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Abstract: Healthcare is the method of keeping or enhancing physical and mental well-being with its
aid of illness and injury prevention, diagnosis, and treatment. The majority of conventional healthcare
practices involve manual management and upkeep of client demographic information, case histories,
diagnoses, medications, invoicing, and drug stock upkeep, which can result in human errors that have
an impact on clients. By linking all the essential parameter monitoring equipment through a network
with a decision-support system, digital health management based on Internet of Things (IoT) elim-
inates human errors and aids the doctor in making more accurate and timely diagnoses. The term
”Internet of Medical Things” (IoMT) refers to medical devices that have the ability to communicate
data over a network without requiring human-to-human or human-to-computer interaction. Mean-
while, more effective monitoring gadgets have been made due to the technology advancements, and
these devices can typically record a few physiological signals simultaneously, including the electrocar-
diogram (ECG) signal, the electroglottography (EGG) signal, the electroencephalogram (EEG) signal,
and the electrooculogram (EOG) signal. Yet, there has not been much research on the connection be-
tween digital health management and multi-modal signal monitoring. To bridge the gap, this article
reviews the latest advancements in digital health management using multi-modal signal monitoring.
Specifically, three digital health processes, namely, lower-limb data collection, statistical analysis of
lower-limb data, and lower-limb rehabilitation via digital health management, are covered in this ar-
ticle, with the aim to fully review the current application of digital health technology in lower-limb
symptom recovery.
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1. Introduction

Due to the new improvements in medical services and longer life expectancy, there is a growing
need for rehabilitative and assistive devices for at-home nursing due to the rise in clients with gait
impairments [1]. Lower-limb exoskeletons are now possible as a home-care tool for both rehabilitation
and assistive purposes, thanks to rapidly expanding methods of monitoring and combining multi-modal
biomedical data. Improved assistive and rehabilitative performance can be obtained by combining
multi-modal biomedical signals that were used to decode human motor intent, i.e., to recognize subject-
specific gait features.

Figure 1. An overview of the application areas of digital health.

In order to enhance the effectiveness of service delivery and make medication more individualized
and specific, the field of digital health integrates digital clinical services, innovations, and lifestyle with
illness, care, and social culture [2]. It makes use of technology-based information and communication
to enable a more individualized and accurate assessment of the health issues and difficulties experi-
enced by patients undergoing proper help and social prescription [3]. The application areas of digital
health management are shown in Figure 1. There are various ways in which the concepts of digital
health and its scope intersect with those of medical and medical informatics. Global adoption of elec-
tronic health files has grown since 1990, and this development is closely related to the accessibility of
universal health-care coverage [4]. The interdisciplinary area of digital health involves a wide range
of participants, including physicians and scientists with a variety of specialties in healthcare, architec-
ture, social science, global health, economics, and database administration. Telemedicine, wearable
technology, AR, along with VR are just a few examples of the software applications and products
that make up digital health technologies. In general, digital health links disparate medical activities
to increase the use of technology, intelligent objects, analytical methods, and messaging applications
to help physicians and clients control diseases and health risks and also advance wellness. By digital
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health management, we refer to the approach that gives users the power to manage their own health
while utilizing technology to connect them to their care teams. This is about fusing human ties with
digital experiences, not about replacing human interactions with them. There are basically three steps
for digital health management, which include data monitoring, data processing, as well as rehabilita-
tion intervention. Digital health technologies play a key role in each part via the use of multi-modal
signal monitoring [5].

For lower-limb data monitoring, IoT plays a major role. Specifically, technologies related to IoT,
such as wearable sensors, machine learning, AI, IoMT, 5G wireless communication, and telemedicine
devices, can all be employed in gathering biological signals.

For lower-limb data analysis, digital technologies exert a great influence. All studies demonstrated
that a digital health based classification approach is an effective data analysis approach for this task.

For lower-limb rehabilitation, there is much that digital health technologies can do. Rehabilitation
robots, which help patients move their bodies, have emerged as one of the most popular trends in the
field of digital health.

This manuscript consists of several parts. The first section covers a general overview of digital
health management, wherein the history of development, the application area, as well as its sub-fields
are fully discussed. The second section is a brief introduction of the digital health management, and
the third part covers the major biological signal monitoring technologies employed in digital health
management. The fourth part is a list of the recent advancement of the application of digital health
technology in lower-limb symptoms diagnosis, analysis, and rehabilitation. Part five is a demonstra-
tion of related works. Part six discusses the uses of digital health and its future prospect, and part
seven concludes the article by summarizing the findings and applications in the field of digital health
management.

2. Digital health management

Digital health management, which lays its groundwork on digital health technologies, covers a lot
of areas of medical research and application and will be introduced in the following paragraphs in
terms of telemedicine, wearable technology, AR and VR, as well as rehabilitation robotics.

2.1. Telemedicine

One of the most inclusive subfields of e-health is telemedicine [6]. It includes remote healthcare,
scheduling appointments, self-symptom checking, reporting patient outcomes, and the digitalization of
medical data, among many other things [7]. Quick, non-urgent consultations are constantly provided
through digital and remote clinics, saving an enormous amount of time. This approach, which has
take place of in-person consultations as the primary way physicians visit their clients, has grown in-
creasingly popular, particularly in light of the COVID-19 epidemic [8]. Physicians want to utilize this
form of digital therapy for routine checkups even after the epidemic is over, since it is a trustworthy
procedure that keeps all parties secure. The swivel motion reconstruction approach was employed in
conjunction with the kinematic mapping in robot redundancy to mimic human-like behavior [9]. On-
line health records are a part of telemedicine as well, giving doctors and clients constant access to the
necessary data. With so much digital data available, healthcare professionals may access patient infor-
mation and use it to evaluate patient data to develop more effective and intelligent treatment regimens.
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This paves the way for a more personalized healthcare system, which may help patients understand
their ailments and yield better results.

2.2. Wearable technology

Figure 2. Data collection via wearable sensors [10].

Smart watches and on-body sensors are two examples of wearable innovation. Smart watches
were one of the first wearable gadgets that encourage self-monitoring and were commonly connected
with fitness tracking [11]. Many track health-related information, such as ”body mass index, calories
burned, heart rate, and physical activity patterns.” Aside from smart watches, scientists are working on
intelligent bodywear, such as patches, garments, and accessories, to provide ”on-demand medication
delivery.” [12]. Figure 2 provides a perfect example . This innovation has the potential to be broadened
into smart implantation for both acute and non-severe medical problems, allowing clinicians to develop
better, more dynamic treatment procedures that would not have been conceivable without such digital
innovation.

These innovations are employed to capture information about patients all day long. The statistics
can result in more effective treatment planning and monitoring because practitioners no longer have
to ask their patients to visit their offices to obtain the essential data. Therapists will have a better
understanding of how well a specific drug is working. They are also capable of continuing to learn
from this data and building on their initial treatment regimens, allowing them to act when necessary.

2.3. AR and VR

AR technology is utilized to create smart gadgets for healthcare practitioners and enriches real-
world encounters with digital sensory data [13]. Because hand-held devices now collect the majority
of patient-related data, wearable technology provides a novel, hands-free enhanced method for a doctor
to evaluate their patient’s health history. Wearing a pair of smart glasses while treating a person enables
the use of this technology for data-driven diagnostics, increased patient record, and even improved care
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plans.

VR, which provides interactive simulations that imitate actual settings and may be customized for
specific therapies, is another area of related technology [14]. Since the lower limb is usually the
focus of therapy, many stroke victims experience loss of range of motion, and according to established
treatment procedures, 55 to 75% of patients experience chronic upper muscle impairment. The two key
indicators of recovery progress are repeated behaviors and the period of treatment. In order to assist
patients retrain their motor motions, virtual reality technology may provide a variety of 3D situations
that are difficult to replicate in the real world. These scenarios can not only target particular bodily
regions, but they can also grow more intense as the patient gets better and needs to perform more
difficult duties.

2.4. Rehabilitation robotics

Studies in the subject of rehabilitation robotics are focused on learning about and improving reha-
bilitation through the use of robots [15–17]. Robotics for rehabilitation comprises the creation of tools
designed to support various sensorimotor processes [18] (e.g., arm, hand, [19, 20] leg, ankle [21]),
development of different schemes of assisting therapeutic training [22], and assessment of sensori-
motor performance of patient [23]; here, robots are used mainly as therapy aids instead of assistive
devices [24], as is shown in Figure 3. Robotic treatment has been demonstrated to be a successful
supplement to therapy in people with motor deficits, especially those caused by stroke, and is often
well tolerated by patients.

Figure 3. Hybrid mechanism-based robot for end-traction lower limb [25].
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Figure 4. Lower limb rehabilitation training device [26].

Although the number of rehabilitation robots has grown over time, their availability is still limited
due to clinical trials. Numerous clinics do experiments but choose not to deploy the bots since they
prefer remote control. There are several advantages to involving bots in a participant’s rehabilitation.
The ability to repeat the procedure or workout as often as desired is one of its benefits. You can
obtain precise measures of their advancement or deterioration, which is another advantageous element.
Figure 4 provides a perfect example. Through the use of the device’s sensors, you could obtain precise
measurements. You must be cautious whereas the gadget is performing the measurement since the
varied motions the person makes to exit the room after it is finished might cause the instrument to
malfunction [27]. The therapeutic bot can provide continuous care for longer. The rehabilitation robots
are unable to comprehend the patient’s demands during the healing process like an expert clinician
would [28]. Although the robots are currently unable to comprehend, they will be capable of doing so
in the long term. Some other benefit of using a robot for recovery is that the practitioner doesn’t have
to exert any extra exertion, as is shown in Figure 5.

Figure 5. Lower-limb rehabilitation invention [29].

The use of rehabilitative robots in learning for medical, operations, telemedicine, and other fields
has recently increased; however, there have been numerous concerns about the robots’ inability to be
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operated by a computer. Contrary to popular belief, employing an animatronic robot for rehabilitation
does not equate to utilizing one for manufacturing. Robots used in rehabilitation must be configurable
and customizable since they may be applied in a variety of ways. An industrial robot, on the other
hand, is always the same; until the item it is handling gets larger or smaller, the robot doesn’t need
to be changed. An industrial robot would need to be more adaptable to its new mission in order to
function.

3. Multi-modal signal processing

Multi-modal signal processing is a crucial area of study and innovation that mixes and analyzes data
from audio, sight, speech, and messages in order to better comprehend, model, and conduct HCI sys-
tems and devices that benefit human interaction [30–32]. A broad range of uses that aid in improving
group relations and consequently efficacy before or during surgical treatments are made possible by
multi-modal signal processing [33].

More effective monitoring gadgets have been made due to the technology advancements. These
devices can typically record a few physiological signals simultaneously, including the electrocardio-
gram (ECG) [34], blood pressure (BP), arterial blood pressure (ABP), electroglottography (EGG),
electroencephalogram (EEG), electrooculogram (EOG), electromyogram (EMG), mechanomyogram
(MMG), magnetoencephalogram (MEG), respiration (RESP), and photoplethysmogram (PPG). The
IoT has progressively merged with both the practitioner and patient sides of the healthcare industry.
There are three main instruments used in signal analysis: the IoMT, machine learning, and medical
sensors, which will be introduced in the following text. Moreover, Figure 6 provides an example of its
application.

Figure 6. Multi-modal signal processing of lower-limb [35].
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3.1. IoMT-based remote health monitoring

The health sector is not an exemption to the growth of IoT devices across domains. The Internet
of Things (IoT) currently has a significant influence on the health-care industry [36]. The Internet of
Medical Things(IoMT), which was created by the creation of intelligent sensors, smart gadgets, and
sophisticated light communication protocols, enables healthcare equipment to be linked in order to
track biological signals and assess client ailments without the use of humans (IoMT) [37]. The ability
to perform routine duties while clients have been continuously monitored for their well-being and the
benefits of reduced hospital costs are the key advantages of IoMT-based remote monitoring. Given the
bulk of the body-mounted units and the need for regular battery charging or backup, traditional distant
monitoring devices are uncomfortable for the clients.

Figure 7. IoMT-based remote health monitoring [35].

The IoMT breakthrough addresses the aforementioned problems by creating small, extremely low-
power sensor devices and streamlined messaging, which can be seen in Figure 7. The portable patient
monitoring unit (PPMU) at the client’s home or in an acute ambulance, along with real-time mon-
itoring and a decision-making system at the doctor’s office, make up the bulk of the remote health
surveillance system. The portable telemonitoring device is primarily made of electronic sensors and
circuits that can collect signs like heart rate, heart rate variability, pulse rate, respiration rate, systolic
blood pressure, diastolic blood pressure, oxygen saturation, body temperature, body mass index, level
of consciousness, muscular activation, total lung volume, height, blood sugar level, and a urine report.
The data is then processed by a processing unit, and a report is generated.

The synergistic expansion of machine learning (ML) and artificial intelligence (AI) is increasing the
usefulness of medical IoT. Information analytics and machine learning process vast volumes of contin-
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ually streaming data from sensor-assisted medical devices, delivering actionable results more quickly
and assisting the therapeutic process. Using streaming data, preventive treatment could drastically re-
duce hospital stays and emergency care costs. This would increase productivity while also improving
treatment experiences and happiness. However, certain information security hazards both in movement
and at rest need to be carefully considered. Furthermore, the possibility of false positive results might
stress out individuals and the healthcare system excessively. The three crucial components of IoMT
that should always take precedence are precision, repetition, and dependability.

3.2. Wearable sensors in medical application

Flexible materials, the building blocks of biosensors, have advanced significantly over the past ten
years to give electronic gadgets skin-like qualities such as slimness, stretchability, bio - compatibil-
ity, biodegradability, and self-healing capacity [38], as is shown in Figure 8. Furthermore, a variety
of tissue engineering applications for sensing devices have entered the digital health space [39–44],
making it possible to monitor vital signs (blood pressure [45], respiration rate [46], skin tempera-
ture, pulse, etc [47].), physiological signals (electrocardiography (ECG), electromyography (EMG),
electroencephalography (EEG), etc.) [48, 49], body kinetics(strain, pressure, etc.) [50, 51], and dy-
namic biomolecular state via accessible biofluids (sweat, etc.) [52, 53]. Biosensors go beyond only
monitoring biomedical signals to provide remarkable reinforcement or assistance for body move-
ments [54–56]. The robotic exoskeleton, a bot that directly assists or strengthens human muscular
motions, has emerged as a viable platform in a wide variety of uses, including prostheses, physiother-
apy, rehabilitation, and human capacity enhancement. [57–59].

Figure 8. Wearable sensors in medical application [60].

3.3. Machine learning

The research of pc systems which can identify complicated connections that exist from empirical
evidence and reach reliable conclusions is known as machine learning [61]. The computer is ”taught”
by utilizing vast amounts of information and formulas that give it the capability to comprehend what
to do to complete the work, as opposed to being given particular sets of commands to carry out a task.
In contrast to conventional algorithms, learning takes place without explicit instructions since the data
”tells” the computer what the ”correct response” is. ML issues may be divided into supervised learn-
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ing and unsupervised learning categories [62]. In supervised ML algorithms like face identification,
the machine is given several examples of ”faces” or ”non-faces,” and the algorithm learns to predict
whether an unknown image is a face or not [63]. ML and active shape modeling have been used for
understanding biomechanics and orthopaedic implant design in musculoskeletal medicine [64], bone
tumour resection [65], prediction of progression of osteoarthritis based on anatomical shape assess-
ment [66], and robotic surgery [67]. In clients with spinal impairment, extensive physiological data
analysis using machine learning has been applied [68].

4. Recent advancements in digital health management using multi-modal signal monitoring

4.1. Lower-limb health data collection through digital health management

IoT is crucial for lower-limb data monitoring. In particular, IoT-related technologies like wearable
sensors, AI, IoMT, 5G wireless connectivity, and telemedicine equipment may all be used to collect
biological signals.

To improve the reliability and precision of gait detection utilizing sEMG signals from the lower
limbs, Ting Yao et al. suggested an approach based on deep neural networks using sEMG data in [69].
Electroencephalography (EEG) and surface electromyography (sEMG) data were captured by Xiebing
Chen et al. in [70] from volunteers who were instructed to stroll on flat ground and up stairs. In order
to simultaneously simulate EEG and sEMG signals, this work introduces a unique technique based on
vine copula. To integrate various information and build intra-lead as well as inter-lead connections in
multi-lead data, MingHao Zhong et al. in [71] modelled the multi-lead data as a heterogeneous graph,
offering a suitable and efficient data model. The application domains, application processes, typical
signals, common approaches, and outcomes of smart wearable devices for the identification of mental
health issues were thoroughly reviewed by Nannan Long et al. in [72]. A lightweight DC-DSCNN
model for gait identification for wearable technology was suggested by Xiaoguang Liu et al. in [73].

In order to forecast the growth of major lower limb amputations in the United Kingdom, Meffen et
al. Additionally, sources of regularly gathered electronic health-care data that detail the epidemiology
of significant lower limb amputations will be identified in [74]. In [75], the goal of Hyun Kyung Kim
and Li-Shan Chou was to investigate the contributions of the lower-limb muscles to the velocity of the
total body center of mass while walking in obese people. A biomechanical model was used to evaluate
the simulation of walking weight delivery for five overweight and five non-overweight people. In [76],
wearable Inertial Measurement Units (IMUs) were utilized to derive objective gait characteristics,
according to research by Anwary et al. The growth of digital care is aided by this method, which
makes it possible to measure gait at residence without the need for or price of a complex laboratory
setup. In [77], Jean Won Kwak and colleagues created a pressure gauge with a smooth, 3D layout
that merges into a tiny, adaptable, battery-free, wireless system with an incorporated thermometer to
enable non-invasive, undetectable operation just at skin-prosthesis interface. The robotic exoskeleton
in Figure 9 can be used to achieve that goal.
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Figure 9. Lower limb robotic exoskeleton [78].

In [10], Luı́s Moreira et al. give a comprehensive database that contains the aforementioned raw and
analyzed information for 16 healthy volunteers walking on a ten meter-flat ground at seven regulated
speeds. This paper describes the research setup in depth and provides a quick confirmation of infor-
mation quality. Cristina Floriana Pană et al. in [79] offered a novel approach for an intelligent ankle
prosthesis grounded on intelligent fluids that would mimic the functioning of the normal ankle during
walking and jogging movements. The investigation in this sector focuses on enhancing the properties
of the mechanical ankle in order to accurately imitate the function of the human ankle. From 2012 to
2019, Yergali Nabiyev et al. in [80] examined the prevalence of lower-limb wounds and related risks
in Kazakhstan. They discovered a link between age and the probability of lower extremity injuries.
Lower extremity injuries are on the rise in both sexes over the age of 85. Analyzing the cohort impacts
revealed the risk’s proclivity for both sexes. In [81], Hudson Kaleb Dy and Chelsea Yeh highlighted
the use of ML and IoT technology to measure the lower-limb strength of people undergoing recovery
or therapy. They wanted to evaluate and analyze people’s development by attaching sensors to chairs
and analyzing the data with the Google GPU Tensorflow CoLab.

In [82], Kai Zhao et al. developed a fatigue state graded system on the basis of surface EMG signals
of human lower-limb muscles and analyzed the fatigue condition of clients’ lower limbs by capturing
surface EMG signals of aim muscles of human lower limbs, in in order to guarantee that sick people can
not only carry out training sessions but also do not cause additional injuries due to overtraining. In [83],
Thomas M. Doering et al. studied the changes in individual muscle protein abundance and related
gene sets in otherwise healthy lads following 3 and 14 days of unilateral lower-limb immobilization.
It is the inaugural research to demonstrate that unilateral lower limb immobility causes mitochondrial
malfunction, excitotoxicity, and proteolysis using data independent proteomics and GSEA. In [84],
Sean Sadler et al. gathered published reports or studies that investigated views, meanings, or attitudes
about the feet and lower-limb health. Multiple complicated linked constituents were discovered to
impact Aboriginal and Torres Strait Islander Peoples’ views of foot and lower-limb health. In [85],
Takuro Ikeda et al. set out to explore the impact of short-term lower-limb immobilization on postural
sway in the vertical position after cast release. 22 healthy young individuals were enlisted, and each
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user’s lower leg on one leg was secured for 10 hours with a soft bandage as well as a medical splint
constructed of metal and soft urethane. The findings imply that short-term disuse may produce acute
alterations in COP motions during silent standing.

LR Souto et al. in [86] conducted a study to determine the immediate effects of the hip strap and
foot orthoses during level-ground walking and the single-leg squat test on self-reported outcomes. The
secondary aim is to investigate whether the hip strap and foot orthoses result in the kinematic changes
that these devices are purported to cause. The Surface EMG technique was used to investigate the
activities of the vastus lateralis (VL), rectus femoris (RF), vastus medialis (VM), and the medial head
of the gastrocnemius (MHGM) with the increase of age. [87] In a study on physically fit females,
Farhah Nadhirah AimanSahabuddin et al. in [88] examined the effects of four weeks of hip- and
ankle-focused workouts on lower limb mechanics during single-leg squats (SLS). 36 healthy and active
ladies with high DKV were divided into categories for hip, ankle, as well as control. The intervention
groups participated in activities that targeted either the hip or ankle muscles over the course of twelve
sessions spread over four weeks. After athletes were given the all-clear to return to competition, Argyro
Kotsifaki et al. in [89] assessed their lower-limb status throughout the propulsive and landing phases
of a SLHD task. It was discovered that symmetry in SLHD standardized tests does not guarantee
symmetry in lower-limb biomechanics.

In [90], the current human body stance surveillance model was refined by Yinman Zhang and Lulu
Wang, who also created a human body model with four degrees of freedom for the lower limbs. The
configuration of the monitoring nodes and micro-sensor assembling technique for getting the model de-
scription parameters were chosen as a result. The processing of sensor information and the assessment
of correctional effects use techniques like collaborative filtering as well as support vector machines.
In [91], a smartphone-based method for capturing and recognizing lower limb movements in humans
was suggested by Lin-Tao Duan et al. We create a movement logger that uses two motion sensors
to record five different types of limb activity. The 10-fold cross-validation method is used to train
and validate these classifiers with 670 lower-limb motion examples. The results of the experiments
demonstrate that our low-cost method can accurately identify human lower-limb actions.

To help patients precisely adjust their left and right legs, Fangyan Dong et al. in [92] devised a
categorization system based on EEG signals of motor imagery. This study offers a solid theoretical
foundation for the development and use of brain-computer interfaces in instruction for recovery. In
[93], in order to protect passengers’ overall fitness while they are sleeping while seated during flights,
Huizhong Zhang et al. investigate the lower-limb edema and tissue compression. Twenty volunteers
took part in a field study of lower limb edema and tissue compression during sitting sleep using a
Boeing 737 airplane seat as the model. According to the study, travelers can obtain dynamic comfort
by making certain seated position adjustments. A reward-modulated multitasking learning strategy and
a recurrent neural network that resembles the motor cortex are suggested in the study by Jiahao Chen
et al. in [94]. Also, a neurological control on the basis of muscle synergies is proposed by Jiahao Chen
in [95]. This article also advocates for the advancement of musculoskeletal robots and the blending of
robotics and neurology.

4.2. Statistical analysis of lower-limb data through digital health technology

Digital technologies have a significant impact on the analysis of data for the lower limb. All inves-
tigations showed that a classification strategy based on digital health is a useful data analysis strategy
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for this assignment. Figure 10 provides us with a perfect example.

Figure 10. The process of lower limb data analysis [96].

An overview of the following topics is given section by section by Ankit Vijayvargiya et al. in [97]:
1) Methods for removing artifacts from lower limb sEMG signals. 2) A review of lower limb sEMG
datasets already in existence. 3) A succinct explanation of the different methods for categorizing
and processing sEMG data for a range of applications involving lower limb activity. By sit-stand-sit
motions, Md. Moznuzzaman et al. in [87] evaluated the effects of aging on the lower-limb muscles
connected to OA knees. Fifty-one healthy subjects and 33 OA sufferers were included in the study’s
total of 84 volunteers. The vastus lateralis, rectus femoris, vastus medialis, and medial head of the
gastrocnemius were examined for changes in activity with aging using the surface EMG technique. A
three-dimensional gait analysis is shown in Figure 11.

Figure 11. Three-dimensional gait analysis [98].

A methodology for forecasting an exoskeleton’s contralateral lower-limb joint angles was put forth
by Can Wang et al. in [99]. The model supports exoskeleton-assisted hemiplegia rehabilitation by
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using data from several signal - based sensors. For individuals with hemiplegia, a monitoring system
based on bioelectric and acoustic data is being developed to enhance joint angle prediction in the
afflicted leg. In [96], Bingzhu Wang et al. used a variety of feature analyses and their combination to
enhance the performance of sEMG-based lower-limb movement categorization. In the clinical study,
nine subjects executed four distinct moves. The trained movement decoders collected the sEMG by
extracting features and recognizing patterns. A study on the assessment of adolescent lower-limb
posture correction using collaborative filtering and microsensors is conducted in the paper by Yinman
Zhang and Lulu Wang in [90]. This paper simplifies the current human body stance surveillance model
and creates a human body model with six degrees of freedom for the lower limbs in an effort to address
the issue that the human body posture monitoring system requires several nodes.

Using electrical stimulation at frequencies of 20, 35 and 50 Hz, Paulo Broniera Jnior et al. in [100]
examined the impact of reducing the number of EEG channels on the outcomes of lower limbs’ motor
imagery classification. In [101], Ying Zhang suggests a hardware approach for the steadiness feature
of lower-limb exercise using the theory of smart wearable sensors in response to the need for real-time
monitoring. In terms of software design, his study splits the software system into two components: the
lower computer and the upper computer. The Virtual Peg Insertion Test and a previously developed
core set of 10 digital health measures were utilized by Christoph M. Kanzler et al. in [102] to de-
scribe upper body motion and grasp force variations during a pick-and-place activity. With ARSACS
completing three repeated assessment sessions on twenty-three participants, they assessed reliability,
measurement error, and learning outcomes. Figure 12 shows the Noraxon’s myoMotion and myoMus-
cle sensor locations.

Figure 12. Noraxon’s myoMotion and myoMuscle sensor location [103].

In [104], Sali Issa and Abdel Rohman Khaled demonstrated an improved extraction characteristic
for surface EMG signals used in lower limb movement identification applications. In order to evaluate
the system, participants are separated into abnormal and normal groups based on the normalcy of their
knees. The goal of Alexander Meigal et al. in [105] was to investigate the value of nonlinear surface
electromyogram (sEMG) characteristics in characterizing neuromuscular activity in relation to space
flight (SF) time and stepping mode. For describing the neuromuscular activity of skeletal muscles in
SF circumstances, nonlinear sEMG parameters appear promising. In [106], a ML classification ap-
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proach was used by Payam Zandiyeh et al. to explore if changes in muscle function patterns between
ACLR patients and healthy controls could be identified ten to fifteen years after surgery. In [107], a
transfer entropy assessment while walking was used in the article by Tonghun Hwang et al. to deter-
mine the causation between head vertical motion and lower-limb joint movements. The gait patterns
of all 12 subjects were examined. This discovery could pave the way for easy secondary assessment of
lower-limb joint issues using just head-worn sensors.

To accurately recognize lower limb motions, Chunfeng Wei et al. in [108] suggested a precise
method of feature extraction for single-channel sEMG signals. By variational mode decomposition
(VMD), the single-channel sEMG signal was divided into several variational modal functions (VMFs),
and entropy characteristics were recovered from the VMFs to highlight the meaningful data of the
sEMG signal. An experimental technique for motor imaging was developed in the study by Fangyan
Dong et al. in [92]. They relied on multi-joint path planning for movement of the left and right legs,
aiming at the volatile properties of EEG data. This study offers a solid theoretical foundation for
the development and use of brain-computer interfaces in recovery instruction. In [109], an intelligent
lower-limb prosthesis hierarchy planner based on sensor fusion and a central pattern generator was
proposed by Yansong Wang and colleagues. Signals from the inertial measurement unit (IMU) and
electromyographic (EMG) were captured and merged at the feature and decision levels. The gait phase
dependent cascade classifiers make up the senior-level planner.

4.3. lower-limb rehabilitation through digital health management

Digital health technology provide a lot of potential for lower-limb rehabilitation innovation. One of
the biggest innovations in the world of digital health is rehabilitation robots, which help patients move
their bodies.

A set of wearable orthoses for at-home physiotherapy were designed, developed, and evaluated,
according to a presentation by Kevin Hung et al. in [110]. It can provide a low-to-medium range
of resistive torques suited for isotonic, isometric, and open-chain resistance exercises because it orig-
inally used tiny electromagnetic brakes. Using the kinematic data from a Wearable Sensor System,
Javier Conte Alcaraz et al. in [111] presented Deep Convolutional Neural Network for tracking the
advancement of the rehabilitation. The WSS offers 3D linear acceleration and rotational velocity dur-
ing strolling at any pace on flat ground from numerous body areas, including the lower back and lower
limbs. In [112], Rongguo Yan et al. dealt with a three-axis accelerometer-based physical exercise
monitoring system for the sufferers. The system creates a data collecting platform out of a three-axis
accelerometer, a microcontroller, and a wireless Bluetooth module in order to collect accelerations of
the lower-limb movement. The wireless Bluetooth module then transmits the data to a smart phone.

A rehabilitative method based on a lower-limb exoskeleton combined with a human-machine inter-
face was presented by Susanna Yu. Gordleeva et al (HMI) in [113]. The project produced algorithms
for the gathering, processing, and classification of multimodal HMI data. The system is capable of
real-time, simultaneous analysis of up to fifteen signals throughout a motion. Automated foot strikes
from a 6MWT have been used successfully by Pascale Juneau et al. in [114] to determine step-based
characteristics for injury risk categorization in lower-limb amputees. A smartphone app might use au-
tomated foot strike detection and fall risk level to offer clinical assessment right away after a 6MWT.
EEG signals and user feedback have been shown by Daniela Camargo-Vargas et al. in [115] to have
advantages in terms of cost, efficacy, adequate education, and user engagement. As a result, there

Mathematical Biosciences and Engineering Volume 20, Issue 3, 5194–5222.



5209

is a need to keep creating user-friendly interfaces that incorporate feedback approaches. In order to
control and activate a new Dynamic Ankle-Foot Orthosis designed to rehabilitate the dorsiflexion and
plantarflexion movements of the ankle, Mohd Nor Azmi Ab Patar et al. developed a straightforward
yet effective technique in [116]. Figure 13 shows the process of rehabilitation by a robotic device.

Figure 13. The process for lower limb rehabilitation [117].

To provide a low cost and effective method of monitoring the patient ’s health with prosthetic lower
limbs, Neha Mathur et al. proposed a whole mobile sensor system based on easily available consumer
items in [117]. The state-of-the-art of lower-limb exoskeletons, which are mostly utilized for physical
movement support and rehabilitation, was evaluated and described by Weiguang Huo in [118]. A
description of the most popular actuation systems was also given. A Long-term Recurrent Convolution
Network based on transfer-learning, called ”MyoNet”, was developed by Arvind Gautam et al. for the
categorization of lower limb motions and the forecasting of the related knee joint angle in [119]. In the
study by Jie Li et al. in [120], an efficient motion measuring technique premised on an inertial sensor
network is suggested to assess children’s motor skills with the goal of validating the efficacy of therapy
for children with cerebral palsy.

In [121], the unique rehabilitation robot Hunova’s development process and technical foundation
were detailed by Jody A. Saglia et al. The report summarizes the clinical investigations conducted
to validate the innovation and explains in full the software and hardware design of the system. Quan
Zhang et al. used a lower-limb rehabilitation robot in [122] to prove the sensory system’s performance
in user recognition, movement tracking, and training with robots and video games, demonstrating its
potential for Internet of Things-based intelligent application areas. In their literature analysis, Trin-
nachoke Eiammanussakul and Viboon Sangveraphunsiri examined the training activities carried out
by rehabilitation robots in [123]. The control system of the lower-limb rehabilitation robot in sitting
posture, which was described in previous work, is covered in detail to illustrate the robot’s behavior
while instructing a participant.

In [124], a robot that blends on-site and telerehabilitation was created by Mingda Miao et al. The
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goal is to make the patient’s walking easier. They incorporate a gantry mechanism, body-weight sup-
port network, data review system, and a man-machine interaction process control into the design of the
electromechanical system. In [125], a preliminary investigation is undertaken in the paper proposed by
Nurhazimah Nazmi et al. to enhance the health of post-stroke victims in physiological functions, par-
ticularly on the lower-limb rehabilitation, with a minimum amount of therapist monitoring. To control
the movement of a mobile LLAO, DusthonLlorente-Vidrio in [126] proposed an event-driven auto-
mated controller. The LLAO is activated using data gathered from electromyographic signals, which
are recorded from the patient’s triceps and biceps muscles. Margarida Florindo et al. in [127] demon-
strated the therapeutic significance of basic dynamic activities like gait and confirmed that perfusion
is age dependent. This deep-level loss in dorsal foot perfusion—which becomes more significant with
movement intensity—suggests a broad range of applications, including early diagnosis and rehabilita-
tion.

5. Related work

Recent years have seen rapid development of digital health, and this section will go over the recently
published reviews or surveys on the topic of digital health management through multi-modal signal
monitoring as well as its related concepts. Obtaining high performance in common robots is one
of the most difficult challenges in robotics research. It is typically expensive and challenging to do
various high-precision jobs with regular robots, and improving their performance typically requires
the coordinated development of several academic disciplines. Comparatively speaking, humans are
capable of achieving outstanding overall performance when their body’s individual units are sensed and
controlled with low absolute accuracy and modest computational energy consumption. So, one viable
way to enhance the performance of robotic systems is to create robotic systems and algorithms that
are inspired by humans. The most recent research on intelligent robots with human-inspired decision-
making, cognition, motion control, and system design is outlined in the review by Hong Qiao et al.
in [128] for features that are inspired by behavior and the brain. In order to further the fusion of
neurology, technology, and control and create a new generation of robotic systems, this review intends
to offer a substantial insight into intelligent robots that are inspired by humans. Adrienne Kline et al.

In the health industry, machine learning is widely used to address issues, including clinical decision-
support. Its use has traditionally been concentrated on single-mode data. In the biomedical discipline of
machine learning, attempts to enhance prediction and emulate the multimodal aspect of clinical expert
decision-making have been met by integrating dissimilar data. The goal of [129] was to synthesize
the most recent studies in the area and pinpoint areas that might use more investigation. To describe
multi-modal data fusion in the context of health, they carried out this review in compliance with the
PRISMA extension for Scoping Reviews. From 2011 to 2021, search terms were created and utilized in
the databases PubMed, Google Scholar, and IEEE Xplore. The analysis was conducted on a final batch
of 128 articles. Oncology and neurology were the two health fields that used multi-modal approaches
the most frequently. The most popular method of data merging was early fusion. Notably, adopting data
fusion resulted in an increase in predicting performance. Lacking from the publications were analyses
of how using multimodal techniques from various subpopulations may alleviate biases and healthcare
inequalities, as well as clear clinical deployment plans, FDA approval, etc. These findings offer an
overview of multimodal data fusion as it relates to issues with health diagnosis and prognosis. There
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aren’t many studies that contrast multimodal and unimodal predictions for output. However, those that
did saw an average improvement in prediction accuracy of 6.4%. While multi-modal machine learning
offers more accurate estimates than unimodal approaches, it is less scalable and requires more time to
concatenate the input.

Sensing devices that are both personal and omnipresent, like cellphones, have made it possible to
gather data continuously and covertly. To forecast user contextual information such as location, emo-
tion, physical activity, etc., machine learning techniques have been applied to continuous sensor data.
Recently, there has been an increase in interest in using ubiquitous sensing technology for applications
in mental health care, enabling automatic, continuous monitoring of various mental illnesses such as
depression, anxiety, stress, and so on. The survey by Enrique Garcia-Ceja et al. [130] reviews current
studies employing sensor data and machine learning in mental health monitoring systems (MHMS).
We concentrated on studies related to mental illnesses and disorders such as depression, anxiety, bipo-
lar disorder, stress, etc. To help with the study of relevant research and to outline the main phases
of MHMS, they suggest a categorization taxonomy. Additionally, the field’s research problems and
potential future prospects are highlighted.

6. Future prospect

A person’s health is crucial for living a pleasant and fulfilling life. The WHO defines health as a
condition of physical and mental fitness free from illness and disability. Healthcare is the process of
preserving or enhancing health with the aid of sickness and injury prevention, diagnosis, and treatment.
The majority of traditional healthcare practices involve manual management and upkeep of patient de-
mographic information, case histories, diagnoses, medications, billing, and drug stock maintenance,
which can result in human mistakes that have an impact on patients. By linking all the devices that
monitor vital signs through a network to a decision support system, Internet of Things (IoT)-based
smart healthcare eliminates human error and aids the doctor in making more accurate and timely diag-
noses [131].

The primary area for expanding outreach and offering prompt assistance is digital health. We need
to add digital health management assistance to healthcare systems at a time when they are under a lot
of stress, and we should work to lower the hazards that lead to extra costs.

7. Conclusions

Technology improvements have led to the development of more efficient monitoring tools that can
often record multiple physiological signals at once. The relationship between multi-modal signal mon-
itoring and digital health management, however, has not received significant attention. This article ex-
amines the most recent developments in multi-modal signal monitoring for digital health management
to close the gap. The most recent advancements in multi-modal signal monitoring for digital health
management are examined in this article. In order to thoroughly review the current use of digital health
technology in the recovery of lower-limb symptoms, three specific digital health processes—lower-
limb data collection, statistical analysis of lower-limb data, and lower-limb rehabilitation via digital
health management—are covered in this article. By listing and analyzing the latest papers, we fully re-
view the current application of digital health technology in lower-limb symptoms recovery. Still, there
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are certain limitations for digital health management using multi-modal signal monitoring. Future
work will focus on broadening the application area and depth of research.
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