Zygfy)), then necessarily
5= 2 ; < nM. By the monotonicity of U(-,#) we would obtain that U(s,t) < I”Z__é for all s € (0, 2).
50

TGy
(1) < M~ 0 fz ﬁso (5o — s)ds

Since U (s 1 <2 for all s € (0,R"), we have
M
- f (sg— s)ds — — f s Y(so — 8)ds

nM So 6 273 - y)s

w, 1=y)2=-y) w, 40-yQ2-7y)
2(B-y)5
4

In view of the definition of S 4, we find that nM — s) < nM — , which contradicts our definition

of6. O
An upper bound for u is established by the following lemma.

Lemma 3.2. Let y € (—o0, 1) and sy > 0 such that sy < %". Then the function u(t) has property that

1 S
u) < Cy + 75 f f(Ug(o, t)do forall s € (0,s0) and any t € S, 3.4)
S Jo

£Co+Co+C 2
where €y = 2957 1 €y = 1{1Cy + Cp + MP22 (875 ) 4y i 22,
n

Proof. First for any fixed t € S 4, we may invoke Lemma 3.1 to see that

M-6

U= T2
2 .
and thus, as U < Z)—M
UGso.) = U301 _ el
However, by concavity of U(:, 1), as asserted by Lemma 2.4,
U(sg, 1) — U(2, ¢
(0 20 U(50,0) = Uy(s, 1) for all s € (so, R").

50

2
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Then let sy € (0, R"), we know that

R"

[ 1
u(t) = ﬁf fUo,0)do + o fU(o, 0)do
0

50
Rn

:ifﬁmmmw+if%wmmmwi— JUo0)do V1 € (0, ). (3-5)
R J, R J, R"

50

Since y; > vy, and Young’s inequality such that £ f>(u) < k(1 +u)” < )‘7]“(1 +u)"+Cy <L fi(w)+C,

o
with C, = )%(%)WV2 for u > 0, then for all s € (0, R") and ¢ € (0, T',.) we show that

ZAWLs,0) = C2 < fU(s.0) < XAUs.1): (3.6)
Accordingly, by the monotonicity of U,(-, ) along with (1.7) and (3.6), we have
S0 50
f fUy(o,0))do < f xfi(Uy(o, 0)do
S0
< f x[ilU(s, 0)do
< SOXfl(US(S’ t)), vs € (0’ SO)’ re (0’ Tmax)-
Since the condition of (2.7) implies that
f fUs(o,0)do = f X{U,-(‘,I)ZI}(O-) - f(Us(o,Ddo + f X{Us("t)<1}(0-) - f(Us(o, ndo
0 0 0
2 f X{U_v(-,z)zl}(o-) : ()E(fl(Us(O', D) - Cz)dO' - Cos
0
> [ @) AU ) = €+ s
0
- [ Xpwio S X £ (U0, 0)do — (Co + C
=, Efl( s(oy)do — , X, .n<1y(0) - Efl( s(oyD)do = (Co + Cy)s
> f %f] (Uy(s, )dor — %Cos —(Co + C»)s
0
s
> U500 = BCo+ Co+ Cops.
Therefore, we obtain
S0 2S0 S X
f(Ug(o, )do < ~ f(Uy(o, t)do + Z(ECO + Co + Cr)sp.
s 0

Since (3.5) we have for all s € (0, s9)

I%fosf(Us(ff, n)do + I%fsso fWy(o, n)do

2(§C0 + Cy + Cr)sg
R" ’

< i fs fU(o, t))do + & fs f(Ug(o, t))do + 3.7
R 0 R"s 0
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where 5o < £ suchthat & < L < 1 20 < Lgpnd 20 <
last summand of (3.5)

% for all s € (0, s¢). Finally, we estimate the

20

Wy S0

1 " 1 i
ﬁfso f(U(o, t))do < ﬁfs xfilUy(o, )do S)(fl(

0

): Cs. (3.8)

Together with (3.5), (3.7) and (3.8) imply (3.4). O

Lemma 3.3. Assume that y € (—o0, 1) satisfying

2
y<2--,
n

and sy € (0, %n]. Then the function ¢ : [0, T,..) — R defined by (3.1) belongs to C°([0, Tpayx)) N
C'((0, Typax)) and satisfies

S0
¢ (1) > n? f sz_%_y(so - 5)UD(Uy)ds
0

+ l fso sY(so— U - {fs f(Uq(o, t))da}ds - C fso s (sg — s)U,ds
2 0 0 0
=: J1(t) + L) + Jx(0), (3.9)

forallt € [0, T,..), where C; is defined in Lemma 3.2.

Proof. Combining (2.6) and (3.4) we have
Ul(s.1) = s i DU)Uy, = su(®)Us + U - f f(U(o, )dor
0

1 S
> 2525 Uy, D(U,) + EUS . f f(U (o, t)do — CysUs,.
0

Notice ¢(t) conforms ¢(t) = foso s7V(so — s)U(s, )ds. So (3.9) is a direct consequence. O

Lemma 3.4. Let s¢ € (0, %n], andy € (—oo, 1) satisfyingy <2 — % Then J,(t) in (3.9) satisfies

Ji(®) = -1, (3.10)
where
2d 2 50
_ n_(2 _Z_ y)f Sl—%‘V(so — ), m<0,
m n 0
) 2 S0 ' N
I:=¢nd2--- y)f s Y(so— 85)In(Uy + 1), m =0, 3.11)
n 0
’d 2 50
n—(2 - == 7)f §'75 (59 — ) (U, + 1), m > 0,
m n 0

forallte§,.
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Proof. Since D € C*([0, o)), suppose that

G(r) = fT D(6)do,
0

then 4
_—, m<0,
T m
0<G(r) < df (1 +6)""'ds <{dIn(r + 1), m=0,
0
—(r+ )", m> 0.
m

Here integrating by parts we obtain
S0
5@ = n? f 77 (59 — $)AG(U,)
0
S0
= 125> (50 — $)G(U® + f $TiG(U,)ds
0
2 2 » 1-2-
-n"(2-—-—-7v) s Y (sg— 8)G(Uy)ds.
n 0

Hence a direct calculation yields

2d 2 50
n—(2 -— - )/)f 17 (50— 9), m <0,
m n 0
) 2 0
Ji(t) =25 —n d(2———y)f s (5o —8)In(Us + 1), m =0,
n 0
2d 2 50
- n—(2 -—- )’)f $'7 (50— )(Uy + 1), m >0,
m n 0

forall 7 € § 4. We conclude (3.10). O

Lemma 3.5. Assume thaty € (—co, 1) satisfying y < 2 — % and sy € (0, %"]. Then we have

k S0 50
Jo(t) + J3(0) > % f s (so — )Uds — Cy f 57 (so — $)U,ds (3.12)
0 0

()E(C0+C()+C2)

forallt € Sy, where C4 = C) + 3

Proof. Since Lemma 3.2 we have
f F(U(o, ))do > %)( Fi(U(s, 1) — (%(Co +Co+Cy)s  forall s e (0,s0)and 7 € (0, Tyay).
0
Therefore,

Jo(t) = %fm s 7 (so— $5)Us - {fs f(Uq(o, t))do'}ds
0 0
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=
where fi(U,(s, 1)) > ki(1 + Uy)" > k;(U,)"". Combining these inequalities we can deduce (3.12). O

50 £Co+Co+C 50
> f (50— ULAUs. D)5 — 2 — 2 f s'7(s0 - U, ds
0 0
k % LCo+ Cy+C %
> X sl_y(So—S)U;w'dS—(2 0 20 2)f s' 77 (so — 5)Uds,
0

Lemma 3.6. Let y; > max {0,m — 1}. For any y € (-0, 1) satisfying

2 1 2 1
yEmin{Z——- +7‘,2——-i}, (3.13)
n Y1 n l+vy,—-m
and sq € (0, %"], the function ¢ : [0, T,,.) — R defined in (3.1) satisfies
3_’)/_2.14—?1
, Cy()-Cs, ", m< 1,
¢'(1) > i (3.14)
Cy()-Cs, " " T > 1,
with C > 0 for all t € S 4, where y(t) := foso s (s — $)UTds.
Proof. From (3.10) and (3.12) we have
’ le %0 1—
d'(1) = Tw(t) -1-C, s V(s — s)Ugds, (3.15)
0

forallz € S, and I is given by (3.11). In the case m < 0,

2d 2 0 2d 2 %0
_n_(2 -—- )/)f sl_%_y(so —85)ds < _n_(2 - == )/)sof s\ vds
m n 0 m n 0

If m = 0, we use the fact that @ < 1 for any x > 0 and Holder’s inequality to estimate

2 s
nld2 - = —y) f s (5o — $) In(U, + 1ds
n 0

2 " L 2, 1oy _1In(1 + Uy
= nzd(z - y)f [Sl_y(SO _ S)U;+7I] i Gy 11”71 (5o — S)l i n( z )dS
n 0 |

2 2 S0 | 1 1+lyl S0 1—2_ iy 7 1+yq 11’7;1
<n d(2———y){f S_Y(S()—S)Usﬂllds} {f (S n YT Ty (SO—S)]TYI) 71 ds}
n 0 0
71

7] 50 (1-2 -y -2 ¥
<nld-2- Y)sg { f s ds}‘ (1)
n 0

G- % -1 *%

1 i
= C51//1+71 (l’)so i .

71
forall r € S5 with Cs := n’d(2 — 2 —y) - (ﬁ)’ > 0 by (3.13). In the case m > 0, by using the
S

elementary inequality (a + b)* < 2%(a® + b®) for all a,b > 0 and every @ > 0, we obtain

d 2 0
%(z -~ )/)f s (50 — $)(U, + 1)"ds
0
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2d 2 %0 2d 2 %0
mleo_ - 7)f S (50— HUMds + 2" 52 - 2 - y)f s (so = $)ds,  (3.16)
m n 0 m n 0
forall € S, and we first estimate the second term on the right of (3.16)
2d 2 S0 2d 2
L0 _Z_y) f $' T (50— s)ds < 2"
m n 0 m

Since y; > m — 1 and by Holder’s inequality we deduce that

2d 2 %0
mn_(2 - —= y)f sl_%_y(so - sUVds
m

2d 2 S m . (J-3-y-(1=y)
= (2 -==9) ™ (59 — §) T Uy - ™ (50— 8)' Trds
n
2d 2 v e
”—(2———7>{f [T (50 — )T UL lds}l |
n

I+y1—-m

2 1+y1 T+y1
f [Sl O (5p - 5)'” ”“]“”mds}
I+y;-m

2 1*11'7"" 50 (Iy =m)(1=9)= 214y oy
<2 _<2___W1m(t)s e )
0

(I4+y1-m)(3—y)- ﬁ(”Vl )

<Cy™i(s, T,

I+y1—-m

forall r € S¢ with C¢ = 2mn d(2 = — ’y)(ﬁ) TS 0 where v < 2 — %1 . 1+;’

n l+yp-m

Next, we can estimate the th1rd expression on the right of (3.15) as follows

I from (3.13).

50
C4f s' 7 (so — $)Uds
0

50 1y 1
= C4f [SI_Y(SO — S)U;‘H’l]lﬂq . sl Y T+ (SO — S)l T+7 ds
0
%0 ﬁ RN I .El
< C4{f Sl_y(SO - S)USlerldS} . {f [sl YT (so — s) 1+71] 2 ds}
0 0
NI o Ty
< Cy™i(t)s, ! {f s _yds}
0

G-v1

= Cﬂ/’”” (s, ",

where C; = C4( )“71 forall t € S 4. By (3.15) and collecting the estimates above we have

k G Jm
le/’(t) % C7¢1+n (s, e m<0,teSy,
, (3—7 7)*/1—* G-
¢ ([) > w(t) Cst” (t)s I+7 C7wl+yl (t)S T+yy , m = 0’ te S¢,
a’ ~ (4] —m><3+ y)-2(1+y)) G—ym
ﬁ%wm S BET i@y, T —Cums, T, m>0.1€ S,
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If m = 0, by Young’s inequality we can find positive constants Cg, Cy such that

G-2-ym -2 2,1t

1 k 32
Cumims, <y +Ces, Vies,,

while as m > 0 we have

(Iy1=m)B=y)- 2 (14y1) 2 14y

_m_ s k 3- T Tey-m
Co ™1 (1)s,, 7 < 11—/6\’/;0(0 + Cos,, i YteS,.

On the other hand, we use Young’s inequality again

(€201

1 k _
C™i (s, < ll—g‘w(t) +Crosl 7, Vies,.

In the case m < 0, because of sy € (0, %"], we have

when m > 0 we have

—y—2. 1 __m n —y—2. 1
S3—%—y _ S3 Y= T+y|—-m X Sn(Hylfm) < (R_)W’Tﬂn)s:; Y=h I+y;—m
0 0 0 Y6 0 :

All in all, we have

k _ _2,“71 B
%*ﬁ(f) - Ci15,, T Closé 7, m<0,
¢'(1) 2 )t (3.17)
_ﬁ'l+7lfm

k 3- _
~£u(0) - Cuos, —Cis)7, m>0,

0 2 m n. __2m
forall t € S, with Cy; = Cs — ’%d(%)"h and Cj; = Cy + %’(%)Wﬂ-’"). When 0 < m < 1, we have

2. 4 2(1-m)(14+y7) 3_7_2. L+y)

1 1 3_’},_7. 3_},_2.144/1 2(1+71_ I+y; )
+Y1 +Y1 nol+yp-mo noyp o nh vy lvyp-m R\ iy Ty —m) noy
T < =, such that s, =5, 5o < ()M s, . In the case
m<1
2 Iy _y_2. b R" 2 1+ 3oy 2.1
3—‘)/ _ n 7 n v 2.1 Y n v
So =% " So S(=)" s, ,
and if m > 1 we have
2. 1+y; 2. 1+y1 n 14y 3 2. I+y;
3—’)/ o lvypem n l+yp-m Zilm n l+yp-m
sy =S, © Sy < (=) T g, :
Thus (3.17) turns into (3.14). O
Next, we need to build a connection between ¢(¢) and y(¢). Let us define
. 3=y
Sy = {t € (0, Tyl () = 5, } (3.18)
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Lemma 3.7. Lety € (—o0, 1) satisfying y > 1 —y, and (3.13). Then for any choice of sy € (0, %n], the
following inequality

o 3-y-2.
) Cs071(3 7)¢l+yl (I) _ CSO 71 , m< 1’
¢'(t) = i (3.19)
CS671(3—7)¢1+71 (t) _ CSO n 1+3’1-m’ m > 1’

holds forallt € S, NSy with C > 0.

Proof. We first split

s

U(s, 1) = f Us(o,ndo = f X{US(~,t)<l}(0-) -Us(o,ndo + f /\/{US(~,t)21}(O-) -Uy(o, ndo
0 0 0

y 1y 1
= f X (0,200 {0 (s = YU - 07T (59 — ) ™ dor
0

71

- L SRR E o Ty
< s+ (so—8) TrygT(t) - { o T dO’}
0
—L Lorsl
.| N )™ (50— ) s Ty (7), (3.20)
y+vi—1

for all s € (0, s9) and ¢ € (0, T,,,,) Where y +Zi—1 > 0. According to the definition of S, we can find

N 2y J N
= g1 (SO _ s)]+71 l// T+y] (t)

1 y+r1-1 1
(SO — s) I+yq Ky I+y1 leryl (t)
2-y 1

¥ T 3=y — e
< sy sy (sy ) T = 1, (3.21)

for all s € (0, o) and # € S ;. Combining (3.20) and (3.21) we have

pasdinl __ 1
U(s,1) < Cys ™1 (8o — 5) "™t (p),

71

where C; = 1 + (7 +$i—1 ) " forall s € (0,s0) and t € S - Invoking Holder’s inequality, we get

(1) = fso sV (so— )U(s, t)ds
0

S0 _7+y+y1—l 1_# 1
<C; s (sg—8) ids - y™i(t)
0
Y1

et [t g
< Cis, , s tds - yi(t)

713-y)

= Cas, " Y, (3.22)

where C, = C, %l(zly) for all s € (0, so) and ¢ € §,. Employing these conclusion we deduce (3.19). O
These preparations above will enable us to establish a superlinear ODI for ¢ as mentioned earlier,

and we prove our main result on blow-up based on a contradictory argument.
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Proof of Theorem 1.1. Step 1. Assume on the contrary that 7,,, = +00, and we define the function

nM — s
S = {T € (0, +00)|b(¢) > &2 forall 1 € [0, T]} (3.23)
o> o=
Let us choose sy > 0 such that
. (R nM nMry, }
< min {222 , 3.24
%‘mm{6 2 201 = Pw,l(Cs + D1+ 1) — 1] .

where M and w, were defined in (2.7) and C5 = (y e 1)WI has been mentioned in (3.20). Then we
pick 0 < &(y;, M,R) = & < °* and s*(y1, M, R) € (0, so) wtih r*(y;, M,R) = (s*)n € (0, R) such that

U(s.0) > U(s*,0) = — f updx > —(M—¢g),  Vse(s*, R,
n Br*(o) n
Therefore it is possible to estimate

#(0) = fm sV (so— s)U(s,0)ds
0

Zfso s (so— $U(s*,0)ds

V

—4M——{f (50 — s)ds

nM — s
= s (3.25)
wa(1 =y)2 =) o
Then S is non-empty and denote 7 = sup S € (0, oo]. Next, we need to prove (0,7) c S, NS, # 0.
Note that

o) > — (1"15(;0_ > 27 Ve (0,T), (3.26)

we obtain (0,T) C §4. From (3.20) we have

(1) < f (50— $)[s + Cszs T (50— 5)" = lﬁ”” ()]ds
0

S0 1 S0 _ +1/+7171 N 1
< 5 s Vds + Cy s (89 — $) Y™ (Hds
0 0

3-y G=y)
So Ci(1 +y1) 57

AT R
It follows from (3.24) and (3.26) that
602 57— y’;‘g_ . £ forallte (0,T). (3.27)
Then 5
Ci(1 + Yl)syﬂfy_ly) l//'” 0> nM 2T sy .
2=y " 21 -2 -yw, ° 2-vy
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Note that (3.24) implies

nMy, _ Y1 > 1
2C3(1 = pw,(1 +y1)so  C3(1+y1) 7

then we have

nMs>" s 2 —vy) -u2qln
v = |( ) B
20 -2 -yw, 2-y" C(1+y)
[ nMy, 71 ]Hy' 3y
> - - S
2C3(1 = y)w,(1 +y1)so  C3(1 +7yy)
> sg_y.

Therefore, (0,T) S, NS, # 0.
Step 2. Applying Lemma 3.7 we can find y € (-0, 1) and Cy, C, > 0 such that for all s, € (0, %n]

2 l+yq
“Y13=Y) L 1+y1 4\ _ AT
Cis ¢ (1) — Cas, , m<1,

AOER

3_y—2.
— 3— Y n —m
(Ilsoyl( Dol (1) — Cys, T > 1,

forallz € §, NS, and with (3.22) we have
Y1) = C3s," "¢ 1), ViesS,.

To specify our choice of s, for given M > 0 we choose sy € (0, %"] small enough such that

M
50 < 2 (3.28)
2
and also
< TC171( nM )71 (3.29)
4 Qed-ne-n/’ '
as well as "
M Y1
CAPYe ( " ) 3.30
Yo = e,a e -y (30

From (3.23), (3.28) and (3.30) we have

nM — S0 1 )1+71 3

N>C V1G9 g l+71 (4 C( S L > 3_y, Ve Sy,
e X AT A

which shows that S ¢ S, NS, Since 1 +y, —m > 2, we have (1 +y)(1 — m) >0if m > 1 so
that we can choose s, sufficiently small satisfying (3.28)—(3.30) such that

S(lm)(l—m) - C, ( nM )“71
0 T 26, \20,(1 -2~/

while in the case m < 1, the conditiony; > m—1 + % > % which infers that (1 +y;)(1 — ,127) > (0 and we
select sy small enough fulfilling (3.28)—(3.30) such that

(I+yD)(1-:2) - C, ( nM )“71

ny|
%0 =20, 2w,(1 - )2 - 7)
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It is possible to obtain

Cl —71(3 )’)¢1+y1(0) Cl ( nM )1+’)/1 s—(1+7])+n (1+7171,11) > 1 VYm > 1
20\ 2o -2 - ) ' o |
CQSO !
and we have
CiL ~71B=Y) 41+y, 1+ =
s 0 y _ 2 1
2 50 ¢ ()2C1( = ) g > 1, Vm < 1.
i D26\ 2w,(-92-y)
C2S0 !

All in all, for any m € R, we apply an ODI comparison argument to obtain that
1) = s P, Vi e O,T).

By a direct calculation we obtain

—i ! ! G -71G-y)
yl(dﬂl(t) ¢y1(()))— 5 % t, VYte(0,7).

Hence, according to (3.25) and (3.29) we conclude

< 2 (Pt opeoyy T

Cl’y] 0 nM N E’

for all € (0, T'). As a consequence, we infer that 7,,,, must be finite. O

4. Global boundedness

In this section, we are preparing to prove Theorem 1.2 by providing the L? estimate of u and the
Moser-type iteration.

Lemma 4.1. Let (u, v, w) be a classical solution of the system (1.5) under the condition of Theorem 1.2.
Suppose that

2
’y2<1+71<5+m. (41)

Then for any p > max {1,2 — m,y,}, there exists C = C(p) > 0 such that

f(l +u) (x,)dx < C  on (0, Tpax). 4.2)
Q

Proof. Notice fi(u) < ki(1 +u)", fo(u) = k(1 + u)”? for all u > 0. Multiplying the first equation
of (1.5) by p(1 + u)?~! and integrating by parts with the boundary conditions for u, v and w, we have

4 f (1 +uldx+p(p-1) f (1 + w)’>D(u)|Vul*dx
dt [e) Q

:w@—DfmumwwwWM—@@—Dfmnmwwwwa
Q Q
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=—x(p-1) fQ(l + u) Avdx + yp L(l + u)P ' Avdx
+&(p-1) L(l + u)’Awdx — &ép fg(l + u)" " Awdx
<xtp=1) [y ficods+ip [ 4+ nde &1 [ 1+ usods
~ep=1) [y pods+ép [ (1 s
<kyl(p—1) fg(l + )" dx + yp fga -0 (Ddx + Ep — 1) fg(l + u) ()
—ké(p-1) L(l + )’ dx + kép L(l + u)””z_ldx, VYt € (0, T ). 4.3)
Firstly,

p(p—1) f (1 + w)’>D(u)|Vul*dx > dp(p — 1) f (1 + u)’™3|Vul>dx
Q

4dp(p — f 1y
=25 [ \vA+uw Pd
(p+m—1) V(1 -+ Pdx.
By Young’s inequality and Holder’s inequality, we obtain

Y1

pr(l +u)P ! w(Hdx < C, (1 +u)yMdx + C /l1+y1 )

Y1
71

- C, f(1+u)p+71dx+C2 lQlff](u)dxl

Py
hnd!

<C f(l +u)”+7‘dx+C3 f(l +u)1+7'dx)

I+y1 tyy

< C f (1 +u)”+7‘dx+C3 ( f (1 + )" dx)"™" - |Q|p+yl}“”
Q Q

=C, f(l+u)l’+71dx+c3lg|lp+_yl, f(l_{_u)pﬂqu.
Q Q

for all t € (0, T},..x). Then by Holder’s inequality we obtain

Ep-1) f(l + u)’wu()dx = kzsc(l‘gl D f(l + u)”dxf(l + u)’dx
Q

kzé:(p 1) 72 p+72 72 p+72
‘T f(l+u)”7dx} Q7 x{f(1+u)”7dx} 0|75

=ké(p-1) f(l +u)Pdx, Vit € (0, Thax)-
Q

Furthermore, by using Young’s inequality and (4.1) we have
ko&ép f (1 +uw)y™" ldx < Cy f (1 +u)’™dx + Cs,
Q Q
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for all t € (0, T},.x). Therefore, combining these we conclude

_f(1+u)17d _,_M
(p+

1)2f|V(l+u) 2 Izdx<C6f(l+u)p+”dx+C5, V1 € (0, Tar),

where Cq = C; + C3|Q|W + C4 + k1x(p — 1). By means of Gagliardo-Nirenberg inequality we can find
C7 such that

pem-1 2(p+yp)
Co [ vurmds= i+ I
Q L ptm—1 (Q)
2(p+71 ) 2(p+y1)
pm=l  — —1 pr ‘(1-a)
<GV +u) IL’;Q)I A+ w | '1
Lp+m (Q)
pm— 2([’+711)
+ Gl +w) 17
L1z+m71(Q)
forall r € (0, T,,..), Where
ptm-1 _ p+m—1
2 20071
a= o 1 1 € (0,1).
2 2 n
2(P+71)

Since | —m + 7y, < % we have
t E (O TITLL[)C)

“7 -a < 2, and we use Young’s inequality to see that for all

( b 1) n+m—1
fg(l +u)dx < %Hvu +u) F | + Cs.

In quite a similar manner, we obtain C9 = Cy(p) > O fulfilling

f(l + u)’dx < dP(P 1))2||V(1 +u LZ(Q) + Cy for all 7 € (0, T4y
Finally, combining these to (4.3) we obtain
dit fg(l + u)Pdx + fg(l + u)’dx < Cs + Cg + Cy for all 7 € (0, T ay).
Thus,
fg (1 + w)dx < max | fQ (1 + up)’dx, Cs + Cs + Co for all 7 € (0, Tpay)-

We have done the proof. O
Under the condition of Lemma 4.1 we can use the above information to prove Theorem 1.2.

Proof of Theorem 1.2. From Lemma 4.1, we let p > max {yn, y»n, 1}. By the elliptic L”-estimate to
the two elliptic equations in (1.5), we get that for all ¢ € (0, 7,,,) there exists some C;o(p) > 0 such that

IVC DNl 2 < Cro(p), WG ol -2 < Cio(p), (4.4)

Q) REX(S)
and hence, by the Sobolev embedding theorem, we get

MGl < o) IWC Dl < Cro(p). (4.5)

Now the Moser iteration technique ([3, 51]) ensures that ||u(-, ?)[|,~q) < C for any ¢ € (0, Tyqx)-
This concludes by Lemma 2.1 that 7,,, = co. O
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