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Abstract: The utilization of molecular structure topological indices is currently a standing operating
procedure in the structure-property relations research, especially in QSPR/QSAR study. In the past
several year, generous molecular topological indices related to some chemical and physical properties
of chemical compounds were put forward. Among these topological indices, the VDB topological
indices rely only on the vertex degree of chemical molecular graphs. The VDB topological index of an
n-order graph G is defined as

T I(G) =
∑

1≤i≤ j≤n−1

mi jψi j,

where {ψi j} is a set of real numbers, mi j is the quantity of edges linking an i-vertex and another j-vertex.
Numerous famous topological indices are special circumstance of this expression. f-benzenoids are a
kind of polycyclic aromatic hydrocarbons, present in large amounts in coal tar. Studying the properties
of f-benzenoids via topological indices is a worthy task. In this work the extremum T I of f-benzenoids
with given number of edges were determined. The main idea is to construct f-benzenoids with maximal
number of inlets and simultaneously minimal number of hexagons in Γm, where Γm is the collection
of f-benzenoids with exactly m (m ≥ 19) edges. As an application of this result, we give a unified
approach of VDB topological indices to predict distinct chemical and physical properties such as the
boiling point, π-electrom energy, molecular weight and vapour pressure etc. of f-benzenoids with fixed
number of edges.

Keywords: VDB topological index; inlet; f-spiral benzenoid; f-linear chain; f-benzenoid

1. Introduction

In mathematics chemistry and biology, a chemical compound can be represented by a molecular
graph by converting atoms to vertices and bonds to edges. One of the primary mission of QSAR/QSPR
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research is to accurately convert molecular graphs into numerical values. Graph theoretic invariants of
molecular graphs are called molecular descriptors which can be utilized to simulate the structural infor-
mation of molecules, in order to make worthwhile physical and chemical properties of these molecules
can be acquired by single numerical values. Such kinds of molecular descriptors are also referred to as
topological indices.

In the chemical literature, various topological indices relying only on vertex degrees of the molec-
ular graphs can be utilized in QSPR/QSAR investigation on account of them can be obtained directly
from the molecular architecture, and can be rapidly calculated for generous molecules (see [1, 2]), and
we call them VDB (vertex–degree–based) topological indices. To be more precise, for designated non-
negative real numbers {ψi j} (1 ≤ i ≤ j ≤ n − 1), a VDB topological index of a an n-order (molecular)
graph G is expressed as

T I(G) =
∑

1≤i≤ j≤n−1

mi jψi j, (1.1)

where mi j is the amount of edges connecting an i-vertex and a j-vertex of G. A great deal of well–
known VDB topological indices can be obtained by different ψi j in expression (1.1). We list some
VDB topological indices in Table 1.

Table 1. Some well-known VDB topological indices.

ψi j name

i + j First Zagreb index

1
√

i j Randić index

2
√

i j
i+ j GA index√

i+ j−2
i j ABC index

1
√

i+ j Sum–connectivity index

(i j)3

(i+ j−2)3 AZI index

2
i+ j Harmonic index

|i − j| Albertson index√
i2 + j2 Sombor index

i j
i+ j ISI index

The first Zagreb index [3] is the very first VDB topological index, as powerful molecular structure-
descriptors [2], Zagreb indices can describe the peculiarities of the degree of branching in molecular
carbon-atom skeleton. Thereafter, many VDB topological indices have been put forward to simulate
physical, chemical, biological, and other attributes of molecules [4–7]. In 2021, Gutman [8] introduced
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a new VDB topological index named as the Sombor index which has a linear correlation with the
entropy and the enthalpy of vaporization of octanes [9]. Das et al., give sharp bounds for Sombor
index of graphs by means of some useful graph parameters and they reveal the relationships between
the Sombor index and Zagreb indices of graphs [10]. Recently, Steiner Gutman index was introduced
by Mao and Das [11] which incorporate Steiner distance of a connected graph G. Nordhaus-Gaddum-
type results for the Steiner Gutman index of graphs were given in [12]. In 2022, Shang study the
Sombor index and degree-related properties of simplicial networks [13]. For more details of VDB
topological indices, one can see [3, 14–26] and the books [27–29].

Fluoranthene is a eminent conjugated hydrocarbon which abound in coal tar [30]. A fluoranthene–
type benzenoid system (f-benzenoid for short) is formed from two benzenoid units joined by a pen-
tagon [31, 32]. The ordinary structure modality of a f-benzenoid F is shown in Figure 1, where seg-
ments X and Y are two benzenoid systems. Each f-benzenoid possesses exactly one pentagon [32].
More and more attention is paid to f-benzenoids after the flash vacuum pyrolysis experiments of these
nonalternant polycyclic aromatic hydrocarbons [33].

Figure 1. The ordinary structure modality of a f-benzenoid (F) and its construction from two
benzenoid systems X and Y .

In the whole article, the terminology and notation are chiefly derived from [34–41]. A vertex of
degree k is called a k-vertex, and an edge linking a k-vertex and a j-vertex is designated as a (k, j)-edge.
Let nk be the number of k-vertices and let mk j be the number of (k, j)-edges in the molecular graph G. A
benzenoid system without internal vertices is said to be catacondensed. Analogously, a f-benzenoid F
containing a unique internal vertex is referred to as catacatacondensed. We use h-hexagon benzenoid
system (or h-hexagon f-benzenoid) to represent a benzenoid system (or f-benzenoid) containing h
hexagons.

Let Lh represent the h-hexagon linear chain (as shown in Figure 2(a)). An f-benzenoid FLh (h ≥ 3)
obtaining from pieces X = L2 and Y = Lh−2 is named as f-linear chain (as shown in Figure 2(b)).
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Figure 2. Linear chain and f-linear chain.

A fissure (resp. bay, cove, fjord and lagoon) of a f-benzenoid F is a path of degree sequences
(2, 3, 2) (resp. (2, 3, 3, 2), (2, 3, 3, 3, 2), (2, 3, 3, 3, 3, 2) and (2, 3, 3, 3, 3, 3, 2)) on the perimeter of F (see
Figure 3). Fissures, bays, coves, fjords and lagoons are said to be different kinds of inlets and their
number are signified by f , B, C, F j and L, respectively [32, 37]. Inlets determine many electronic and
topological properties of f-benzenoids. Then, it can be found that f +2B+3C +4FJ +5L is the number
of 3-vertices on the perimeter of F. It is noted that lagoons cannot occur in the theory of benzenoid
systems. For convenience, let r = f + B + C + F j + L to represent the total number of inlets and
b = B+ 2C + 3F j + 4L is referred to as the quantity of bay regions, In addition, b is exactly the quantity
of (3, 3)-edges on the perimeter of F. It is obvious that b ≥ 2 for any f-benzenoid F.

Figure 3. Structural features occurring on the perimeter of f-benzenoids.

It is noted that any f-benzenoid F contains merely either 2-vertex or 3-vertex. The vertices not on
the perimeter are said to be internal, and we use ni to represent their number.

Lemma 1.1. [32] Let F be an n-order, h-hexagon f-benzenoid with m edges and ni internal vertices.
Then

(i) n = 4h + 5 − ni;

(ii) m = 5h + 5 − ni.
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Lemma 1.2. [32] Let F be an n-order and h-hexagon f-benzenoid with r inlets, Then

(i) m22 = n − 2h − r;

(ii) m23 = 2r;

(iii) m33 = 3h − r.

From the perspective of mathematics and chemistry, finding the extremal values of some useful T I
for significant classes of graphs is very interesting [14, 19, 23, 40–56].

As a matter of convenience, we use Γm to represent the collection of f-benzenoids containing exactly
m edges. In [45], we derived extremal values for T I among all f-benzenoids with given order. It is
noted that structure of f-benzenoids with given order is different from that of f-benzenoids with given
number of edges. And we found that the technique for studying T I among all f-benzenoids with given
order can not be used directly to investigate T I for all f-benzenoids with fixed number of edges. For
this reason, we concentrate on the research of extremal values for T I among all f-benzenoids with
given size.

The main idea of this work is to construct f-benzenoids owning maximal r and minimal h at the
same time in Γm depending on the number m is congruent to 0, 1, 2, 3 or 4 modulo 5. By making use of
this technique, we obtain the extremum of T I over Γm and characterize their corresponding graphs on
the basis of m is congruent to 0, 1, 2, 3 or 4 modulo 5. Afterwards the extremums of some well-known
T I over Γm can be got by use of the previous results.

The structure of this paper is as below. We first determine the maximal r in the set Γm in Section 2.
By utilizing these results, we find the extremum of several famed T I over Γm in Section 3.

2. F–benzenoids with maximal r in Γm

We will find the f-benzenoids with maximal r in Γm in this section. Figure 4 illustrates three f-
benzenoids pertaining to Γ42.

Figure 4. Some f-benzenoids in Γ42.
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Figure 5. The spiral benzenoid system Th with maximal number of internal vertices.

At first, we try to obtain the maximum and minimum number of hexagons in any F ∈ Γm.
The spiral benzenoid system [57] Th is a benzenoid system whose structure is in a “spiral” manner

as illustrated in Figure 5. Th has maximal ni in all h-hexagon benzenoid systems.

Figure 6. f-benzenoid F′ ∈ S Hh whose two pieces X and Y are both spiral benzenoid
systems, and f-spiral benzenoid F∗ ∈ S Hh with two pieces X = Th−1 and Y = T1.

As a matter of convenience, let S Hh (h ≥ 3) represent the collection of f-benzenoids formed by
two spiral benzenoids X and Y . Particularly, a f-spiral benzenoid is a f-benzenoid F∗ ∈ S Hh in which
X = Th−1 and Y = T1 (as shown in Figure 6). It is easy to see that that

ni(F∗) = 2h − d
√

12(h − 1) − 3e.

In [40], we proved that for every F′ ∈ S Hh (h ≥ 3), the inequality

ni(F′) ≤ ni(F∗) (2.1)

holds, and the following graph operations were introduced.

Operation 1. For any h-hexagon f-benzenoid F having two segments X and Y, let h1 = h(X) and
h2 = h(Y). By substituting spiral benzenoid systems Th1 and Th2 for X and Y, severally, another
f-benzenoid F′ ∈ S Hh can be obtained (as shown in Figure 7).

Mathematical Biosciences and Engineering Volume 20, Issue 3, 5169–5193.
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For any h-hexagon f-benzenoid F, when h = 3, it is easily checked that

ni(F) = 1 = 2 × 3 − d
√

12(3 − 1) − 3e. (2.2)

When h ≥ 4, let h1 = h(X) and h2 = h(Y). Another F′ ∈ S Hh (as shown in Figure 7) in which X = Th1

and Y = Th2 can be acquired by applying Operation 1 to F. It is apparently that ni(X) ≤ ni(Th1),
ni(Y) ≤ ni(Th2), therefore

ni(F) = ni(X) + ni(Y) + 1 ≤ ni(Th1) + ni(Th2) + 1 = ni(F′). (2.3)

So, the following Lemma can be deduced by Eqs (2.1) and (2.3).

Figure 7. f-benzenoid F′ ∈ S Hh is obtained from F by applying Operation 1 to it.

Lemma 2.1. [41] Let F be an h(h ≥ 3)-hexagon f-benzenoid. Then

ni(F) ≤ 2h −
⌈ √

12(h − 1) − 3
⌉
, (2.4)

and the equality is established when F is F∗.

For any F ∈ Γm, h(F) over Γm is variable. Sharp bounds for h(F) in Γm is given below.

Theorem 2.1. For any f-benzenoid F ∈ Γm,⌈
1
5

(m − 4)
⌉
≤ h(F) ≤ m − 1 −

⌈
1
3

(
2m +

√
4m − 31

)⌉
, (2.5)

where dxe is the smallest integer larger or equal to x.

Proof. On one hand, from Lemma 1.1 (ii) we know that m = 5h(F) + 5 − ni(F). Combining the fact
that ni(F) ≥ 1 for any F ∈ Γm, we get

h(F) ≥
⌈
1
5

(m − 4)
⌉
.

On the other hand, by Lemma 2.1 we know that ni(F) ≤ ni(F∗). Consequently, from m = 5h(F) + 5 −
ni(F) we have

m − 3h(F) − 5 ≥
⌈ √

12(h(F) − 1) − 3
⌉
≥

√
12(h(F) − 1) − 3.
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Hence,
(3h(F) + (3 − m))2 ≥ 4m − 31.

Due to the fact that 3h(F) + (3 − m) < 0, we deduce

3h(F) + (3 − m) ≤ −
√

4m − 31,

i.e., h(F) ≤ m − 1 −
⌈

1
3

(
2m +

√
4m − 31

)⌉
.

Remark 1. Theorem 2.1 implies that f-spiral benzenoid F∗ has the maximal number of hexagons over
Γm.

For the sake of obtaining the extremum T I among all f-benzenoids in Γm, we need to find the
f-benzenoids F ∈ Γm possessing maximal r.

Recall that convex benzenoid systems (CBS for brevity) are a particular sort of benzenoid systems
lack of bay regions [14]. LetHSh be the collection of benzenoid systems containing h hexagons.

Lemma 2.2. [42] Let H ∈ HSh. Under the below cases, H is definitely not a CBS:

(i) If h ≥ 4 and ni = 1;

(ii) If h ≥ 5 and ni = 2;

(iii) If h ≥ 6 and ni = 3.

Lemma 2.3. [52] Let H ∈ HSh such that ni(H) = 4. Then H is bound to embody a subbenzenoid
system given in Figure 8, there does not exist hexagons which are adjacent to fissures.

Figure 8. Benzenoid systems with 1, 2, 3 and 4 internal vertices, respectively.

Lemma 2.4. Let S ∈ HSh. If h ≥ 7 and ni(S ) = 4, then S is not a CBS.

Mathematical Biosciences and Engineering Volume 20, Issue 3, 5169–5193.
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Proof. Let S be an h (h ≥ 7)-hexagon benzenoid system, ni(S ) = 4, then by Lemma 2.3 S must contain
one of the benzenoid systems of the form given in Figure 7. The proof is carried out in two cases.
Case 1. If these four internal vertices form a path P4 or a K1,3, then S contains one of benzenoid
systems (d)–( f ) in Figure 7 as its subbenzenoid systems. It is noted that h ≥ 7, by Lemma 2.2, it must
not exist hexagons contiguous to the fissures, so, S has at least one hexagon contiguous to a (2, 2)-edge,
by means of such hexagons, it is succeeded in converting one of the fissures into a cove, bay or fjord.
Hence, b(S ) ≥ 1.
Case 2. If these four internal vertices are not adjacent then S has possibility subbenzenoid systems as
follows.
1) There exist one type (a) and one type (c) benzenoid systems in S ;
2) There exist two type (b) benzenoid systems in S ;
3) There exist two type (a) and one type (b) benzenoid systems in S .
4) There exist four type (a) benzenoid systems in S .
By Lemma 2.2, neither hexagons may be adjacent to the fissures in any of the cases indicated above.
Since h ≥ 7, S has at least one hexagon contiguous to a (2, 2)-edge, by means of such hexagons, it is
succeeded in making one of the fissures become a cove, bay or fjord. Therefore, b(S ) ≥ 1.

The proof is completed.

Lemma 2.5. [45] Let F be an h-hexagon f-benzenoid. Then

1) If ni = 1, then r(F) ≤ r(FLh) = 2h − 3 (h ≥ 3);

2) If ni = 2, then r(F) ≤ r(Gh) = 2h − 4 (h ≥ 4);

3) If ni = 3, then r(F) ≤ r(Rh) = 2h − 5 (h ≥ 5);

4) If ni = 4, then r(F) ≤ r(Zh) = 2h − 6 (h ≥ 6).

Figure 9. Three types of benzenoid systems.

Next we find the f-benzenoids with maximal r in Γm with a fixed ni. Recall that Mh, Nh and Qh (see
Figure 9) are benzenoid systems, and Gh (see Figure 10), Rh (see Figure 11), Zh (see Figure 12) are
f-benzenoids.
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Figure 10. f-benzenoids G4, and Gh (h ≥ 5).

Figure 11. f-benzenoids R5, and Rh (h ≥ 6).

Figure 12. f-benzenoids Z6, and Zh (h ≥ 7).

Mathematical Biosciences and Engineering Volume 20, Issue 3, 5169–5193.
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Lemma 2.6. [41] Let F be an h-hexagon f-benzenoid. Then

r(F) ≤ r(FLh) = 2h − 3.

Lemma 2.7. [32] For any h-hexagon f-benzenoid including ni internal vertices and b bay regions, the
number of (2, 2)-edge and (2, 3)-edge are m22 = b + 5,m23 = 4h − 2ni − 2b, respectively.

Figure 13. f-benzenoids U7, and Uh (h ≥ 8).

From Lemmas 1.2 (ii) and 2.6, we get

r = 2h − ni − b (2.6)

Furthermore, by Lemma 1.1 (ii) and Eq (2.6), we deduce

r = m − 3h − 5 − b (2.7)

Theorem 2.2. Let F be an h-hexagon f-benzenoid. If ni = 5, then r(F) ≤ r(Uh) = 2h − 7 (h ≥ 7).

Proof. Let h1 = h(X) and h2 = h(Y), X and Y are two segments of F. If ni = 5, by the structure of
f-benzenoid, equality ni(X) + ni(Y) = 4 holds, so, we have the following five cases.
Case 1. ni(X) = 1, ni(Y) = 3, i.e., there exist one internal vertex and three internal vertices in X and Y ,
respectively.
Subcase 1.1. If h1 = 3, then X = M3.
Subcase 1.1.1. If h2 = 5, i.e., Y = Q5, then F is the f-benzenoid D1, D2 or D3 (see Figure 14). It is
clear that r(F) = r(D1) = 8 ≤ 2h − 7, r(F) = r(D2) = 7 ≤ 2h − 7 or r(F) = r(D3) = 8 ≤ 2h − 7.
Subcase 1.1.2. If h2 ≥ 6, by Lemma 2.2 and the hypothesis that ni(Y) = 3, Y is not a CBS, so b(Y) ≥ 1.
Furthermore, b(F) ≥ 3, combining Eq (2.6) we obtain r = 2h − ni − b ≤ 2h − 8 < 2h − 7.
Subcase 1.2. If h1 ≥ 4, according to Lemma 2.2, X is definitely not a CBS, i.e., b(X) ≥ 1.
Subcase 1.2.1. If h2 = 5, i.e., Y = Q5. It is clear that b(F) ≥ 4, then Eq (2.6) deduces r ≤ 2h−9 < 2h−7.
Subcase 1.2.2. If h2 ≥ 6, Y is definitely not not a CBS according to Lemma 2.2, so, b(Y) ≥ 1. It is
clear that b(F) ≥ 5, consequently from Eq (2.6) we obtain r ≤ 2h − 10 < 2h − 7.
Case 2. ni(X) = 3 and ni(Y) = 1.

Mathematical Biosciences and Engineering Volume 20, Issue 3, 5169–5193.
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Subcase 2.1. If h1 = 5, then X = Q5.
Subcase 2.1.1. If h2 = 3, i.e., Y = M3, then F is the f-benzenoid D4, D5, D6 (see Figure 14), or D7 (as
shown in Figure 15). r(F) = r(D4) = 8 ≤ 2h−7, r(F) = r(D5) = 7 ≤ 2h−7, r(F) = r(D6) = 8 ≤ 2h−7,
r(F) = r(D7) = 7 ≤ 2h − 7.

Figure 14. f-benzenoids D1, D2, D3, D4 and D5.

Figure 15. f-benzenoids D7, D8 and D9.

Subcase 2.1.2. If h2 ≥ 4, Y is surely not a CBS in light of Lemma 2.2, i.e., b(X) ≥ 1. Hence, we have
b(F) ≥ 4, it follows from Eq (2.6) that r ≤ 2h − 9 < 2h − 7.
Subcase 2.2. If h1 ≥ 6, by Lemma 2.2, X is definitely not a CBS, hence b(X) ≥ 1.
Subcase 2.2.1. If h2 = 3, i.e., Y = M3. We have b(F) ≥ 4, and Eq (2.6) infers that r ≤ 2h− 9 < 2h− 7.
Subcase 2.2.2. f h2 ≥ 4, by Lemma 2.2, Y is certainly not a CBS, i.e., b(X) ≥ 1. Hence we have
b(F) ≥ 5, by Eq (2.6), r ≤ 2h − 10 < 2h − 7.
Case 3. ni(X) = 2, ni(Y) = 2, i.e., X and Y both have two internal vertices.
Subcase 3.1. If h1 = 4, we note that ni(X) = 2, so X must be the benzenoid system (b) in Figure 9.

Mathematical Biosciences and Engineering Volume 20, Issue 3, 5169–5193.
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Subcase 3.1.1. If h2 = 4, Y is surely the benzenoid system (b) in Figure 9 according to the hypothesis
ni(Y) = 2, therefore, F is D8 or D9 (as shown in Figure 15). We get r(F) = r(D8) = 8 < 2h − 7 or
r(F) = r(D9) = 7 < 2h − 7.
Subcase 3.1.2. If h2 ≥ 5, by Lemma 2.2 and that ni(Y) = 2, Y is not a CBS, so we know that b(X) ≥ 1.
Then b(F) ≥ 4, by Eq (2.6) and the fact that ni = 5, r ≤ 2h − 9 < 2h − 7.
Subcase 3.2. If h2 = 4, we note that ni(Y) = 2, so Y must be the benzenoid system (b) in Figure 8.
Subcase 3.2.1. If h1 = 4, X must also be the benzenoid system (b) in Figure 9. Hence, F is D8 or D9

(as shown in Figure 15). r(F) = r(D8) = 8 ≤ 2h − 7 or r(F) = r(D9) = 7 ≤ 2h − 7.
Subcase 3.2.2. If h1 ≥ 5, by Lemma 2.2 and ni(X) = 2, X is definitely not a CBS, i.e., b(X) ≥ 1.
Hence, b(F) ≥ 4, by Eq (2.6) and the fact that ni = 5, we have r ≤ 2h − 9 < 2h − 7.
Subcase 3.3. If h1 ≥ 5, h2 ≥ 5, it is noted that ni(X) = ni(Y) = 2, neither X nor Y are definitely CBS
according to Lemma 2.2. So, both b(X) and b(Y) are greater than 1. Hence, b(F) ≥ 5, on the basis of
Eq (2.6) we get r ≤ 2h − 10 < 2h − 7.
Case 4. ni(X) = 4 and ni(Y) = 0, i.e., X contains four internal vertices, Y is a catacondensed benzenoid
system.
Subcase 4.1. If h1 = 6, then X is the benzenoid system (d), (e) or ( f ) in Figure 9.
Subcase 4.1.1. If h2 = 1, F is the f-benzenoid D10, D11, D12 (see Figure 16), D13 (see Figure 17) or U7

(see Figure 12). r(F) = r(D10) = 6 ≤ 2h − 7, r(F) = r(D11) = 6 ≤ 2h − 7, r(F) = r(D12) = 6 ≤ 2h − 7,
r(F) = r(D13) = 6 ≤ 2h − 7 or r(F) = r(U7) = 7 = 2h − 7.

Figure 16. f-benzenoids D10, D11 and D12.

Subcase 4.1.2. If h2 ≥ 2, we have b(F) ≥ 2, by Eq (2.6), r ≤ 2h − 7.
Subcase 4.2. If h1 ≥ 7, in the light of Lemma 2.4, X is definitely not a CBS, hence b(Y) ≥ 1. In this
situation b(F) ≥ 3, we get the inequality r ≤ 2h − 8 < 2h − 7 according to Eq (2.6).
Case 5. ni(X) = 0 and ni(Y) = 4, i.e., X is a catacondensed benzenoid system, Y has four internal
vertices.
Subcase 5.1. If h2 = 6, then Y is the benzenoid system (d), (e) or ( f ) in Figure 8.
Subcase 5.1.1. If h1 = 2, X must be the linear chain L2. In this event, F is D14, D15, D16, D17, D18,
D19, D20 or D21 (see Figure 17). By further checking, we gain that r(F) = r(D14) = 7 ≤ 2h − 7,
r(F) = r(D15) = 8 ≤ 2h − 7, r(F) = r(D16) = 8 ≤ 2h − 7, r(F) = r(D17) = 7 ≤ 2h − 7, r(F) = r(D18) =

7 ≤ 2h − 7, r(F) = r(D19) = 8 ≤ 2h − 7, r(F) = r(D20) = 6 ≤ 2h − 7 or r(F) = r(D21) = 6 ≤ 2h − 7.
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Figure 17. f-benzenoids D13, D14, D15, D16, D17, D18, D19, D20 and D21.

Subcase 5.1.2. If h1 ≥ 3, bearing in mind that X is a catacondensed benzenoid system and Y is the
benzenoid system (d), (e) or ( f ) in Figure 8, then F must have f-benzenoid D14, D15, D16, D17, D18,
D19, D20 or D21 (see Figure 17) as its subgraph.
Subcase 5.1.2.1. If D14 is a subgraph in F, it is obvious that D14 has two coves. Since X is a catacon-
densed benzenoid system and h1 ≥ 3, F has at least one hexagon contiguous to a (2, 2)-edge of X, and
such hexagons can convert one fissure into a bay, or convert one cove into a fjord, or convert one fjord
into a lagoon. In this instance b(F) ≥ 4. Consequently, r ≤ 2h − 9 < 2h − 7 can be got according to
Eq (2.6).
Subcase 5.1.2.2. If D15, D16 or D19 is a subpart f-benzenoid in F, it is obvious each one of D15, D16

and D19 has a bay and a cove. Since X is a catacondensed benzenoid system and h1 ≥ 3, F contains
at least one hexagon adjoining a (2, 2)-edge of X, and such hexagons will make one fissure become a
bay, or make one cove become a fjord, or make one fjord become a lagoon. Consequently, b(F) ≥ 4,
by Eq (2.6) it follows that r ≤ 2h − 9 < 2h − 7.
Subcase 5.1.2.3. If D17 is a subpart f-benzenoid in F, it is obvious that D17 has a fjord and a bay. Since
X is a catacondensed benzenoid system and h1 ≥ 3, F has at least one hexagon adjoining a (2, 2)-edge
of X, and such hexagons will convert one fissure into a bay, or convert one cove into a fjord, or convert
one fjord into a lagoon. Consequently, b(F) ≥ 4, by Eq (2.6) it follows that r ≤ 2h − 9 < 2h − 7.
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Subcase 5.1.2.4. If D18 is a subpart f-benzenoid in F, it is obvious that D18 has a fjord and two
bays. Since X is a catacondensed benzenoid system and h1 ≥ 3, there exists has at least one hexagon
adjoining a (2, 2)-edge of X in F, and these hexagons will convert one of the fissures into a bay, or
convert one cove into a fjord, or convert one fjord into a lagoon. Consequently, b(F) ≥ 4, in light of
Eq (2.6), r ≤ 2h − 9 < 2h − 7.
Subcase 5.1.2.5. If D20 or D21 is a subpart f-benzenoid in F, it is obvious that both D20 and D21 have a
bay and two fjords. Since X is a catacondensed benzenoid system and h1 ≥ 3, F contains at least one
hexagon adjoining a (2, 2)-edge of X, and such hexagons will make one fissure become a bay, or make
one cove become a fjord, or make one fjord become a lagoon. Consequently, b(F) ≥ 4, according to
Eq (2.6), r ≤ 2h − 9 < 2h − 7.
Subcase 5.2. If h2 ≥ 7, by Lemma 2.4 and the fact that ni(Y) = 4, Y is certainly not a CBS, i.e.,
b(Y) ≥ 1.
Subcase 5.2.1. If h1 = 2, i.e., X = L2. From the structure of f-benzenoid, F is formed from X and Y
joined by a pentagon, it is easily seen that there are at least one bay or one cove arisen in the process
of construction of F. It is clear that b(F) ≥ 2, by Eq (2.6) we have r ≤ 2h − 7.
Subcase 5.2.2. If h1 ≥ 3, we know that F is formed by joining from X and Y through a pentagon, in
this construction process of F, it is easily seen that there are at least one bay or one cove arisen. Then
b(F) ≥ 2, by Eq (2.6), r ≤ 2h − 7.

The proof is completed.
We recall that FLh is the f-linear chain with h hexagons [40]. Extremal f-benzenoids with maximal

r in Γm were determined in the following theorem.

Theorem 2.3. Let F ∈ Γm. Then

1) If m ≡ 0(mod5), then r(F) ≤ 2m−35
5 = r(U m

5
);

2) If m ≡ 1(mod5), then r(F) ≤ 2m−32
5 = r(Z m−1

5
);

3) If m ≡ 2(mod5), then r(F) ≤ 2m−29
5 = r(R m−2

5
);

4) If m ≡ 3(mod5), then r(F) ≤ 2m−26
5 = r(G m−3

5
);

5) If m ≡ 4(mod5), then r(F) ≤ 2m−23
5 = r(FL m−4

5
).

Proof. We know by Eq (2.5) that⌈
1
5

(m − 4)
⌉
≤ h(F) ≤ m − 1 −

⌈
1
3

(
2m +

√
4m − 31

)⌉
.

1) If m ≡ 0(mod5), then
⌈

1
5 (m − 4)

⌉
= m

5 . If h = m
5 , then by Lemma 1.1 (ii)

m = 5h(F) + 5 − ni(F) = m + 5 − ni(F),

it means that ni(F) = 5. Furthermore, Theorem 2.2 infers that r(F) ≤ r(U m
5
) and we are done. So

assume now that h(F) ≥ m
5 + 1, then by equality (2.7) and the fact that b(F) ≥ 2

r(F) = m − 5 − 3h(F) − b(F) ≤ m − 5 − 3(
m
5

+ 1) − b(F)
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≤
2m
5
− 10 =

2m − 50
5

≤
2m − 35

5
= r(U m

5
).

2) If m ≡ 1(mod5), then
⌈

1
5 (m − 4)

⌉
= m−1

5 . If h(F) = m−1
5 , then by Lemma 1.1 (ii)

m = 5h(F) + 5 − ni(F) = m + 4 − ni(F),

thus ni(F) = 4. Then r(F) ≤ r(Z m−1
5

) by part 4 of Lemma 2.5. Otherwise h(F) ≥ m−1
5 + 1, then by

equality (2.7) and the obvious fact that b(F) ≥ 2

r(F) = m − 5 − 3h(F) − b(F) ≤ m − 5 − 3(
m − 1

5
+ 1) − b(F)

≤
2m + 3

5
− 10 =

2m − 47
5

≤
2m − 32

5
= r(Z m−1

5
).

3) If m ≡ 2(mod5), then
⌈

1
5 (m − 4)

⌉
= m−2

5 . If h(F) = m−2
5 , then by Lemma 1.1 (ii)

m = 5h(F) + 5 − ni(F) = m + 3 − ni(F),

and so ni(F) = 3. Then r(F) ≤ r(R m−2
5

) by part 3 of Lemma 2.5. So assume now that h(F) ≥ m−2
5 + 1,

then by Eq (2.7) and the fact that b(F) ≥ 2

r(F) = m − 5 − 3h(F) − b(F) ≤ m − 5 − 3(
m − 2

5
+ 1) − b(F)

≤
2m + 6

5
− 10 =

2m − 44
5

≤
2m − 29

5
= r(R m−2

5
).

4) If m ≡ 3(mod5), then
⌈

1
5 (m − 4)

⌉
= m−3

5 . If h(F) = m−3
5 , then by Lemma 1.1 (ii)

m = 5h(F) + 5 − ni(F) = m + 2 − ni(F),

thus ni(F) = 2. By Lemma 2.5, r(F) ≤ r(G m−3
5

) and we are done. If h(F) ≥ m−3
5 + 1, then by

equality (2.7) and the fact that b(F) ≥ 2

r(F) = m − 5 − 3h(F) − b(F) ≤ m − 5 − 3(
m − 3

5
+ 1) − b(F)

≤
2m + 9

5
− 10 =

2m − 41
5

≤
2m − 26

5
= r(G m−3

5
).

5) If m ≡ 4(mod5), then
⌈

1
5 (m − 4)

⌉
= m−4

5 . Since h ≥ m−4
5 and b(F) ≥ 2, then by Eq (2.7), we have

r(F) = m − 5 − 3h(F) − b(F) ≤ m − 5 −
3m − 12

5
− b(F)

≤
2m + 12

5
− 7 =

2m − 23
5

= r(FL m−4
5

).
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3. Extremal values of T I over Γm

In this part, we attempt to find the extremal values of T I over Γm.
It is noted that a f-benzenoid F contains only 2-vertex and 3-vertex. Hence, equation (1.1) reduces

to
T I(F) = m22ψ22 + m23ψ23 + m33ψ33, (3.1)

In the light of Lemmas 1.1 and 1.2,

T I(F) = ψ22m + 3(ψ33 − ψ22)h + (2ψ23 − ψ22 − ψ33)r, (3.2)

If U,V ∈ Γm then clearly

T I(U) − T I(V) = 3(ψ33 − ψ22)(h(U) − h(V))
+ (2ψ23 − ψ22 − ψ33)(r(U) − r(V)).

(3.3)

For convenience, we set s = ψ33 − ψ22, q = 2ψ23 − ψ22 − ψ33.

Theorem 3.1. For any F ∈ Γm, we have the following results.

a. If s ≤ 0 and q ≥ 0,

T I(F) ≤



T I(U m
5
), i f m ≡ 0(mod 5)

T I(Z m−1
5

), i f m ≡ 1(mod 5)
T I(R m−2

5
), i f m ≡ 2(mod 5)

T I(G m−3
5

), i f m ≡ 3(mod 5)
T I(FL m−4

5
), i f m ≡ 4(mod 5)

b. If s ≥ 0 and q ≤ 0,

T I(F) ≥



T I(U m
5
), i f m ≡ 0(mod 5)

T I(Z m−1
5

), i f m ≡ 1(mod 5)
T I(R m−2

5
), i f m ≡ 2(mod 5)

T I(G m−3
5

), i f m ≡ 3(mod 5)
T I(FL m−4

5
), i f m ≡ 4(mod 5)

Proof. Let F ∈ Γm. By Eq (2.5)

h(F) ≥
⌈
1
5

(m − 4)
⌉

=



h(U m
5
), i f m ≡ 0(mod 5)

h(Z m−1
5

), i f m ≡ 1(mod 5)
h(R m−2

5
), i f m ≡ 2(mod 5)

h(G m−3
5

), i f m ≡ 3(mod 5)
h(FL m−4

5
), i f m ≡ 4(mod 5)

i.e., f-benzenoids U m
5
, Z m−1

5
, R m−2

5
, G m−3

5
and FL m−4

5
have minimal h over the set Γm. Meanwhile, by

Theorem 2.3, we have

r(F) ≤



r(U m
5
), i f m ≡ 0(mod 5)

r(Z m−1
5

), i f m ≡ 1(mod 5)
r(R m−2

5
), i f m ≡ 2(mod 5)

r(G m−3
5

), i f m ≡ 3(mod 5)
r(FL m−4

5
), i f m ≡ 4(mod 5)
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i.e., these five f-benzenoids have maximal number of inlets over Γm. Hence, for any f-benzenoids
F ∈ Γm and V ∈ {U m

5
,Z m−1

5
,R m−2

5
,G m−3

5
, FL m−4

5
}, h(F)−h(V) ≥ 0 and r(F)−r(V) ≤ 0 hold simultaneously,

from Eq (2.7), we have

T I(F) − T I(V) = 3s(h(F) − h(V)) + q(r(F) − r(V)).

If s ≤ 0 and q ≥ 0, then T I(F)− T I(V) ≤ 0, i.e., V reaches the maximum value of T I over Γm. If s ≥ 0
and q ≤ 0, then T I(F) − T I(V) ≥ 0, i.e., V reaches the minimum value of T I over Γm. Furthermore,
which V ∈ {U m

5
,Z m−1

5
,R m−2

5
,G m−3

5
, FL m−4

5
} is the extremal graph depending on m is congruent to 0, 1, 2, 3

or 4 modulo 5.

Example 1. Values of s and q for several famous T I are listed in Table 2:

Table 2. Values of s and q for six famous T I.

i j 1
√

i j
2
√

i j
i+ j

1
√

i+ j
(i j)3

(i+ j−2)3

√
i+ j−2

i j

q -1 -0.0168 -0.0404 -0.0138 -3.390 0.040
s 5 -0.1667 0 -0.091 3.390 -0.040

Therefore, the minimum extreme value of T I for the second Zagreb index, GA index and the AZI index
can be determined in the light of Theorems 2.3 and 3.1, and we can obtain the maximum extreme value
of T I for the ABC index.

If f-benzenoid F ∈ Γm, then from the Eqs (2.3) and (2.6) and Lemma 1.1(ii) we have

T I(F) = (2ψ23 − ψ33)m + 6(ψ33 − ψ23)h − (2ψ23 − ψ22 − ψ33)b
− 5(2ψ23 − ψ22 − ψ33).

(3.4)

Consequently, for f-benzenoids U,V ∈ Γm

T I(U) − T I(V) = 6(ψ33 − ψ23)(h(U) − h(V))
+ (−2ψ23 + ψ22 + ψ33)(b(U) − b(V)).

(3.5)

Set u = 6(ψ33 − ψ23) and keep in mind that q = 2ψ23 − ψ22 − ψ33. Then

T I(U) − T I(V) = u(h(U) − h(V)) − q(b(U) − b(V)). (3.6)

It is noted that Eq (3.6) can be decided only by h, b and the signs of u and q. For any F ∈ Γm, We
know that

h(F) ≤ m − 1 −
⌈
1
3

(
2m +

√
4m − 31

)⌉
,

and the equality can be achieved precisely when F is the f-spiral benzenoid F∗ [41].
In [41], we proved that ni(F∗) = 2h −

⌈√
12(h − 1) − 3

⌉
. But, b(F∗) , 2 may occur. It is noticeable

if X in F∗ is a CBS, F∗ is a f-benzenoid satisfying that b(F∗) = 2 or 3. For the sake of simplicity, Let
N be the set of positive integers.

Mathematical Biosciences and Engineering Volume 20, Issue 3, 5169–5193.



5187

The CBS, W = H(l1, l2, l3, l4, l5, l6) (as shown in Figure 18), can be completely determined by the
positive integers l1, l2, l3, l4 [14].

Figure 18. The general form of a CBS. The parameters li ≥ 1, i = 1, 2, · · · , 6, count the
number of hexagons on the respective side of CBS.

The following lemma gave requirements that there exists CBS with maximal ni [53].

Lemma 3.1. [53] Let h ∈ N. The conditions below are isovalent:

(a) There is a CBS W containing h hexagons and 2h + 1 − d
√

12h − 3 e number of internal vertices.

(b) There exist l1, l2, l3, l4 ∈ N satisfying the following equation

h = l1l3 + l1l4 + l2l3 + l2l4 − l2 − l3

−1
2 l1(l1 + 1) − 1

2 l4(l4 + 1) + 1
d
√

12h − 3 e = l1 + 2l2 + 2l3 + l4 − 3

 (3.7)

If for h ∈ N, Eq (3.7) has a solution l1, l2, l3, l4 ∈ N, then there is a CBS W meeting the conditions
that ni(W) = ni(Th).

Now, we concentrate on the research for T I of f-benzenoids. For a h − 1 ∈ N, supposing that the
system below

h − 1 = l1l3 + l1l4 + l2l3 + l2l4 − l2 − l3

−1
2 l1(l1 + 1) − 1

2 l4(l4 + 1) + 1
d
√

12(h − 1) − 3 e = l1 + 2l2 + 2l3 + l4 − 3
∃ li ∈ {l1, l2, l3, l4, l5, l6}, li = 2

 (3.8)

has a solution {l1, l2, l3, l4}, then a CBS Wh−1 containing ni(Wh−1) = 2(h − 1) + 1 −
⌈√

12(h − 1) − 3
⌉

number of internal vertices exists. Note that li = 2 in system (3.8), i.e., there exists one fissure on the
side of li of Wh−1, let u,w, v in Figure 1 represent the three vertices of this fissure. Now, we obtain an
f-spiral benzenoid F∗1 in which X = Wh−1 and Y = L1. It is obvious that

ni(F∗1) = 2h −
⌈ √

12(h − 1) − 3
⌉

(3.9)

and b(F∗1) = 2. (as shown in Figure 19)
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Figure 19. A f-spiral benzenoid F∗1 whose fragment X is a convex spiral benzenoid system
Wh−1.

Theorem 3.2. Let h− 1 ∈ N such that the Eq (3.8) has a solution, and m = 3h + 5 +
⌈√

12(h − 1) − 3
⌉
.

Then for any F ∈ Γm

1) T I(F∗1) ≥ T I(F), when u ≥ 0 and q ≥ 0;

2) T I(F∗1) ≤ T I(F), when u ≤ 0 and q ≤ 0.

Proof. From Lemma 1.1 (ii) and Eq (3.9), we have

m(F∗1) = 5h + 5 − (2h −
⌈ √

12(h − 1) − 3
⌉
) = 3h + 5 +

⌈ √
12(h − 1) − 3

⌉
and so

h = m − 1 −
⌈
1
3

(
2m +

√
4m − 31

)⌉
.

It is obvious that b(F∗1) = 2 and b(F) ≥ 2 for any F ∈ Γm. Hence by Eq (3.6), we have

T I(F) − T I(F∗1) = u(h(F) − h(F∗1)) − q(b(F) − b(F∗1))

= u
[
h(F) −

(
m − 1 −

⌈
1
3

(
2m +

√
4m − 31

)⌉)]
− q[b(F) − 2].

And by Eq (2.5)

h(F) ≤ m − 1 −
⌈
1
3

(
2m +

√
4m − 31

)⌉
.

If u ≥ 0 and q ≥ 0 then T I(F) − T I(F∗1) ≤ 0, i.e., F∗1 achieves maximal T I in Γm. Similarly, if u ≤ 0
and q ≤ 0 then T I(F) − T I(F∗1) ≥ 0, i.e., F∗1 obtains minimal T I in Γm.

Example 2. The values of u and q for some famous T I are listed in the following Table 3:

Table 3. Values of u and q for six famous T I.

i j 1
√

i j
2
√

i j
i+ j

1
√

i+ j
(i j)3

(i+ j−2)3

√
i+ j−2

i j

q -1 -0.0168 -0.0404 -0.0138 -3.390 0.040
u 18 -0.449 0.121 -0.233 20.344 -0.242

Hence, by Theorem 3.1 we can deduce the minimal values of the Randć index and the the sum–
connectivity index in f-spiral benzenoid F∗1 for those h such that Eq (3.8) holds.
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Example 3. Take consideration of the generalized Randć index

Rα(G) =
∑

1≤i≤ j≤n−1

mi j(i j)α,

where α ∈ R. Note that
q = 2(6α) − 4α − 9α = −4α((

3
2

)α − 1)2 ≤ 0

for all α ∈ R. Moreover, s = 9α − 4α ≥ 0 if and only if α ≥ 0 if and only if u = 6(9α − 6α) ≥ 0. Hence,
by Theorem 3.1, the minimal value of Rα(G) is obtained for all α ≥ 0, and for any α ≤ 0, the minimal
value of Rα(G) can be attained by the f-spiral benzenoid F∗1 for those h such that Eq (3.8) holds.

4. Conclusions

This work investigates extremum T I over the collection of f-benzenoids having same number of
edges. In practical terms, there are many other types of very useful topological indices for instance
graph energy [58–62], Wiener index [63], Randić energy [64], Wiener polarity index [65], incidence
energy [66], Harary index [67], entropy measures [68, 69] and HOMO-LUMO index [70]. So, deter-
mining these topological indices for f-benzenoids is going to be extraordinary fascinating.

It is noted that the current framework is for studying topological indices of deterministic networks.
But random networks would be a very promising direction. In [71, 72], the distance Estrada index of
random graphs was discussed, and the author went deeply into (Laplacian) Estrada index for random
interdependent graphs. So, studying VDB topological indices of random and random interdependent
graphs is another interesting problem.
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