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Abstract: As an indispensable part of large Computer Numerical Control machine tool, rolling bearing 
faults diagnosis is particularly important. However, due to the imbalanced distribution and partially 
missing of collected monitoring data, such diagnostic issue generally emerging in manufacturing 
industry is still hardly to be solved. Thus, a multilevel recovery diagnosis model for rolling bearing 
faults from imbalanced and partially missing monitoring data is formulated in this paper. Firstly, a 
regulable resampling plan is designed to handle the imbalanced distribution of data. Secondly, a 
multilevel recovery scheme is formed to deal with partially missing. Thirdly, an improved sparse 
autoencoder based multilevel recovery diagnosis model is built to identify the health status of rolling 
bearings. Finally, the diagnostic performance of the designed model is verified by artificial faults and 
practical faults tests, respectively. 

Keywords: regulable resampling; multilevel recovery; sparse autoencoder; rolling bearing; fault 
diagnosis 
 

1. Introduction 

As a typical mechatronic product, large CNC (Computer Numerical Control) machine tools are 
widely used and the market demand is huge. Consequently, the condition monitoring and performance 
evaluation of machine tools play a crucial role in enterprise development. Since rolling bearings are 
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the core components of machine tools, identification of their health status is essential. However, device 
health status displays non-mutability, that is, any failure of rolling bearing is not formed 
instantaneously. Therefore, it is urgent to achieve bearings health status recognition and fault level 
estimation accurately and timely [1–4]. 

Actually, vibration signals are generated by running rolling bearings, which is useful for fault 
diagnosis. However, in real industrial application, for the complexity of equipment and disturbance of 
the environment, these vibration signals often disturbed by noise, showing nonstationarity and 
nonlinear characteristics [5–6]. In addition, inevitable correlation between components of device raises 
the diagnostic difficulty [7–8]. Therefore, rolling bearing health status recognition and fault level 
estimation is always a focus and knotty issue. 

For realizing fault diagnosis as well as enhance equipment performance, scholars persevere in 
seeking solutions and proposing various signal features extraction strategies [9–12]. Compared with 
analytical model based processing technology, the diagnosis scheme based on data-driven strategy is 
more suitable for condition monitoring and performance evaluation of modern large and complex 
equipment. For example, a diagnostic method based on Local mean decomposition (LMD) and 
adaptive neuro-fuzzy inference system was designed by Chen et al. [13] for planet wheel failures. By 
means of K-Nearest Neighbor (KNN), a gearbox fault diagnosis method was formed by Praveen and 
Saimurugan [14]. In order to achieve the friction impact fault diagnosis, Prosvirin [15] given a solution 
adopting hybrid feature model and Intrinsic Mode Function (IMF) selection strategy integrated 
Ensemble Empirical Mode Decomposition (EEMD). A Wavelet Packet Transform (WPT) and 
manifold learning based fault detection method of rolling bearings was designed by Wang et al. [16]. 
The well diagnostic results of these studies are inseparable from the subjective experience of 
designers, which hinders the adaptability as well as generalization capability of the scheme. More 
seriously, diagnostic performance of these methods drops sharply with the substantial increase of 
monitoring data. 

Fortunately, with the advent of deep learning technology [17–19], especially the autoencoder with 
excellent performance has been widely adopted in many areas [20–22]. Actually, autoencoder 
framework based diagnostic scheme for mechanic faults has formed abundant achievements [23]. 
Lu et al. [24] proposed a stacked denoising autoencoder-based health state identification method. By 
constructing a diagnostic network with three hidden layers and adopting a fixed noise level strategy, 
the fault mode classification of rolling bearing was realized. Sohaib et al. [25] designed a SAE-based 
fault diagnosis scheme of bearing that needed a hybrid feature pool constructed by handcrafted features 
as the input of the diagnostic network. The fault mode classification and the severity degree 
determination were achieved hierarchically. In addition, the diagnostic performance for rolling fault 
was degraded severely. Sun et al. [26] combined compressed sensing and Sparse Auto-encoder (SAE) 
to realize rolling bearing fault diagnosis without load fluctuation, and the diagnostic accuracy needs 
to be further improved. Liu et al. [27] achieved the gearbox fault diagnosis by constructing a stacked 
autoencoder-based diagnostic network with three hidden layers. However, these known methods 
expose limitations when handling the large quantity, imbalanced distribution and partially missing data. 

At present, the studies based on resampling strategy to solve the problem of data imbalanced 
distribution have achieved remarkable results. Such as Qian et al. [28] designed a resampling ensemble 
algorithm for classification of imbalance problems and realized to classify UCI datasets. Cateni et al. [29] 
proposed a method for resampling imbalanced datasets, which solves the problem of binary 
classification. For imbalanced credit datasets, Han et al. [30] designed a resampling strategy that solved 
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the binary classification problem of credit scoring effectively. 
Therefore, in order to complete such diagnostic challenges and advance the diagnostic accuracy 

and efficiency, a multilevel recovery diagnosis model for rolling bearing fault from imbalanced and 
partially missing monitoring data is formulated in this paper. Firstly, to handle the issue caused by data 
imbalanced distribution, a regulable resampling plan is designed; then, a multilevel recovery scheme 
is formed to deal with the issue of partially missing; finally, an improved sparse autoencoder based 
multilevel recovery diagnosis model is built to identify the health status of rolling bearings. 

The contribution of this paper is as follows.1) By designing and employing a regulable resampling 
plan, the adverse effects of data imbalanced distribution on the minor-classes (i.e., faults) diagnosis 
are tackled. 2) By designing and employing a multilevel recovery scheme and an adaptive loss function, 
the robustness and diversity of SAE feature learning is improved. 3) The accurate and fast diagnosis 
of weak and scarce rolling bearing faults is achieved by the proposed fault diagnosis model. 4) 
The effectiveness and practicability of the proposed method on the rolling bearing real fault 
diagnosis is verified. 

The rest of the study is organized as follows. In Section 2, the sparse auto-encoder is briefly 
introduced. In Section 3, the designed multilevel recovery diagnosis model for rolling bearing faults 
from imbalanced and partially missing monitoring data is fully introduced. In Section 4, the diagnostic 
tests are developed and analyzed. Finally, conclusions are given in Section 5. 

2. Theoretical materials 

Traditional autoencoder is one of the classic networks in deep learning techniques. In practical 
applications, sparse autoencoder is formed when sparse condition is introduced into autoencoder. Like 
the general neural network, the sparse autoencoder is composed of input layer, hidden layer and output 
layer. Particularly, the input and hidden layer modules perform coding operations to effectively extract 
the feature information contained in the input signals, and then the original input signals are 
reconstructed from encoded information based on decoding function implemented by the hidden and 
output layer’s modules. Actually, the outputs of hidden layers are the low-dimensional features of the 
input signals after dimensionality reduction, and based on the optimal weights and biases search, the 
inputs can be reconstructed as accurately as possible by the outputs. 

Firstly, specify 𝒅   as an unlabeled input signal set, where𝒅 ∈ R   is the 𝑖𝑛   input 
signal, and A represents the input signal size, while N is the dimension of the input signal. Then, the 
coding mapping function is specified as 𝑓 , and the feature 𝒇𝒆  of the hidden layer can be calculated 
by formula (1). 

 𝒇𝒆 𝑓 𝒅 𝒮𝑖 𝑾 𝒅 𝒃   

where 𝒮i ∙   indicates the sigmoid function, 𝑾   and 𝒃   respectively represent the weight matrices 
and bias vectors of the coding module. 

Secondly, the mapping function of decoding module is specified as  𝑓 , so reconstitution 𝒅  of 
signal of the input can be achieved by formula (2). 

 𝒅 𝑓 𝒇𝒆 𝑾 𝒇𝒆  𝒃    

where 𝑾  and 𝒃  respectively indicate the weight matrices and bias vectors of the decoding module. 
The restructure error of autoencoder is commonly achieved based on formula (3). 
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 𝐽 ∑ 𝒅 𝒅    

In order to gain valuable features and prevent the output information from mechanically copying 
the input signals, Kullback-Leibler (KL) divergence function is generally introduced into autoencoder 
as a sparse condition, resulting in a more practical sparse autoencoder. So the sparse representation 
of 𝒇𝒆   is achieved, and the average activation of  𝒇𝒆   is expressed as formula (4). 

 ρ ∑ 𝑓𝑒 ，𝑑𝑒 1,2,3, … ,𝐷   

where 𝐷 is the feature dimension of the hidden layer. Therefore, the sparse condition item is calculated 
as formula (5) below. 

 KL ρ ∥ ρ ρ log 1 ρ    

where ρ denotes a near-zero parameter for sparsification. 
Subsequently, the sparse autoencoder’s training process is updated to the solution for the 

optimization problem in formula (6). 

 min
𝑾,𝒃

𝐽 δ∑ KL ρ ∥ ρ    

where 𝑾 𝑾𝒊𝒉,𝑾𝒉𝒐 ,𝒃 𝒃𝒊𝒉,𝒃𝒉𝒐 , δ is a parameter employed to adjust the restructure error and 
the sparse condition item. 

Comprehensively analyzing, those limitations of previous studies by monitoring data mining for 
rolling bearing’s faults are as follows. 1) Compound faults recognition prevalent in bearings are not 
studied. 2) Adaptability and generalization ability of the designed diagnostic methods need 
improvement. 3) It is difficult to apply to the diagnostic task with weak fault symptoms. 4) The non-
variety of feature extraction hinders the reliability of diagnostic results. 5) Diagnostic challenges 
caused by imbalanced distribution and partially missing of the collected monitoring data generally are 
not involved. 

Therefore, in order to solve these issues and improve the diagnostic accuracy and efficiency, a 
multilevel recovery diagnosis model for rolling bearing faults from imbalanced and partially missing 
monitoring data is formulated and tested in this paper. 

3. Multilevel recovery diagnosis model for rolling bearing faults from imbalanced and partially 
missing monitoring data 

To handle the diagnostic challenges of rolling bearing faults from imbalanced and partially 
missing monitoring data, the innovation points developed in this study is as follows. 

Plan I: Raw vibration signals pre-processing. For rolling bearing in practical industrial system, 
the normal vibration signals are easy to access, while abnormal ones are scarce resources. Therefore, 
considering the balance of different signal characteristics in fault diagnosis, a regulable resampling 
plan is constructed, and is given in Figure 1. To be specific, a large shift and less/no overlap are adopted 
for the major-class while a small shift and more overlap for the minor-class. Consequently, Figure 1(a) 
is the re-sampling plan designed for the normal vibration signals, while Figure 1(b) is the one for the 
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abnormal vibration signals. By adopting this resampling plan, the issue caused by imbalanced 
distribution of data is solved, and a balanced diagnostic sample set of rolling bearings is 
simultaneously acquired. 

 
(a) Major-class re-sampling technique 

 
(b) Minor-classes re-sampling technique 

Figure 1. Regulable re-sampling plan. 

The original data sequence is defined as 𝐗 1,2, 𝑖,⋯ ,𝑛  , where 𝑖  represents the data point 
constituting the data sequence 𝐗, and 𝑛 indicates the total number of data points. Then, the sample 
set 𝐒 achieved by the proposed resampling scheme is given in formula (7), 

 𝐒 𝒔 , 𝒔 , 𝒔 ,⋯ , 𝒔    

where  𝒔   represents the sample in the sample set  𝐒 , 𝑗 1,2,⋯ ,𝑚 , and  𝑚  is the sample size. 
Specifically, 𝒔  is calculated by formula (8), 

 
𝒔 1,2,⋯ , 𝑙 ,                                                                                   𝑗 1
𝒔 1 𝑦 1 ∗ 𝑗 1 ,⋯ , 𝑦 1 ∗ 𝑗 1 𝑙 ,        𝑗 1   

where 𝑙 is the length of a sample, that is, the number of data points constituting each sample, and 
𝑦 represents the shift size. 

Plan II: Multilevel recovery diagnosis model building. To handle the issue of partially missing, a 
multilevel recovery scheme is formed, and subsequently a modified sparse auto-encoder based 
multilevel recovery diagnosis model is built to identify the health status of rolling bearings. 
Specifically, multiple levels of noise are mixed into each diagnostic sample of rolling bearings, and 
the noised samples are got. Subsequently, the diagnosis model performs feature extraction and signal 
classification on the noised samples. 

Define the multiple levels of noise order is 𝑛 ,𝑛 , … , n , … ,𝑛 , where 𝑛  denote the first noise 
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grade, 𝑛  is the 𝑖  noise grade, and n  is the last noise grade, 𝑖 0, 1, 2, … ,𝐸, and 𝑛 𝑛 ⋯
𝑛 0. Then, every noise level is successively employed to train the diagnostic model. In fact, with 
such training strategy, the general characteristics of the diagnostic signals would be mined first, while 
the local characteristics of the samples are mined one by one. To be specific, given the pre-processed 
input sample as 𝑑 , and then based on the uniform distribution Q  with different probability 𝑃 , the 

random masking noise is injected into 𝑑 , so as to get the noised sample 𝑑 ~Q 𝑑 𝑑 ,𝑃 . Thus, 

this signal processing plan is actually correspond to injecting a “blank” data points with 
probability 𝑃  into 𝑑 , and let the amount of information in 𝑑  is reduced. Finally, for each noise level, 
the reconstructed sample �̅�   is acquired based on encoding and decoding formulas (9) and (10), 
respectively. 

 𝒇𝒆 𝑓 𝑑 𝑓 𝑾𝒊𝒉𝑑 𝒃𝒊𝒉    

 �̅� 𝑓 𝑾𝒉𝒐𝒇𝒆 𝒃𝒉𝒐    

where 𝑓 ∙  is ReLU, while 𝑾 ,𝑾 , 𝒃 ,𝒃  are the weights and biases of coding and decoding 
modules respectively. 

This designed multilevel recovery diagnosis model attempts to populate the information at 
different noise level 𝑛 , and then based on mining 𝑑 , the data structure of 𝑑  is finally learned. Such 
a processing strategy not only mines the characteristics of the original signal 𝑑  , but also improves 
the robustness of feature learning. 

Plan III: Weights conditions forming. For enriching feature information mining and highlighting 
the most discriminative features, weights conditions as shown in formulas (11)–(13) are formed. 

 𝑾𝒉𝒐 𝑾𝒊𝒉    

 𝑾𝒊𝒉 2 ∗ 𝐹 a, b ∗ 𝑅𝑛 a, b 𝐹 a, b    

 ‖𝑾𝒊𝒉‖ ∑ ∑ 𝑊    

where a and b are the sizes of intput layer and hidden layer, respectively. 𝐹 ∙ 6
a b represents 

a defined function, and 𝑅𝑛 ∙ rand ∙  is a random function. Further,  Dim  is the input sample 
dimension, while M denotes the feature dimension. 

Plan IV: Sparse condition item improving. Considering the efficiency of network training, the 
sparse condition item in formula (5) is improved as follows. 

 ∑ 𝒇𝒆 ∑ ∑ 𝑓𝑒    

Finally, the designed improved cost-function of the multilevel recovery diagnosis model 
developed in the study is given as formula (15). 
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𝑚𝑖𝑛
𝑾𝒊𝒉,𝑾𝒉𝒐,𝒃𝒊𝒉,𝒃𝒉𝒐

∑ 𝒅 𝒅 δ∑ 𝒇𝒆 γ∑ ∑ ∑ 𝑊 μ‖𝑾𝒊𝒉‖

𝑾𝒉𝒐 𝑾𝒊𝒉 ′
𝑾𝒊𝒉 2 ∗ 𝐹 a, b ∗ 𝑅𝑛 a, a 𝐹 a, b



Next, after employing the well-trained improved sparse autoencoder based multilevel recovery 
network to accomplish feature mining, softmax module is determined as the output module of the 
designed model to complete the diagnostic missions. 

To sum up, the realization of health status identification and fault level classification for rolling 
bearing by adopting the improved sparse autoencoder based multilevel recovery model developed in 
this study is shown in Figure 2. 

 

Figure 2. Realization of rolling bearing faults based on proposed diagnostic model. 
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4. Tests and analysis 

4.1. Model hyper-parameters 

Actually, the fine diagnostic outcomes hardly to be obtained without reasonable model hyper-
parameters. Therefore, the optimal hyper-parameters of the designed multilevel recovery diagnosis 
model are found by the way of tests in this study. It is worth noting that, these optimal hyper-parameters 
can be directly adopted for other diagnostic tasks. To be specific, taking the deep groove ball bearing 
with ten health conditions (i.e., normal and nine faults) as an example, the vibration monitoring signals 
of it are adopted and then developed fifteen times tests. In addition, the normal and fault data are 
skewed, thus, the regulable resampling plan is used to get the balanced diagnostic sample set. 

4.1.1. Hidden nodes size 

Generally, in deep networks, the hidden nodes follows the principle that the size of the later layer 
is less than or equal to the size of the previous one. In this study, the optimal hidden nodes size of the 
proposed multilevel recovery diagnosis model is displayed in Figure 3. Specifically, the red lines mark 
the accuracy range of the fifteen times tests. Comprehensive accuracy, stability and time consumption, 
the optimal hidden nodes sizes of the previous layer and the latter one are identified as 200 and 100 
respectively, as circled by the black dotted box in the figure. 

 

Figure 3. Optimal hidden nodes sizes of the designed model. 

4.1.2. Training/testing sample size 

Actually, the training/testing sample sizes are really affect the diagnosis accuracy in deep network, 
therefore, the tests are carried out to search the optimal training/testing sample size of the proposed 
multilevel recovery diagnosis model, the outcomes are given in Figure 4. The green lines mark the 
accuracy range of the fifteen times tests. Comprehensive accuracy, stability and over-fitting issue, the 
optimal training/testing sample sizes of the designed model are identified as 6/4, as circled by the blue 
dotted box in the figure. 
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Figure 4. Optimal training/testing sample sizes of the designed model. 

4.1.3. Cost-function weight term 

In formula (13), the cost-function weight terms optimization of the developed multilevel recovery 
diagnosis model is  introduced as follows. 

1) Weight term γ 
As is known to all, the weight regularization item in classic deep network is an adequate response 

to over-fitting issue, however, unsuitable weight item γ for this regularization item would hinder the 
feature extraction ability of the model. Thus, the tests are developed to seek the optimal weight 
item  γ  of the proposed multilevel recovery diagnosis model, the results are given in Figure 5. 
Apparently, the optimal γ is 3e 2, as marked by the red dotted box in the figure. 

 

Figure 5. Optimal weight item γ of the designed model. 

2) Weight term δ 
For an autoencoder network, the sparse condition is introduced to prevent the outcome from 

mechanically reproducing the input, so as to enhance the performance of feature extraction. However, 
the reasonable weight item δ for this condition in cost-function of the model is essential to mine data. 
So, the tests are produced to find the optimal weight item δ  of the proposed multilevel recovery 
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diagnosis model, the results are shown in Figure 6. Evidently, the optimal δ is 3, as circled by the green 
dotted box in the figure. 

 

Figure 6. Optimal weight item δ of the designed model. 

3) Weight term μ 
In the designed cost-function of the proposed model, for the most distinctive features acquisition, 

the weight condition of the weight matrices in coding module is introduced. In fact, it is necessary to 
search the appropriate weight item μ for this condition. Therefore, the tests are carried out to get the 
optimal weight item μ of the proposed multilevel recovery diagnosis model, as is shown in Figure 7. 
Comprehensive accuracy and stability, the optimal μ is identified as 3e-2, as tagged by the yellow 
dotted box in the figure. 

 

Figure 7. Optimal weight item μ of the designed model. 

4.2. Test1: Artificial fault diagnosis of rolling bearing 

In Test1, the datasets provided by Case Western Reserve University (CWRU) data center [31] are 
employed to develop the validation experiments. Specifically, 1) the sampling frequency of original 
signals at motor driving end is 12 kHz. 2) The health states of bearing are normal state (N), rolling 
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element failure (REF), inner ring failure (IRF) and outer ring failure (ORF), respectively. 3) The fault 
levels arranged by the Electro-discharge Machining (EDM) technology of bearing are respectively 
0.18, 0.36 and 0.53 mm. 4) Data in normal state are regarded as major-class, and the ones in failure 
states are regarded as minor-classes. A resampling plan with 2048 and 128 is adopted for diagnostic 
data in 4) to get the balanced training sample set. Detailed description for this test is shown in Table 1. 

Table 1. Description of Artificial Faults Diagnosis in Test1. 

Load (hp) Sample Size Health Status Fault Level 

3 

200 N 0 

200 IRF1 0.18 mm 

200 IRF2 0.36 mm 

200 IRF3 0.53 mm 

200 ORF1 0.18 mm 

200 ORF2 0.36 mm 

200 ORF3 0.53 mm 

200 REF1 0.18 mm 

200 REF2 0.36 mm 

200 REF3 0.53 mm 

The hyper-parameters of the proposed diagnostic model are as follows. 1) The number of neurons 
in input layer and output layer is 1200 and 10, respectively. 2) The test sample set is formed based on 
data interception technology. 3) The first noise grade and the last noise grade are set to be 0.5 and 0.05, 
respectively. The noise grade decrease step size is set to be 0.05. 4) Random masking noise is added 
to 20% of the elements for the selected samples. 5) The weight matrices of two hidden layers are 
respectively initialized by formulas (9) and (10). 6) The bias vectors are initialized to be zeros. It is 
worth noting that the training set and the test set in this test are not identically distributed. 

4.2.1. Verification and analysis 

Considering the stability and generality of the test results, the diagnostic sample set in Table 1 is 
tested for ten times continuously. In addition, for robustness verification, sixty percent of data in the test 
sample set are randomly used to diagnose in every trial, and the trials accuracy is shown in Figure 8. It 
displays that the designed diagnostic scheme developed in this study can achieve the artificial fault 
diagnosis of loaded rolling bearing, with an average accuracy over 99.2%. 

The statistical correctly identified sample sizes of each health state for ten trials are given in 
Figure 9. It can be seen that the correctly identified sample sizes of IRF3 and ORF2 are slightly smaller. 
Furthermore, all samples of bearing in normal state are correctly identified, and none of the faulty 
samples are misdiagnosed as normal ones. In fact, with the load interference, the improved sparse 
autoencoder based multilevel recovery model developed in this study has no misdiagnosis except a 
small amount of missed diagnosis in ten trials. 
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Figure 8. Result of the artificial fault diagnosis in Test1. 

 

Figure 9. Identified sample sizes of each health state in Test1. 

Further, the average recognition accuracy of each health state in Figure 9 is computed and listed 
in Table 2. It shows that the test results of each health state are different. Actually, since the physical 
structure of bearing determines the complexity of different faults, the test results of each health state 
are hardly to be equal. However, the trial accuracy of the designed multilevel recovery model for 
loaded rolling bearing artificial fault diagnosis is not less than 98.045%. 

Next, for revealing the specifics of incorrectly identified samples, the classification confusion 
matrix of ten trials is produced and displayed in Figure 10. Specifically, the numbers on the diagonal 
show the correctly identified sample size, while the numbers outside the diagonal give the incorrectly 
identified ones. It can be seen that the error identification mainly emerges between IRF1 and REF2, 
IRF3 and ORF2. Further, REF3 is wrongly diagnosed as REF2. Actually, the matrix again verifies that 
the designed method does not have the issue of missed diagnosis when diagnosing artificial faults of 
rolling bearing. 

Finally, the test performance criteria of the designed model are shown in Table 3. Specifically, the 
average test accuracy exceeds to 99.2%, the time for model training is lower than 22s, while the time 
for final recognition is not greater than 17 ms. Therefore, although with the unbalanced sample data 
structure, the improved sparse autoencoder based multilevel recovery model developed in this study 
can accurately and quickly identify the artificial faults of rolling bearing and determine severity level 
at the same time. 
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Table 2. Average test result of every health state in Test1. 

Health state Average test accuracy (%) 

N 100.000 

IRF1 98.879 

IRF2 100.000 

IRF3 98.241 

ORF1 100.000 

ORF2 98.045 

ORF3 100.000 

REF1 100.000 

REF2 98.866 

REF3 98.440 

 

Figure 10. Diagnostic result matrix of artificial fault in Test1. 

Table 3. Performance criteria of artificial fault diagnosis in Test1. 

Average accuracy Training time Recognition time 

99.250% 21.897s 16.300ms 

4.2.2. Comparison and analysis 

In order to understand the diagnostic performance of the proposed multilevel recovery model, the 
comparative tests are developed by means of unchanged diagnostic set in Table 1. Considering the 
stability of diagnosis, ten consecutive trials are performed, and the average results are shown in Table 4. It 
can be seen that the deep framework -based schemes possess the better diagnostic performance than 
the shallow Artificial Neural Network (ANN)-based structure in handling mass data samples. Further, 
the empirical-based feature parameters selection and then feature extraction conducted restricts the 
performance of the diagnostic schemes formed in [32] and [33], and three hidden layers based plan 
designed in [34] increases the model training time. Moreover, none of these schemes considered the 
issue of the data imbalanced and partially missing. Distinctively, the model developed in this study 
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solves the above problems well, and then accurately and quickly realizes artificial fault identification 
and severity level determination. 

Table 4. Diagnostic performance comparison of different plans in Test1. 

Method 
ANN-

based 

EEMD+ 

AR+SAE [32] 

LMD+ 

RWSVM [33] 

SAE-based 

[34] 

The proposed 

method 

Average accuracy (%) 59.963 94.513 91.615 95.813 99.250 

Average training time (s) 20.116 147.078 54.510 37.913 21.897 

Average recognition time (ms) 16.547 39.667 28.343 31.025 16.300 

AR: Autoregressive; SAE: Sparse autoencoder; RWSVM: Reproducing wavelet support vector machines. 

4.3. Test2: Practical fault diagnosis of rolling bearing 

In this test, the dataset shared by Padborn University [35] is employed to promote practical fault 
diagnosis of rolling bearings. The faulty data of bearings in this dataset are collected based on 
accelerated lifetime tests. Specifically, 1) the sampling frequency of vibration data is 64 kHz. 2) Health 
statuses of these bearings respectively are normal state, IRF and ORF. 3) Failure modes are single point 
(SP), repetitive (R) and multiple (M), respectively. 4) Failure levels are divided into 1, 2 and 3. 5) The 
normal bearing’s signal is regarded as the major-class, and the ones of failure bearings are regarded as 
minor-classes. A resampling plan with 5120 and 256 is adopted for diagnostic data in 5) to get the 
balanced training sample set. In addition, each health condition contains 100 samples, and each sample 
is composed of 2560 data points. Consequently, the sample set contains 1300 samples. Detailed 
description of this dataset is shown in Table 5. 

Apparently, the failure modes are diverse, and this dataset even contains a variety of composite 
faults. Thus, compared with Test1, this test for practical fault diagnosis is more complex and difficult. 

Table 5. Description of practical faults diagnosis in Test2. 

No. Damage Health status Fault mode Fault form Level 

01 - - - - 0 

02 Pi ORF SP SP 1 

03 In ORF SP SP 1 

04 Pi ORF R SP 2 

05 In ORF R Distributed 1 

06 Pi IRF M SP 1 

07 Pi IRF SP SP 3 

08 Pi IRF R SP 1 

09 Pi IRF SP SP 2 

10 Pi IRF SP SP 1 

11 Pi IRF+(ORF) M SP 2 

12 Pi IRF+(ORF) M Distributed 3 

13 In ORF+IRF M Distributed 1 

Note: Pi: Pitting; In: Indentations. 
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4.3.1. Verification and analysis 

The hyper-parameters of the proposed diagnostic model are as follows. 1) The number of neurons 
in input layer and output layer is 2560 and 13, respectively. 2) The test sample set is formed based on 
data interception technology. 3) The configuration of the remaining hyper-parameters is still the same 
as that in Test1, so as to highlight the excellent generalization performance of the designed model. 
Then, considering the stability and generality of the test results, the diagnostic sample set in Table 5 is 
tested for ten times continuously. In addition, for robustness verification, sixty percent of data in the 
test sample set are randomly used to diagnose in every trial, and the results are given as Figure 11. It 
displays that designed diagnostic scheme developed in this study can achieve the practical fault 
diagnosis of loaded rolling bearings, with average-accuracy over 99.4%. 

 

Figure 11. Result of the practical fault diagnosis in Test2. 

The statistical correctly identified sample sizes of each rolling bearing for ten trials are given in 
Figure 12. It can be seen that the correctly identified sample sizes of 03 are a bit less than the original 
ones. Furthermore, the correctly identified size of other ones is pretty close to or equal to the real size. 
Remarkably, all samples of bearing in normal state are correctly identified, and none of bearings in 
failure state is misdiagnosed as normal ones. In fact, with the load interference, the improved sparse 
autoencoder based multilevel recovery model developed in this study has no misdiagnosis except a 
small amount of missed diagnosis for practical fault diagnosis. 

 

Figure 12. Identified sample sizes of each bearing in Test2. 
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Further, the average recognition accuracy of each bearing in Figure 12 is computed and listed in 
Table 6. It shows that the test results of each bearing are different. Actually, since the differences in 
health status, the test results of each bearing are hardly to be equal. However, the trial accuracy of the 
designed multilevel recovery model for loaded rolling bearing practical fault diagnosis is still above 
98.330%. 

Table 6. Average test result of every bearing in Test2. 

No. Average diagnostic accuracy (%) 

01 100.000 

02 100.000 

03 98.330 

04 99.500 

05 99.063 

06 100.000 

07 99.316 

08 100.000 

09 98.972 

10 99.737 

11 100.000 

12 98.783 

13 99.778 

Next, for revealing the specifics of incorrectly identified samples, the classification confusion 
matrix of ten trials is produced and displayed in Figure 13. Specifically, the numbers on the diagonal 
show the correctly identified sample size of each bearing, while the numbers outside the diagonal give 
the incorrectly identified ones. With the existence of load as well as the diversity and coupling of 
failure modes, the error identification mainly emerges between 03 and 05, as well as between the 
single-failure and its correlative multiple ones. Actually, the matrix again verifies that the designed 
method does not have the issue of missed diagnosis when diagnosing practical faults of rolling bearings, 
highlighting the well recognition performance and practicability of this designed model in actual 
industry sector. 

 

Figure 13. Diagnostic result matrix of practical fault in Test2. 
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Finally, the test performance criteria of the designed model are shown in Table 7. Specifically, the 
average test result is exceeds 99.4%, the time for model training is lower than 38s, and the time for 
final recognition is not greater than 19.9ms. Therefore, even with the unbalanced sample data structure, 
the improved sparse autoencoder based multilevel recovery model developed in this study can 
accurately and quickly identify the practical faults of rolling bearings and determine severity level at 
the same time. 

Table 7. Performance Criteria of Practical Fault Diagnosis in Test2. 

Average accuracy Training time Recognition time 

99.481% 37.646s 19.900ms 

4.3.2. Comparison and analysis 

For surveying the performance of the proposed multilevel recovery model to practical faults 
diagnosis, the comparative tests are formulated based on the same diagnostic sample set in Table 5. 
Taking reliability into account, ten consecutive trials are performed, and the average results are shown 
in Table 8. Apparently, compared with Table 4, only the diagnostic accuracy of the method designed 
in this study does not reduce for practical faults, while the accuracy of other methods decreases 
significantly. To be specific, for the reason of ignoring the issue of unbalanced monitoring data 
structure, the shallow ANN-based structure hardly discriminated the practical faults of rolling bearings. 
In addition, determination of feature parameters in [32] and [33] was based on artificial fault properties, 
which hindered the diagnostic performance of these methods to practical faults. Since the diagnostic 
scheme established in [34] based on the deep framework, the diagnostic effect of this method is 
relatively better. In contrast, with the influence of load and unbalanced monitoring data, the designed 
model can handle practical fault diagnosis issues and show excellent diagnostic performance. 

Table 8. Diagnostic performance comparison of different plans in Test2. 

Method ANN-based 
EEMD+ 

AR+SAE [32] 

LMD+ 

RWSVM [33] 
SAE-based [34] 

The proposed 

method  

Average accuracy (%) 57.961 93.846 90.173 94.423 99.481 

Objectively, differences are existed between the practical faults and artificial faults. Considering 
the effectiveness and practicability of diagnostic method, it is more meaningful to be able to realize 
the practical fault modes identification and the failure level determination with excellent performance. 

5. Conclusions 

In this study, a multilevel recovery diagnosis model for rolling bearing faults from imbalanced 
and partially missing monitoring data is formulated, which completed the scarce multiple complex 
faults of rolling bearings with excellent performance. The test outputs were exhibited that this designed 
model significantly outperforms the other competing techniques on artificial and practical fault data 
sets. The findings and innovative points of this study are as follows. 1) The designed regulable 
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resampling plan effectively handled the adverse effects of data imbalanced distribution on the minor-
classes. 2) The multilevel recovery scheme made a outstanding contribution to partially missing data. 
3) The developed loss function improved the robustness and diversity of SAE feature learning. 4) The 
proposed diagnosis model displayed excellent performance and provided reference for the solution of 
other fault diagnosis issues. 

Furthermore, for rolling bearing faults diagnosis, the effectiveness of the diagnosis of the severe 
data imbalance and the overall missing data remains to be confirmed, and will be a focus of our future 
work. In addition, a diagnosis platform is considered to be developed for the practical engineering 
applications. 
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