Mathematical Biosciences and Engineering

Research article

Extremal values of VDB topological indices over F-benzenoids with equal number of edges

Fengwei Li $^{1, *}$, Qingfang Ye 1 and Juan Rada ${ }^{2}$
${ }^{1}$ College of Basic Science, Ningbo University of Finance \& Economics, Ningbo 315175, China
${ }^{2}$ Instituto de Matemáticas, Universidad de Antioquia, Medellín, Colombia
* Correspondence: Email: fengwei.li@hotmail.com.

Abstract

The utilization of molecular structure topological indices is currently a standing operating procedure in the structure-property relations research, especially in QSPR/QSAR study. In the past several year, generous molecular topological indices related to some chemical and physical properties of chemical compounds were put forward. Among these topological indices, the VDB topological indices rely only on the vertex degree of chemical molecular graphs. The VDB topological index of an n-order graph G is defined as $$
T I(G)=\sum_{1 \leq i \leq j \leq n-1} m_{i j} \psi_{i j},
$$ where $\left\{\psi_{i j}\right\}$ is a set of real numbers, $m_{i j}$ is the quantity of edges linking an i-vertex and another j-vertex. Numerous famous topological indices are special circumstance of this expression. f-benzenoids are a kind of polycyclic aromatic hydrocarbons, present in large amounts in coal tar. Studying the properties of f-benzenoids via topological indices is a worthy task. In this work the extremum $T I$ of f-benzenoids with given number of edges were determined. The main idea is to construct f-benzenoids with maximal number of inlets and simultaneously minimal number of hexagons in Γ_{m}, where Γ_{m} is the collection of f-benzenoids with exactly $m(m \geq 19)$ edges. As an application of this result, we give a unified approach of VDB topological indices to predict distinct chemical and physical properties such as the boiling point, π-electrom energy, molecular weight and vapour pressure etc. of f-benzenoids with fixed number of edges.

Keywords: VDB topological index; inlet; f-spiral benzenoid; f-linear chain; f-benzenoid

1. Introduction

In mathematics chemistry and biology, a chemical compound can be represented by a molecular graph by converting atoms to vertices and bonds to edges. One of the primary mission of QSAR/QSPR
research is to accurately convert molecular graphs into numerical values. Graph theoretic invariants of molecular graphs are called molecular descriptors which can be utilized to simulate the structural information of molecules, in order to make worthwhile physical and chemical properties of these molecules can be acquired by single numerical values. Such kinds of molecular descriptors are also referred to as topological indices.

In the chemical literature, various topological indices relying only on vertex degrees of the molecular graphs can be utilized in QSPR/QSAR investigation on account of them can be obtained directly from the molecular architecture, and can be rapidly calculated for generous molecules (see [1,2]), and we call them VDB (vertex-degree-based) topological indices. To be more precise, for designated nonnegative real numbers $\left\{\psi_{i j}\right\}(1 \leq i \leq j \leq n-1)$, a VDB topological index of a an n-order (molecular) graph G is expressed as

$$
\begin{equation*}
T I(G)=\sum_{1 \leq i \leq j \leq n-1} m_{i j} \psi_{i j}, \tag{1.1}
\end{equation*}
$$

where $m_{i j}$ is the amount of edges connecting an i-vertex and a j-vertex of G. A great deal of wellknown VDB topological indices can be obtained by different $\psi_{i j}$ in expression (1.1). We list some VDB topological indices in Table 1.

Table 1. Some well-known VDB topological indices.

$\psi_{i j}$	name
$i+j$	First Zagreb index
$\frac{1}{\sqrt{i j}}$	Randić index
$\frac{2 \sqrt{i j}}{i+j}$	GA index
$\sqrt{\frac{i+j-2}{i j}}$	ABC index
$\frac{1}{\sqrt{i+j}}$	Sum-connectivity index
$\frac{(i j)^{3}}{(i+j-2)^{3}}$	AZI index
$\frac{2}{i+j}$	Harmonic index
$\|i-j\|$	Albertson index
$\sqrt{i^{2}+j^{2}}$	Sombor index
$\frac{i j}{i+j}$	ISI index

The first Zagreb index [3] is the very first VDB topological index, as powerful molecular structuredescriptors [2], Zagreb indices can describe the peculiarities of the degree of branching in molecular carbon-atom skeleton. Thereafter, many VDB topological indices have been put forward to simulate physical, chemical, biological, and other attributes of molecules [4-7]. In 2021, Gutman [8] introduced
a new VDB topological index named as the Sombor index which has a linear correlation with the entropy and the enthalpy of vaporization of octanes [9]. Das et al., give sharp bounds for Sombor index of graphs by means of some useful graph parameters and they reveal the relationships between the Sombor index and Zagreb indices of graphs [10]. Recently, Steiner Gutman index was introduced by Mao and Das [11] which incorporate Steiner distance of a connected graph G. Nordhaus-Gaddumtype results for the Steiner Gutman index of graphs were given in [12]. In 2022, Shang study the Sombor index and degree-related properties of simplicial networks [13]. For more details of VDB topological indices, one can see [3,14-26] and the books [27-29].

Fluoranthene is a eminent conjugated hydrocarbon which abound in coal tar [30]. A fluoranthenetype benzenoid system (f-benzenoid for short) is formed from two benzenoid units joined by a pentagon [31,32]. The ordinary structure modality of a f-benzenoid F is shown in Figure 1, where segments X and Y are two benzenoid systems. Each f-benzenoid possesses exactly one pentagon [32]. More and more attention is paid to f-benzenoids after the flash vacuum pyrolysis experiments of these nonalternant polycyclic aromatic hydrocarbons [33].

Figure 1. The ordinary structure modality of a f-benzenoid (F) and its construction from two benzenoid systems X and Y.

In the whole article, the terminology and notation are chiefly derived from [34-41]. A vertex of degree k is called a k-vertex, and an edge linking a k-vertex and a j-vertex is designated as a (k, j)-edge. Let n_{k} be the number of k-vertices and let $m_{k j}$ be the number of (k, j)-edges in the molecular graph G. A benzenoid system without internal vertices is said to be catacondensed. Analogously, a f-benzenoid F containing a unique internal vertex is referred to as catacatacondensed. We use h-hexagon benzenoid system (or h-hexagon f-benzenoid) to represent a benzenoid system (or f-benzenoid) containing h hexagons.

Let L_{h} represent the h-hexagon linear chain (as shown in Figure 2(a)). An f-benzenoid $F L_{h}(h \geq 3)$ obtaining from pieces $X=L_{2}$ and $Y=L_{h-2}$ is named as f-linear chain (as shown in Figure 2(b)).

(a) Linear chain

(b) f-linear chain

Figure 2. Linear chain and f-linear chain.

A fissure (resp. bay, cove, fjord and lagoon) of a f-benzenoid F is a path of degree sequences $(2,3,2)$ (resp. $(2,3,3,2),(2,3,3,3,2),(2,3,3,3,3,2)$ and $(2,3,3,3,3,3,2))$ on the perimeter of F (see Figure 3). Fissures, bays, coves, fjords and lagoons are said to be different kinds of inlets and their number are signified by f, B, C, F_{j} and L, respectively $[32,37]$. Inlets determine many electronic and topological properties of f-benzenoids. Then, it can be found that $f+2 B+3 C+4 F_{J}+5 L$ is the number of 3-vertices on the perimeter of F. It is noted that lagoons cannot occur in the theory of benzenoid systems. For convenience, let $r=f+B+C+F_{j}+L$ to represent the total number of inlets and $b=B+2 C+3 F_{j}+4 L$ is referred to as the quantity of bay regions, In addition, b is exactly the quantity of (3,3)-edges on the perimeter of F. It is obvious that $b \geq 2$ for any f-benzenoid F.

Figure 3. Structural features occurring on the perimeter of f-benzenoids.

It is noted that any f-benzenoid F contains merely either 2 -vertex or 3 -vertex. The vertices not on the perimeter are said to be internal, and we use n_{i} to represent their number.
Lemma 1.1. [32] Let F be an n-order, h-hexagon f-benzenoid with m edges and n_{i} internal vertices. Then
(i) $n=4 h+5-n_{i}$;
(ii) $m=5 h+5-n_{i}$.

Lemma 1.2. [32] Let F be an n-order and h-hexagon f-benzenoid with r inlets, Then
(i) $m_{22}=n-2 h-r$;
(ii) $m_{23}=2 r$;
(iii) $m_{33}=3 h-r$.

From the perspective of mathematics and chemistry, finding the extremal values of some useful $T I$ for significant classes of graphs is very interesting [14, 19, 23, 40-56].

As a matter of convenience, we use Γ_{m} to represent the collection of f-benzenoids containing exactly m edges. In [45], we derived extremal values for $T I$ among all f-benzenoids with given order. It is noted that structure of f-benzenoids with given order is different from that of f-benzenoids with given number of edges. And we found that the technique for studying $T I$ among all f-benzenoids with given order can not be used directly to investigate $T I$ for all f-benzenoids with fixed number of edges. For this reason, we concentrate on the research of extremal values for $T I$ among all f-benzenoids with given size.

The main idea of this work is to construct f-benzenoids owning maximal r and minimal h at the same time in Γ_{m} depending on the number m is congruent to $0,1,2,3$ or 4 modulo 5 . By making use of this technique, we obtain the extremum of $T I$ over Γ_{m} and characterize their corresponding graphs on the basis of m is congruent to $0,1,2,3$ or 4 modulo 5 . Afterwards the extremums of some well-known $T I$ over Γ_{m} can be got by use of the previous results.

The structure of this paper is as below. We first determine the maximal r in the set Γ_{m} in Section 2. By utilizing these results, we find the extremum of several famed $T I$ over Γ_{m} in Section 3.

2. F-benzenoids with maximal r in Γ_{m}

We will find the f-benzenoids with maximal r in Γ_{m} in this section. Figure 4 illustrates three fbenzenoids pertaining to Γ_{42}.

Figure 4. Some f-benzenoids in Γ_{42}.

Figure 5. The spiral benzenoid system T_{h} with maximal number of internal vertices.

At first, we try to obtain the maximum and minimum number of hexagons in any $F \in \Gamma_{m}$.
The spiral benzenoid system [57] T_{h} is a benzenoid system whose structure is in a "spiral" manner as illustrated in Figure 5. T_{h} has maximal n_{i} in all h-hexagon benzenoid systems.

F^{\prime}

F^{*}

Figure 6. f-benzenoid $F^{\prime} \in S H_{h}$ whose two pieces X and Y are both spiral benzenoid systems, and f-spiral benzenoid $F^{*} \in S H_{h}$ with two pieces $X=T_{h-1}$ and $Y=T_{1}$.

As a matter of convenience, let $S H_{h}(h \geq 3)$ represent the collection of f-benzenoids formed by two spiral benzenoids X and Y. Particularly, a f-spiral benzenoid is a f-benzenoid $F^{*} \in S H_{h}$ in which $X=T_{h-1}$ and $Y=T_{1}$ (as shown in Figure 6). It is easy to see that that

$$
n_{i}\left(F^{*}\right)=2 h-\lceil\sqrt{12(h-1)-3}\rceil .
$$

In [40], we proved that for every $F^{\prime} \in S H_{h}(h \geq 3)$, the inequality

$$
\begin{equation*}
n_{i}\left(F^{\prime}\right) \leq n_{i}\left(F^{*}\right) \tag{2.1}
\end{equation*}
$$

holds, and the following graph operations were introduced.
Operation 1. For any h-hexagon f-benzenoid F having two segments X and Y, let $h_{1}=h(X)$ and $h_{2}=h(Y)$. By substituting spiral benzenoid systems $T_{h_{1}}$ and $T_{h_{2}}$ for X and Y, severally, another f-benzenoid $F^{\prime} \in S H_{h}$ can be obtained (as shown in Figure 7).

For any h-hexagon f-benzenoid F, when $h=3$, it is easily checked that

$$
\begin{equation*}
n_{i}(F)=1=2 \times 3-\lceil\sqrt{12(3-1)-3}\rceil . \tag{2.2}
\end{equation*}
$$

When $h \geq 4$, let $h_{1}=h(X)$ and $h_{2}=h(Y)$. Another $F^{\prime} \in S H_{h}$ (as shown in Figure 7) in which $X=T_{h_{1}}$ and $Y=T_{h_{2}}$ can be acquired by applying Operation 1 to F. It is apparently that $n_{i}(X) \leq n_{i}\left(T_{h_{1}}\right)$, $n_{i}(Y) \leq n_{i}\left(T_{h_{2}}\right)$, therefore

$$
\begin{equation*}
n_{i}(F)=n_{i}(X)+n_{i}(Y)+1 \leq n_{i}\left(T_{h_{1}}\right)+n_{i}\left(T_{h_{2}}\right)+1=n_{i}\left(F^{\prime}\right) . \tag{2.3}
\end{equation*}
$$

So, the following Lemma can be deduced by Eqs (2.1) and (2.3).

Figure 7. f-benzenoid $F^{\prime} \in S H_{h}$ is obtained from F by applying Operation 1 to it.

Lemma 2.1. [41] Let F be an $h(h \geq 3)$-hexagon f-benzenoid. Then

$$
\begin{equation*}
n_{i}(F) \leq 2 h-\lceil\sqrt{12(h-1)-3}\rceil, \tag{2.4}
\end{equation*}
$$

and the equality is established when F is F^{*}.
For any $F \in \Gamma_{m}, h(F)$ over Γ_{m} is variable. Sharp bounds for $h(F)$ in Γ_{m} is given below.
Theorem 2.1. For any f-benzenoid $F \in \Gamma_{m}$,

$$
\begin{equation*}
\left\lceil\frac{1}{5}(m-4)\right\rceil \leq h(F) \leq m-1-\left\lceil\frac{1}{3}(2 m+\sqrt{4 m-31})\right\rceil, \tag{2.5}
\end{equation*}
$$

where $\lceil x\rceil$ is the smallest integer larger or equal to x.
Proof. On one hand, from Lemma 1.1 (ii) we know that $m=5 h(F)+5-n_{i}(F)$. Combining the fact that $n_{i}(F) \geq 1$ for any $F \in \Gamma_{m}$, we get

$$
h(F) \geq\left\lceil\frac{1}{5}(m-4)\right\rceil .
$$

On the other hand, by Lemma 2.1 we know that $n_{i}(F) \leq n_{i}\left(F^{*}\right)$. Consequently, from $m=5 h(F)+5-$ $n_{i}(F)$ we have

$$
m-3 h(F)-5 \geq\lceil\sqrt{12(h(F)-1)-3}\rceil \geq \sqrt{12(h(F)-1)-3} .
$$

Hence,

$$
(3 h(F)+(3-m))^{2} \geq 4 m-31 .
$$

Due to the fact that $3 h(F)+(3-m)<0$, we deduce

$$
3 h(F)+(3-m) \leq-\sqrt{4 m-31},
$$

i.e., $h(F) \leq m-1-\left\lceil\frac{1}{3}(2 m+\sqrt{4 m-31})\right]$.

Remark 1. Theorem 2.1 implies that f-spiral benzenoid F^{*} has the maximal number of hexagons over Γ_{m}.

For the sake of obtaining the extremum $T I$ among all f-benzenoids in Γ_{m}, we need to find the f-benzenoids $F \in \Gamma_{m}$ possessing maximal r.

Recall that convex benzenoid systems (CBS for brevity) are a particular sort of benzenoid systems lack of bay regions [14]. Let $\mathcal{H} \mathcal{S}_{h}$ be the collection of benzenoid systems containing h hexagons.

Lemma 2.2. [42] Let $H \in \mathcal{H} \mathcal{S}_{h}$. Under the below cases, H is definitely not a CBS:
(i) If $h \geq 4$ and $n_{i}=1$;
(ii) If $h \geq 5$ and $n_{i}=2$;
(iii) If $h \geq 6$ and $n_{i}=3$.

Lemma 2.3. [52] Let $H \in \mathcal{H} S_{h}$ such that $n_{i}(H)=4$. Then H is bound to embody a subbenzenoid system given in Figure 8, there does not exist hexagons which are adjacent to fissures.

(a)

(d)

(b)

(e)

(c)

(f)

Figure 8. Benzenoid systems with 1, 2, 3 and 4 internal vertices, respectively.

Lemma 2.4. Let $S \in \mathcal{H} \mathcal{S}_{h}$. If $h \geq 7$ and $n_{i}(S)=4$, then S is not a $C B S$.

Proof. Let S be an $h(h \geq 7)$-hexagon benzenoid system, $n_{i}(S)=4$, then by Lemma $2.3 S$ must contain one of the benzenoid systems of the form given in Figure 7. The proof is carried out in two cases.
Case 1. If these four internal vertices form a path P_{4} or a $K_{1,3}$, then S contains one of benzenoid systems $(d)-(f)$ in Figure 7 as its subbenzenoid systems. It is noted that $h \geq 7$, by Lemma 2.2, it must not exist hexagons contiguous to the fissures, so, S has at least one hexagon contiguous to a (2,2)-edge, by means of such hexagons, it is succeeded in converting one of the fissures into a cove, bay or fjord. Hence, $b(S) \geq 1$.
Case 2. If these four internal vertices are not adjacent then S has possibility subbenzenoid systems as follows.

1) There exist one type (a) and one type (c) benzenoid systems in S;
2) There exist two type (b) benzenoid systems in S;
3) There exist two type (a) and one type (b) benzenoid systems in S.
4) There exist four type (a) benzenoid systems in S.

By Lemma 2.2, neither hexagons may be adjacent to the fissures in any of the cases indicated above. Since $h \geq 7, S$ has at least one hexagon contiguous to a $(2,2)$-edge, by means of such hexagons, it is succeeded in making one of the fissures become a cove, bay or fjord. Therefore, $b(S) \geq 1$.

The proof is completed.
Lemma 2.5. [45] Let F be an h-hexagon f-benzenoid. Then

1) If $n_{i}=1$, then $r(F) \leq r\left(F L_{h}\right)=2 h-3(h \geq 3)$;
2) If $n_{i}=2$, then $r(F) \leq r\left(G_{h}\right)=2 h-4(h \geq 4)$;
3) If $n_{i}=3$, then $r(F) \leq r\left(R_{h}\right)=2 h-5(h \geq 5)$;
4) If $n_{i}=4$, then $r(F) \leq r\left(Z_{h}\right)=2 h-6(h \geq 6)$.

$M_{h}(h \geq 4)$

$N_{h}(h \geq 5)$

Figure 9. Three types of benzenoid systems.

Next we find the f-benzenoids with maximal r in Γ_{m} with a fixed n_{i}. Recall that M_{h}, N_{h} and Q_{h} (see Figure 9) are benzenoid systems, and G_{h} (see Figure 10), R_{h} (see Figure 11), Z_{h} (see Figure 12) are f-benzenoids.

Figure 10. f-benzenoids G_{4}, and $G_{h}(h \geq 5)$.

Figure 11. f-benzenoids R_{5}, and $R_{h}(h \geq 6)$.

Z_{6}

Figure 12. f-benzenoids Z_{6}, and $Z_{h}(h \geq 7)$.

Lemma 2.6. [41] Let F be an h-hexagon f-benzenoid. Then

$$
r(F) \leq r\left(F L_{h}\right)=2 h-3 .
$$

Lemma 2.7. [32] For any h-hexagon f-benzenoid including n_{i} internal vertices and b bay regions, the number of (2,2)-edge and (2,3)-edge are $m_{22}=b+5, m_{23}=4 h-2 n_{i}-2 b$, respectively.

Figure 13. f-benzenoids U_{7}, and $U_{h}(h \geq 8)$.

From Lemmas 1.2 (ii) and 2.6, we get

$$
\begin{equation*}
r=2 h-n_{i}-b \tag{2.6}
\end{equation*}
$$

Furthermore, by Lemma 1.1 (ii) and Eq (2.6), we deduce

$$
\begin{equation*}
r=m-3 h-5-b \tag{2.7}
\end{equation*}
$$

Theorem 2.2. Let F be an h-hexagon f-benzenoid. If $n_{i}=5$, then $r(F) \leq r\left(U_{h}\right)=2 h-7(h \geq 7)$.
Proof. Let $h_{1}=h(X)$ and $h_{2}=h(Y), X$ and Y are two segments of F. If $n_{i}=5$, by the structure of f-benzenoid, equality $n_{i}(X)+n_{i}(Y)=4$ holds, so, we have the following five cases.
Case 1. $n_{i}(X)=1, n_{i}(Y)=3$, i.e., there exist one internal vertex and three internal vertices in X and Y, respectively.
Subcase 1.1. If $h_{1}=3$, then $X=M_{3}$.
Subcase 1.1.1. If $h_{2}=5$, i.e., $Y=Q_{5}$, then F is the f-benzenoid D_{1}, D_{2} or D_{3} (see Figure 14). It is clear that $r(F)=r\left(D_{1}\right)=8 \leq 2 h-7, r(F)=r\left(D_{2}\right)=7 \leq 2 h-7$ or $r(F)=r\left(D_{3}\right)=8 \leq 2 h-7$.
Subcase 1.1.2. If $h_{2} \geq 6$, by Lemma 2.2 and the hypothesis that $n_{i}(Y)=3, Y$ is not a CBS, so $b(Y) \geq 1$. Furthermore, $b(F) \geq 3$, combining Eq (2.6) we obtain $r=2 h-n_{i}-b \leq 2 h-8<2 h-7$.
Subcase 1.2. If $h_{1} \geq 4$, according to Lemma 2.2, X is definitely not a CBS, i.e., $b(X) \geq 1$.
Subcase 1.2.1. If $h_{2}=5$, i.e., $Y=Q_{5}$. It is clear that $b(F) \geq 4$, then $\mathrm{Eq}(2.6)$ deduces $r \leq 2 h-9<2 h-7$.
Subcase 1.2.2. If $h_{2} \geq 6, Y$ is definitely not not a CBS according to Lemma 2.2, so, $b(Y) \geq 1$. It is clear that $b(F) \geq 5$, consequently from Eq (2.6) we obtain $r \leq 2 h-10<2 h-7$.
Case 2. $n_{i}(X)=3$ and $n_{i}(Y)=1$.

Subcase 2.1. If $h_{1}=5$, then $X=Q_{5}$.
Subcase 2.1.1. If $h_{2}=3$, i.e., $Y=M_{3}$, then F is the f-benzenoid D_{4}, D_{5}, D_{6} (see Figure 14), or D_{7} (as shown in Figure 15). $r(F)=r\left(D_{4}\right)=8 \leq 2 h-7, r(F)=r\left(D_{5}\right)=7 \leq 2 h-7, r(F)=r\left(D_{6}\right)=8 \leq 2 h-7$, $r(F)=r\left(D_{7}\right)=7 \leq 2 h-7$.

Figure 14. f-benzenoids $D_{1}, D_{2}, D_{3}, D_{4}$ and D_{5}.

Figure 15. f-benzenoids D_{7}, D_{8} and D_{9}.

Subcase 2.1.2. If $h_{2} \geq 4, Y$ is surely not a CBS in light of Lemma 2.2, i.e., $b(X) \geq 1$. Hence, we have $b(F) \geq 4$, it follows from Eq (2.6) that $r \leq 2 h-9<2 h-7$.
Subcase 2.2. If $h_{1} \geq 6$, by Lemma 2.2, X is definitely not a CBS, hence $b(X) \geq 1$.
Subcase 2.2.1. If $h_{2}=3$, i.e., $Y=M_{3}$. We have $b(F) \geq 4$, and Eq (2.6) infers that $r \leq 2 h-9<2 h-7$. Subcase 2.2.2. f $h_{2} \geq 4$, by Lemma $2.2, Y$ is certainly not a CBS, i.e., $b(X) \geq 1$. Hence we have $b(F) \geq 5$, by Eq (2.6), $r \leq 2 h-10<2 h-7$.
Case 3. $n_{i}(X)=2, n_{i}(Y)=2$, i.e., X and Y both have two internal vertices.
Subcase 3.1. If $h_{1}=4$, we note that $n_{i}(X)=2$, so X must be the benzenoid system (b) in Figure 9.

Subcase 3.1.1. If $h_{2}=4, Y$ is surely the benzenoid system (b) in Figure 9 according to the hypothesis $n_{i}(Y)=2$, therefore, F is D_{8} or D_{9} (as shown in Figure 15). We get $r(F)=r\left(D_{8}\right)=8<2 h-7$ or $r(F)=r\left(D_{9}\right)=7<2 h-7$.
Subcase 3.1.2. If $h_{2} \geq 5$, by Lemma 2.2 and that $n_{i}(Y)=2, Y$ is not a CBS, so we know that $b(X) \geq 1$. Then $b(F) \geq 4$, by Eq (2.6) and the fact that $n_{i}=5, r \leq 2 h-9<2 h-7$.
Subcase 3.2. If $h_{2}=4$, we note that $n_{i}(Y)=2$, so Y must be the benzenoid system (b) in Figure 8.
Subcase 3.2.1. If $h_{1}=4, X$ must also be the benzenoid system (b) in Figure 9. Hence, F is D_{8} or D_{9} (as shown in Figure 15). $r(F)=r\left(D_{8}\right)=8 \leq 2 h-7$ or $r(F)=r\left(D_{9}\right)=7 \leq 2 h-7$.
Subcase 3.2.2. If $h_{1} \geq 5$, by Lemma 2.2 and $n_{i}(X)=2, X$ is definitely not a CBS, i.e., $b(X) \geq 1$. Hence, $b(F) \geq 4$, by $\mathrm{Eq}(2.6)$ and the fact that $n_{i}=5$, we have $r \leq 2 h-9<2 h-7$.
Subcase 3.3. If $h_{1} \geq 5, h_{2} \geq 5$, it is noted that $n_{i}(X)=n_{i}(Y)=2$, neither X nor Y are definitely CBS according to Lemma 2.2. So, both $b(X)$ and $b(Y)$ are greater than 1 . Hence, $b(F) \geq 5$, on the basis of Eq (2.6) we get $r \leq 2 h-10<2 h-7$.
Case 4. $n_{i}(X)=4$ and $n_{i}(Y)=0$, i.e., X contains four internal vertices, Y is a catacondensed benzenoid system.
Subcase 4.1. If $h_{1}=6$, then X is the benzenoid system $(d),(e)$ or (f) in Figure 9.
Subcase 4.1.1. If $h_{2}=1, F$ is the f-benzenoid D_{10}, D_{11}, D_{12} (see Figure 16), D_{13} (see Figure 17) or U_{7} (see Figure 12). $r(F)=r\left(D_{10}\right)=6 \leq 2 h-7, r(F)=r\left(D_{11}\right)=6 \leq 2 h-7, r(F)=r\left(D_{12}\right)=6 \leq 2 h-7$, $r(F)=r\left(D_{13}\right)=6 \leq 2 h-7$ or $r(F)=r\left(U_{7}\right)=7=2 h-7$.

D_{10}

D_{11}

D_{12}

Figure 16. f-benzenoids D_{10}, D_{11} and D_{12}.

Subcase 4.1.2. If $h_{2} \geq 2$, we have $b(F) \geq 2$, by Eq (2.6), $r \leq 2 h-7$.
Subcase 4.2. If $h_{1} \geq 7$, in the light of Lemma 2.4, X is definitely not a CBS, hence $b(Y) \geq 1$. In this situation $b(F) \geq 3$, we get the inequality $r \leq 2 h-8<2 h-7$ according to Eq (2.6).
Case 5. $n_{i}(X)=0$ and $n_{i}(Y)=4$, i.e., X is a catacondensed benzenoid system, Y has four internal vertices.
Subcase 5.1. If $h_{2}=6$, then Y is the benzenoid system $(d),(e)$ or (f) in Figure 8.
Subcase 5.1.1. If $h_{1}=2, X$ must be the linear chain L_{2}. In this event, F is $D_{14}, D_{15}, D_{16}, D_{17}, D_{18}$, D_{19}, D_{20} or D_{21} (see Figure 17). By further checking, we gain that $r(F)=r\left(D_{14}\right)=7 \leq 2 h-7$, $r(F)=r\left(D_{15}\right)=8 \leq 2 h-7, r(F)=r\left(D_{16}\right)=8 \leq 2 h-7, r(F)=r\left(D_{17}\right)=7 \leq 2 h-7, r(F)=r\left(D_{18}\right)=$ $7 \leq 2 h-7, r(F)=r\left(D_{19}\right)=8 \leq 2 h-7, r(F)=r\left(D_{20}\right)=6 \leq 2 h-7$ or $r(F)=r\left(D_{21}\right)=6 \leq 2 h-7$.

Figure 17. f-benzenoids $D_{13}, D_{14}, D_{15}, D_{16}, D_{17}, D_{18}, D_{19}, D_{20}$ and D_{21}.

Subcase 5.1.2. If $h_{1} \geq 3$, bearing in mind that X is a catacondensed benzenoid system and Y is the benzenoid system $(d),(e)$ or (f) in Figure 8 , then F must have f-benzenoid $D_{14}, D_{15}, D_{16}, D_{17}, D_{18}$, D_{19}, D_{20} or D_{21} (see Figure 17) as its subgraph.
Subcase 5.1.2.1. If D_{14} is a subgraph in F, it is obvious that D_{14} has two coves. Since X is a catacondensed benzenoid system and $h_{1} \geq 3, F$ has at least one hexagon contiguous to a (2,2)-edge of X, and such hexagons can convert one fissure into a bay, or convert one cove into a fjord, or convert one fjord into a lagoon. In this instance $b(F) \geq 4$. Consequently, $r \leq 2 h-9<2 h-7$ can be got according to Eq (2.6).
Subcase 5.1.2.2. If D_{15}, D_{16} or D_{19} is a subpart f-benzenoid in F, it is obvious each one of D_{15}, D_{16} and D_{19} has a bay and a cove. Since X is a catacondensed benzenoid system and $h_{1} \geq 3, F$ contains at least one hexagon adjoining a (2,2)-edge of X, and such hexagons will make one fissure become a bay, or make one cove become a fjord, or make one fjord become a lagoon. Consequently, $b(F) \geq 4$, by Eq (2.6) it follows that $r \leq 2 h-9<2 h-7$.
Subcase 5.1.2.3. If D_{17} is a subpart f-benzenoid in F, it is obvious that D_{17} has a fjord and a bay. Since X is a catacondensed benzenoid system and $h_{1} \geq 3, F$ has at least one hexagon adjoining a (2,2)-edge of X, and such hexagons will convert one fissure into a bay, or convert one cove into a fjord, or convert one fjord into a lagoon. Consequently, $b(F) \geq 4$, by Eq (2.6) it follows that $r \leq 2 h-9<2 h-7$.

Subcase 5.1.2.4. If D_{18} is a subpart f-benzenoid in F, it is obvious that D_{18} has a fjord and two bays. Since X is a catacondensed benzenoid system and $h_{1} \geq 3$, there exists has at least one hexagon adjoining a (2,2)-edge of X in F, and these hexagons will convert one of the fissures into a bay, or convert one cove into a fjord, or convert one fjord into a lagoon. Consequently, $b(F) \geq 4$, in light of $\mathrm{Eq}(2.6), r \leq 2 h-9<2 h-7$.
Subcase 5.1.2.5. If D_{20} or D_{21} is a subpart f-benzenoid in F, it is obvious that both D_{20} and D_{21} have a bay and two fjords. Since X is a catacondensed benzenoid system and $h_{1} \geq 3, F$ contains at least one hexagon adjoining a (2,2)-edge of X, and such hexagons will make one fissure become a bay, or make one cove become a fjord, or make one fjord become a lagoon. Consequently, $b(F) \geq 4$, according to $\mathrm{Eq}(2.6), r \leq 2 h-9<2 h-7$.
Subcase 5.2. If $h_{2} \geq 7$, by Lemma 2.4 and the fact that $n_{i}(Y)=4, Y$ is certainly not a CBS, i.e., $b(Y) \geq 1$.
Subcase 5.2.1. If $h_{1}=2$, i.e., $X=L_{2}$. From the structure of f-benzenoid, F is formed from X and Y joined by a pentagon, it is easily seen that there are at least one bay or one cove arisen in the process of construction of F. It is clear that $b(F) \geq 2$, by Eq (2.6) we have $r \leq 2 h-7$.
Subcase 5.2.2. If $h_{1} \geq 3$, we know that F is formed by joining from X and Y through a pentagon, in this construction process of F, it is easily seen that there are at least one bay or one cove arisen. Then $b(F) \geq 2$, by Eq (2.6), $r \leq 2 h-7$.

The proof is completed.
We recall that $F L_{h}$ is the f-linear chain with h hexagons [40]. Extremal f-benzenoids with maximal r in Γ_{m} were determined in the following theorem.

Theorem 2.3. Let $F \in \Gamma_{m}$. Then

1) If $m \equiv 0(\bmod 5)$, then $r(F) \leq \frac{2 m-35}{5}=r\left(U_{\frac{m}{5}}\right)$;
2) If $m \equiv 1(\bmod 5)$, then $r(F) \leq \frac{2 m-32}{5}=r\left(Z_{\frac{m-1}{5}}\right)$;
3) If $m \equiv 2(\bmod 5)$, then $r(F) \leq \frac{2 m-29}{5}=r\left(R_{\frac{m-2}{5}}\right)$;
4) If $m \equiv 3(\bmod 5)$, then $r(F) \leq \frac{2 m-26}{5}=r\left(G_{\frac{m-3}{5}}\right)$;
5) If $m \equiv 4(\bmod 5)$, then $r(F) \leq \frac{2 m-23}{5}=r\left(F L_{\frac{m-4}{5}}\right)$.

Proof. We know by Eq (2.5) that

$$
\left\lceil\frac{1}{5}(m-4)\right\rceil \leq h(F) \leq m-1-\left\lceil\frac{1}{3}(2 m+\sqrt{4 m-31})\right\rceil .
$$

1) If $m \equiv 0(\bmod 5)$, then $\left\lceil\frac{1}{5}(m-4)\right\rceil=\frac{m}{5}$. If $h=\frac{m}{5}$, then by Lemma 1.1 (ii)

$$
m=5 h(F)+5-n_{i}(F)=m+5-n_{i}(F),
$$

it means that $n_{i}(F)=5$. Furthermore, Theorem 2.2 infers that $r(F) \leq r\left(U_{\frac{m}{5}}\right)$ and we are done. So assume now that $h(F) \geq \frac{m}{5}+1$, then by equality (2.7) and the fact that $b(F) \geq 2$

$$
r(F)=m-5-3 h(F)-b(F) \leq m-5-3\left(\frac{m}{5}+1\right)-b(F)
$$

$$
\leq \frac{2 m}{5}-10=\frac{2 m-50}{5} \leq \frac{2 m-35}{5}=r\left(U_{\frac{m}{5}}\right)
$$

2) If $m \equiv 1(\bmod 5)$, then $\left\lceil\frac{1}{5}(m-4)\right\rceil=\frac{m-1}{5}$. If $h(F)=\frac{m-1}{5}$, then by Lemma 1.1 (ii)

$$
m=5 h(F)+5-n_{i}(F)=m+4-n_{i}(F),
$$

thus $n_{i}(F)=4$. Then $r(F) \leq r\left(Z_{\frac{m-1}{5}}\right)$ by part 4 of Lemma 2.5. Otherwise $h(F) \geq \frac{m-1}{5}+1$, then by equality (2.7) and the obvious fact that $b(F) \geq 2$

$$
\begin{aligned}
r(F) & =m-5-3 h(F)-b(F) \leq m-5-3\left(\frac{m-1}{5}+1\right)-b(F) \\
& \leq \frac{2 m+3}{5}-10=\frac{2 m-47}{5} \leq \frac{2 m-32}{5}=r\left(Z_{\frac{m-1}{5}}\right.
\end{aligned}
$$

3) If $m \equiv 2(\bmod 5)$, then $\left\lceil\frac{1}{5}(m-4)\right\rceil=\frac{m-2}{5}$. If $h(F)=\frac{m-2}{5}$, then by Lemma 1.1 (ii)

$$
m=5 h(F)+5-n_{i}(F)=m+3-n_{i}(F),
$$

and so $n_{i}(F)=3$. Then $r(F) \leq r\left(R_{\frac{m-2}{5}}\right)$ by part 3 of Lemma 2.5. So assume now that $h(F) \geq \frac{m-2}{5}+1$, then by $\mathrm{Eq}(2.7)$ and the fact that $b(\vec{F}) \geq 2$

$$
\begin{aligned}
r(F) & =m-5-3 h(F)-b(F) \leq m-5-3\left(\frac{m-2}{5}+1\right)-b(F) \\
& \leq \frac{2 m+6}{5}-10=\frac{2 m-44}{5} \leq \frac{2 m-29}{5}=r\left(R_{\frac{m-2}{5}}\right) .
\end{aligned}
$$

4) If $m \equiv 3(\bmod 5)$, then $\left\lceil\frac{1}{5}(m-4)\right\rceil=\frac{m-3}{5}$. If $h(F)=\frac{m-3}{5}$, then by Lemma 1.1 (ii)

$$
m=5 h(F)+5-n_{i}(F)=m+2-n_{i}(F),
$$

thus $n_{i}(F)=2$. By Lemma 2.5,r(F) $\leq r\left(G_{\frac{m-3}{5}}\right)$ and we are done. If $h(F) \geq \frac{m-3}{5}+1$, then by equality (2.7) and the fact that $b(F) \geq 2$

$$
\begin{aligned}
r(F) & =m-5-3 h(F)-b(F) \leq m-5-3\left(\frac{m-3}{5}+1\right)-b(F) \\
& \leq \frac{2 m+9}{5}-10=\frac{2 m-41}{5} \leq \frac{2 m-26}{5}=r\left(G_{\frac{m-3}{5}}\right) .
\end{aligned}
$$

5) If $m \equiv 4(\bmod 5)$, then $\left[\frac{1}{5}(m-4)\right\rceil=\frac{m-4}{5}$. Since $h \geq \frac{m-4}{5}$ and $b(F) \geq 2$, then by Eq (2.7), we have

$$
\begin{aligned}
r(F)= & m-5-3 h(F)-b(F) \leq m-5-\frac{3 m-12}{5}-b(F) \\
& \leq \frac{2 m+12}{5}-7=\frac{2 m-23}{5}=r\left(F L_{\frac{m-4}{5}}\right)
\end{aligned}
$$

3. Extremal values of $T I$ over Γ_{m}

In this part, we attempt to find the extremal values of $T I$ over Γ_{m}.
It is noted that a f -benzenoid F contains only 2 -vertex and 3 -vertex. Hence, equation (1.1) reduces to

$$
\begin{equation*}
T I(F)=m_{22} \psi_{22}+m_{23} \psi_{23}+m_{33} \psi_{33}, \tag{3.1}
\end{equation*}
$$

In the light of Lemmas 1.1 and 1.2,

$$
\begin{equation*}
T I(F)=\psi_{22} m+3\left(\psi_{33}-\psi_{22}\right) h+\left(2 \psi_{23}-\psi_{22}-\psi_{33}\right) r \tag{3.2}
\end{equation*}
$$

If $U, V \in \Gamma_{m}$ then clearly

$$
\begin{align*}
T I(U) & -T I(V)=3\left(\psi_{33}-\psi_{22}\right)(h(U)-h(V)) \\
& +\left(2 \psi_{23}-\psi_{22}-\psi_{33}\right)(r(U)-r(V)) . \tag{3.3}
\end{align*}
$$

For convenience, we set $s=\psi_{33}-\psi_{22}, q=2 \psi_{23}-\psi_{22}-\psi_{33}$.
Theorem 3.1. For any $F \in \Gamma_{m}$, we have the following results.
a. If $s \leq 0$ and $q \geq 0$,

$$
T I(F) \leq \begin{cases}T I\left(U_{\frac{m}{5}}\right), & \text { if } m \equiv 0(\bmod 5) \\ T I\left(Z_{\frac{m-1}{5}}^{5}\right), & \text { if } m \equiv 1(\bmod 5) \\ T I\left(R_{\frac{m-2}{5}}^{5}\right), & \text { if } m \equiv 2(\bmod 5) \\ T I\left(G_{\frac{m-3}{5}}\right), & \text { if } m \equiv 3(\bmod 5) \\ T I\left(F L_{\frac{m-4}{5}}^{5}\right), & \text { if } m \equiv 4(\bmod 5)\end{cases}
$$

b. If $s \geq 0$ and $q \leq 0$,

$$
T I(F) \geq \begin{cases}T I\left(U_{\frac{m}{5}}\right), & \text { if } m \equiv 0(\bmod 5) \\ T I\left(Z_{\frac{m-1}{5}}^{5}\right), & \text { if } m \equiv 1(\bmod 5) \\ T I\left(R_{\frac{m-2}{5}}^{5}\right), & \text { if } m \equiv 2(\bmod 5) \\ T I\left(G_{\frac{m-3}{5}}^{5},\right. & \text { if } m \equiv 3(\bmod 5) \\ T I\left(F L_{\frac{m-4}{5}}^{5}\right), & \text { if } m \equiv 4(\bmod 5)\end{cases}
$$

Proof. Let $F \in \Gamma_{m}$. By Eq (2.5)

$$
h(F) \geq\left\lceil\frac{1}{5}(m-4)\right\rceil= \begin{cases}h\left(U_{\frac{m}{5}}\right), & \text { if } m \equiv 0(\bmod 5) \\ h\left(Z_{\frac{m-1}{5}}^{5}\right), & \text { if } m \equiv 1(\bmod 5) \\ h\left(R_{\frac{m-1}{5}}^{5}\right), & \text { if } m \equiv 2(\bmod 5) \\ h\left(G_{\frac{m-3}{5}}^{5},\right. & \text { if } m \equiv 3(\bmod 5) \\ h\left(F L_{\frac{m-4}{5}}^{5}\right), & \text { if } m \equiv 4(\bmod 5)\end{cases}
$$

i.e., f-benzenoids $U_{\frac{m}{5}}, Z_{\frac{m-1}{5}}, R_{\frac{m-2}{5}}, G_{\frac{m-3}{5}}$ and $F L_{\frac{m-4}{5}}$ have minimal h over the set Γ_{m}. Meanwhile, by Theorem 2.3, we have

$$
r(F) \leq\left\{\begin{array}{l}
r\left(U_{\frac{m}{5}}\right), \text { if } m \equiv 0(\bmod 5) \\
r\left(Z_{\frac{m-1}{5}}^{5}\right), \text { if } m \equiv 1(\bmod 5) \\
r\left(R_{\frac{m-2}{5}}^{5}\right), \text { if } m \equiv 2(\bmod 5) \\
r\left(G_{\frac{m-3}{5}}\right), \text { if } m \equiv 3(\bmod 5) \\
r\left(F L_{\frac{m-4}{5}}\right), \text { if } m \equiv 4(\bmod 5)
\end{array}\right.
$$

i.e., these five f-benzenoids have maximal number of inlets over Γ_{m}. Hence, for any f-benzenoids $F \in \Gamma_{m}$ and $V \in\left\{U_{\frac{m}{5}}, Z_{\frac{m-1}{5}}, R_{\frac{m-2}{5}}, G_{\frac{m-3}{5}}, F L_{\frac{m-4}{5}}\right\}, h(F)-h(V) \geq 0$ and $r(F)-r(V) \leq 0$ hold simultaneously, from Eq (2.7), we have

$$
T I(F)-T I(V)=3 s(h(F)-h(V))+q(r(F)-r(V)) .
$$

If $s \leq 0$ and $q \geq 0$, then $T I(F)-T I(V) \leq 0$, i.e., V reaches the maximum value of $T I$ over Γ_{m}. If $s \geq 0$ and $q \leq 0$, then $T I(F)-T I(V) \geq 0$, i.e., V reaches the minimum value of $T I$ over Γ_{m}. Furthermore, which $V \in\left\{U_{\frac{m}{5}}, Z_{\frac{m-1}{5}}, R_{\frac{m-2}{5}}, G_{\frac{m-3}{5}}, F L_{\frac{m-4}{5}}\right\}$ is the extremal graph depending on m is congruent to $0,1,2,3$ or 4 modulo 5 .

Example 1. Values of s and q for several famous TI are listed in Table 2:

Table 2. Values of s and q for six famous $T I$.

	$i j$	$\frac{1}{\sqrt{i j}}$	$\frac{2 \sqrt{i j}}{i+j}$	$\frac{1}{\sqrt{i+j}}$	$\frac{(i j)^{3}}{(i+j-2)^{3}}$	$\sqrt{\frac{i+j-2}{i j}}$
q	-1	-0.0168	-0.0404	-0.0138	-3.390	0.040
s	5	-0.1667	0	-0.091	3.390	-0.040

Therefore, the minimum extreme value of TI for the second Zagreb index, GA index and the AZI index can be determined in the light of Theorems 2.3 and 3.1, and we can obtain the maximum extreme value of TI for the ABC index.

If f-benzenoid $F \in \Gamma_{m}$, then from the Eqs (2.3) and (2.6) and Lemma 1.1(ii) we have

$$
\begin{align*}
T I(F)= & \left(2 \psi_{23}-\psi_{33}\right) m+6\left(\psi_{33}-\psi_{23}\right) h-\left(2 \psi_{23}-\psi_{22}-\psi_{33}\right) b \\
& -5\left(2 \psi_{23}-\psi_{22}-\psi_{33}\right) . \tag{3.4}
\end{align*}
$$

Consequently, for f-benzenoids $U, V \in \Gamma_{m}$

$$
\begin{align*}
T I(U) & -T I(V)=6\left(\psi_{33}-\psi_{23}\right)(h(U)-h(V)) \tag{3.5}\\
& +\left(-2 \psi_{23}+\psi_{22}+\psi_{33}\right)(b(U)-b(V)) .
\end{align*}
$$

Set $u=6\left(\psi_{33}-\psi_{23}\right)$ and keep in mind that $q=2 \psi_{23}-\psi_{22}-\psi_{33}$. Then

$$
\begin{equation*}
T I(U)-T I(V)=u(h(U)-h(V))-q(b(U)-b(V)) \tag{3.6}
\end{equation*}
$$

It is noted that $\mathrm{Eq}(3.6)$ can be decided only by h, b and the signs of u and q. For any $F \in \Gamma_{m}$, We know that

$$
h(F) \leq m-1-\left\lceil\frac{1}{3}(2 m+\sqrt{4 m-31})\right\rceil
$$

and the equality can be achieved precisely when F is the f-spiral benzenoid F^{*} [41].
In [41], we proved that $n_{i}\left(F^{*}\right)=2 h-\lceil\sqrt{12(h-1)-3}\rceil$. But, $b\left(F^{*}\right) \neq 2$ may occur. It is noticeable if X in F^{*} is a CBS, F^{*} is a f-benzenoid satisfying that $b\left(F^{*}\right)=2$ or 3 . For the sake of simplicity, Let \mathbb{N} be the set of positive integers.

The CBS, $W=H\left(l_{1}, l_{2}, l_{3}, l_{4}, l_{5}, l_{6}\right)$ (as shown in Figure 18), can be completely determined by the positive integers $l_{1}, l_{2}, l_{3}, l_{4}[14]$.

Figure 18. The general form of a CBS. The parameters $l_{i} \geq 1, i=1,2, \cdots, 6$, count the number of hexagons on the respective side of CBS.

The following lemma gave requirements that there exists CBS with maximal n_{i} [53].
Lemma 3.1. [53] Let $h \in \mathbb{N}$. The conditions below are isovalent:
(a) There is a CBS W containing h hexagons and $2 h+1-\lceil\sqrt{12 h-3}\rceil$ number of internal vertices.
(b) There exist $l_{1}, l_{2}, l_{3}, l_{4} \in \mathbb{N}$ satisfying the following equation

$$
\left.\begin{array}{c}
h=l_{1} l_{3}+l_{1} l_{4}+l_{2} l_{3}+l_{2} l_{4}-l_{2}-l_{3} \tag{3.7}\\
-\frac{1}{2} l_{1}\left(l_{1}+1\right)-\frac{1}{2} l_{4}\left(l_{4}+1\right)+1 \\
\lceil\sqrt{12 h-3}\rceil=l_{1}+2 l_{2}+2 l_{3}+l_{4}-3
\end{array}\right\}
$$

If for $h \in \mathbb{N}, \mathrm{Eq}$ (3.7) has a solution $l_{1}, l_{2}, l_{3}, l_{4} \in \mathbb{N}$, then there is a CBS W meeting the conditions that $n_{i}(W)=n_{i}\left(T_{h}\right)$.

Now, we concentrate on the research for $T I$ of f-benzenoids. For a $h-1 \in \mathbb{N}$, supposing that the system below

$$
\left.\begin{array}{c}
h-1=l_{1} l_{3}+l_{1} l_{4}+l_{2} l_{3}+l_{2} l_{4}-l_{2}-l_{3} \tag{3.8}\\
-\frac{1}{2} l_{1}\left(l_{1}+1\right)-\frac{1}{2} l_{4}\left(l_{4}+1\right)+1 \\
\lceil\sqrt{12(h-1)-3}\rceil=l_{1}+2 l_{2}+2 l_{3}+l_{4}-3 \\
\exists l_{i} \in\left\{l_{1}, l_{2}, l_{3}, l_{4}, l_{5}, l_{6}\right\}, l_{i}=2
\end{array}\right\}
$$

has a solution $\left\{l_{1}, l_{2}, l_{3}, l_{4}\right\}$, then a CBS W_{h-1} containing $n_{i}\left(W_{h-1}\right)=2(h-1)+1-\lceil\sqrt{12(h-1)-3}\rceil$ number of internal vertices exists. Note that $l_{i}=2$ in system (3.8), i.e., there exists one fissure on the side of l_{i} of W_{h-1}, let u, w, v in Figure 1 represent the three vertices of this fissure. Now, we obtain an f-spiral benzenoid F_{1}^{*} in which $X=W_{h-1}$ and $Y=L_{1}$. It is obvious that

$$
\begin{equation*}
n_{i}\left(F_{1}^{*}\right)=2 h-\lceil\sqrt{12(h-1)-3}\rceil \tag{3.9}
\end{equation*}
$$

and $b\left(F_{1}^{*}\right)=2$. (as shown in Figure 19)

Figure 19. A f-spiral benzenoid F_{1}^{*} whose fragment X is a convex spiral benzenoid system W_{h-1}.

Theorem 3.2. Let $h-1 \in \mathbb{N}$ such that the $E q$ (3.8) has a solution, and $m=3 h+5+\lceil\sqrt{12(h-1)-3}\rceil$. Then for any $F \in \Gamma_{m}$

1) $T I\left(F_{1}^{*}\right) \geq T I(F)$, when $u \geq 0$ and $q \geq 0$;
2) $T I\left(F_{1}^{*}\right) \leq T I(F)$, when $u \leq 0$ and $q \leq 0$.

Proof. From Lemma 1.1 (ii) and Eq (3.9), we have

$$
m\left(F_{1}^{*}\right)=5 h+5-(2 h-\lceil\sqrt{12(h-1)-3}\rceil)=3 h+5+\lceil\sqrt{12(h-1)-3}\rceil
$$

and so

$$
h=m-1-\left\lceil\frac{1}{3}(2 m+\sqrt{4 m-31})\right\rceil .
$$

It is obvious that $b\left(F_{1}^{*}\right)=2$ and $b(F) \geq 2$ for any $F \in \Gamma_{m}$. Hence by Eq (3.6), we have

$$
\begin{aligned}
& T I(F)-T I\left(F_{1}^{*}\right)=u\left(h(F)-h\left(F_{1}^{*}\right)\right)-q\left(b(F)-b\left(F_{1}^{*}\right)\right) \\
= & u\left[h(F)-\left(m-1-\left[\frac{1}{3}(2 m+\sqrt{4 m-31})\right]\right)\right]-q[b(F)-2] .
\end{aligned}
$$

And by Eq (2.5)

$$
h(F) \leq m-1-\left\lceil\frac{1}{3}(2 m+\sqrt{4 m-31})\right\rceil .
$$

If $u \geq 0$ and $q \geq 0$ then $T I(F)-T I\left(F_{1}^{*}\right) \leq 0$, i.e., F_{1}^{*} achieves maximal $T I$ in Γ_{m}. Similarly, if $u \leq 0$ and $q \leq 0$ then $T I(F)-T I\left(F_{1}^{*}\right) \geq 0$, i.e., F_{1}^{*} obtains minimal $T I$ in Γ_{m}.
Example 2. The values of u and q for some famous TI are listed in the following Table 3:

Table 3. Values of u and q for six famous $T I$.

	$i j$	$\frac{1}{\sqrt{i j}}$	$\frac{2 \sqrt{i j}}{i+j}$	$\frac{1}{\sqrt{i+j}}$	$\frac{(i j)^{3}}{(i+j-2)^{3}}$	$\sqrt{\frac{i+j-2}{i j}}$
q	-1	-0.0168	-0.0404	-0.0138	-3.390	0.040
u	18	-0.449	0.121	-0.233	20.344	-0.242

Hence, by Theorem 3.1 we can deduce the minimal values of the Randć index and the the sumconnectivity index in f-spiral benzenoid F_{1}^{*} for those h such that $E q$ (3.8) holds.

Example 3. Take consideration of the generalized Randć index

$$
R_{\alpha}(G)=\sum_{1 \leq i \leq j \leq n-1} m_{i j}(i j)^{\alpha},
$$

where $\alpha \in \mathbb{R}$. Note that

$$
q=2\left(6^{\alpha}\right)-4^{\alpha}-9^{\alpha}=-4^{\alpha}\left(\left(\frac{3}{2}\right)^{\alpha}-1\right)^{2} \leq 0
$$

for all $\alpha \in \mathbb{R}$. Moreover, $s=9^{\alpha}-4^{\alpha} \geq 0$ if and only if $\alpha \geq 0$ if and only if $u=6\left(9^{\alpha}-6^{\alpha}\right) \geq 0$. Hence, by Theorem 3.1, the minimal value of $R_{\alpha}(G)$ is obtained for all $\alpha \geq 0$, and for any $\alpha \leq 0$, the minimal value of $R_{\alpha}(G)$ can be attained by the f-spiral benzenoid F_{1}^{*} for those h such that Eq (3.8) holds.

4. Conclusions

This work investigates extremum $T I$ over the collection of f-benzenoids having same number of edges. In practical terms, there are many other types of very useful topological indices for instance graph energy [58-62], Wiener index [63], Randić energy [64], Wiener polarity index [65], incidence energy [66], Harary index [67], entropy measures [68,69] and HOMO-LUMO index [70]. So, determining these topological indices for f-benzenoids is going to be extraordinary fascinating.

It is noted that the current framework is for studying topological indices of deterministic networks. But random networks would be a very promising direction. In [71,72], the distance Estrada index of random graphs was discussed, and the author went deeply into (Laplacian) Estrada index for random interdependent graphs. So, studying VDB topological indices of random and random interdependent graphs is another interesting problem.

Acknowledgments

This work was supported by Ningbo Natural Science Foundation (No. 2021J234). The authors are very grateful to anonymous referees and editor for their constructive suggestions and insightful comments, which have considerably improved the presentation of this paper.

Conflict of interest

The authors declare there is no conflict of interest.

References

1. J. Devillers, A. T. Balaban, Topological Indices and Related Descriptors in QSAR and QSPR, Gordon \& Breach, NewYork, 1999. https://doi.org/10.1021/ci010441h
2. R. Todeschini, V. Consonni, Molecular Descriptors for Chemoinformatics (2 volumes), WileyVCH, Weinheim, Germany, 2009. https://doi.org/10.1002/9783527628766
3. I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total p-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972), 535-538. https://doi.org/10.1016/0009-2614(72)85099-1
4. J. Rada, O. Araujo, I. Gutman, Randić index of benzenoid systems and phenylenes, Croat. Chem. Acta, 74 (2004), 225-235. https://doi.org/10.1111/j.1746-1561.2004.tb07937.x
5. J. Rada, R. Cruz, I. Gutman, Vertex-degree-based topological indices of catacondensed hexagonal systems, Chem. Phys. Lett., 572 (2013), 154-157. https://doi.org/10.1016/j.amc.2016.10.015
6. M. Randić, On characterization of molecular branching, J. Am. Chem. Soc., 97 (1975), 6609-6615. https://doi.org/10.1002/qua. 560140823
7. D. Vukičević, M. Gašperov, Bond aditive mdelling 1. Ariatic indices, Croat. Chem. Acta, $\mathbf{8 3}$ (2010), 243-260.
8. I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem., 86 (2021), 11-16. https://doi.org/10.1016/j.marchem.2007.11.002
9. I. Redžepovic̀, Chemical applicability of Sombor indices, J. Serb. Chem. Soc., 86 (2021), 445-457. https://doi.org/10.2298/JSC201215006R
10. K. Das, A. Çevik, I. Cangul, Y. Shang, On Sombor index, Symmetry, 13 (2021), 1-12. https://doi.org/10.3390/sym13010140
11. Y. Mao, K. C. Das, Steiner Gutman index, MATCH Commun. Math. Comput. Chem., 79 (2018), 779-794.
12. Z. Wang, Y. Mao, K. Das, Y. Shang, Nordhaus-Gaddum-Type results for the Steiner Gutman index of graphs, Symmetry, 12 (2020), 1-14. https://doi.org/10.3390/sym12101711
13. Y. Shang, Sombor index and degree-related properties of simplicial network, Appl. Math. Comput., 419 (2022), 126881. https://doi.org/10.1016/j.amc.2021.126881
14. R. Cruz, I. Gutman, J. Rada, Convex hexagonal systems and their topological indices, MATCH Commun. Math. Comput. Chem., 68 (2012), 97-108. https://doi.org/10.6060/mhc2012.121104s
15. R. Cruz, H. Giraldo, J. Rada, Extremal values of vertex-degree topological indices over hexagonal systems, MATCH Commun. Math. Comput. Chem., 70 (2013), 501-512. https://doi.org/10.1016/j.marchem.2007.11.002
16. H. Deng, J. Yang, F. Xia, A general modeling of some vertex-degree based topological indices in benzenoid systems and phenylenes, Comput. Math. Appl., 61 (2011), 3017-3023. https://doi.org/10.1016/j.camwa.2011.03.089
17. E. Estrada, L. Torres, L. Rodríguez, I. Gutman, An atom-bond connectivity index: modelling the enthalpy of formation of alkanes, Indian J. Chem., 37A (1998), 849-855.
18. B. Furtula, A. Graovac, D. Vukičević, Augmented Zagreb index, J. Math. Chem., 48 (2010), 370380. https://doi.org/10.1007/s 10910-010-9677-3
19. B. Furtula, I. Gutman, M. Dehmer, On structure-sensitivity of degree-based topological indices, Appl. Math. Comput., 219 (2013), 8973-8978. https://doi.org/10.1016/j.amc.2013.03.072
20. I. Gutman, On discriminativity of vertex degree based indices, Iranian J. Math. Chem., 3 (2012), 95-101. https://doi.org/10.1016/j.marchem.2007.11.002
21. I. Gutman, B. Furtula, Vertex-degree-based molecular structure descriptors of benzenoid systems and phenylenes, J. Serb. Chem. Soc., 77 (2012), 1031-1036. https://doi.org/10.2298/JSC111212029G
22. F. Li, X. Li, H. Broersma, Spectral properties of inverse sum indeg index of graphs, J. Math. Chem., 58 (2020), 2108-2139. https://doi.org/10.1007/s10910-020-01170-x
23. F. Li, Q. Ye, H. Broersma, R. Ye, Sharp upper bounds for augmented zagreb index of graphs with fixed parameters, MATCH Commun. Math. Comput. Chem., 85 (2021), 257-274.
24. D. Vukičević, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem., 46 (2009), 1369-1376. https://doi.org/10.1007/s10910-009-9520-x
25. L. Zhong, The harmonic index for graphs, Appl. Math. Lett., 25 (2012), 561-566. https://doi.org/10.1016/j.aml.2011.09.059
26. B. Zhou, N. Trinajstić, On a novel connectivity index, J. Math. Chem., 46 (2009), 1252-1270. https://doi.org/10.1007/s10910-008-9515-z
27. I. Gutman, B. Furtula, Recent Results in the Theory of Randić Index, University of Kragujevac, Kragujevac, 2008.
28. I. Gutman, B. Furtula, Novel Molecular Structure Descriptors-Theory and Applications I, University of Kragujevac, Kragujevac, 2010. https://doi.org/10.1016/j.amc.2020.125757
29. X. Li, I. Gutman, Mathematical Aspects of Randić-type Molecular Structure Descriptors, University of Kragujevac, Kragujevac, 2006.
30. E. Clar, Polycyclic Hydrocarbons, Academic press, London, 1964. https://doi.org/10.1007/978-3-662-01665-7
31. I. Gutman, Kekulé structures in fluoranthenes, Z. Naturforsch. A, 65 (2010), 473-476. https://doi.org/10.1515/zna-2010-0513
32. I. Gutman, J. Durdević, Fluoranthene and its congeners-A graph theoretical study, MATCH Commun. Math. Comput. Chem., 60 (2008), 659-670. https://doi.org/10.1016/j.marchem.2007.11.002
33. A. Necula, L. T. Scott, High temperature behavior of alternant and nonalternant polycyclic aromatic hydrocarbons, J. Anal. Appl. Pyrol., 54 (2000), 65-87. https://doi.org/10.1016/S0165-2370(99)00085-6
34. S. J. Cyvin, Graph-theoretical studies on fluoranthenoids and fluorenoids. Part 1, J. Mol. Struct. (Theochem), 262 (1992), 219-231. https://doi.org/10.1016/0166-1280(92)851107
35. S. J. Cyvin, I. Gutman, Kekulé structures in benzenoid hydrocarbons, in Lecture Notes in Chemistry, Springer-Verlag Berlin (Deutschland), 1988. https://doi.org/10.1007/978-3-662-00892-8
36. V. Gineityte, Perturbative analogue for the concept of conjugated circuits in benzenoid hydrocarbons, MATCH Commun. Math. Comput. Chem., 72 (2014), 39-73. https://doi.org/10.1016/j.marchem.2007.11.002
37. I. Gutman, S. J. Cyvin, Introduction to the Ttheory of Benzenoid Hydrocarbons, Spriger-Verlag, Berlin, 1990.
38. J. Kovic, How to obtain the number of hexagons in a benzenoid system from its boundary edges code, MATCH Commun. Math. Comput. Chem., 72 (2014), 27-38.
39. J. Kovic, T. Pisanski, A. T. Balaban, P. W. Fowler, On symmetries of benzenoid systems, MATCH Commun. Math. Comput. Chem., 72 (2014), 3-26.
40. F. Li, Q. Ye, Second order Randić index of fluoranthene-type benzenoid systems, Appl. Math. Comput., 268 (2015), 534-546. https://doi.org/10.1016/j.amc.2015.06.056
41. F. Li, Q. Ye, The general connectivity indices of fluoranthene-type benzenoid systems, Appl. Math. Comput., 273 (2016), 897-911. https://doi.org/10.1016/j.amc.2015.10.050
42. L. Berrocal, A. Olivieri, J. Rada, Extremal values of VDB topological indices over hexagonal systems with fixed number of vertices, Appl. Math. Comput., 243 (2014), 176-183. https://doi.org/10.1016/j.amc.2014.05.112
43. I. Gutman, O. Araujo, D. A. Morales, Bounds for the Randić connectivity index, J. Chem. Inf. Comput. Sci., 40 (2000), 572-579. https://doi.org/10.1021/ci990095s
44. V. Kraus, M. Dehmer, M. Schutte, On sphere-regular graphs and the extremality of informationtheoretic network measures, MATCH Commun. Math. Comput. Chem., 70 (2013), 885-900. https://doi.org/10.1155/2013/593856
45. F. Li, Q. Ye, H. Broersma, R. Ye, X. Zhang, Extremality of VDB topological indices over f-benzenoids with given order, Appl. Math. Comput., 393 (2021), 125757. https://doi.org/10.1016/j.amc.2020.125757
46. F. Li, H. Broserma, J. Rada, Y. Sun, Extremal benzenoid systems for two modified versions of the Randić index, Appl. Math. Comput., 337 (2018), 14-24. https://doi.org/10.1016/j.amc.2018.05.021
47. F. Li, Q. Ye, J. Rada, The augmented Zageb indices of fluoranthene-type benzenoid systems, Bull. Malays. Math. Sci. Soc., 42 (2019), 1119-1141. https://doi.org/10.1007/s40840-017-0536-2
48. X. Li, Y. Shi, L. Zhong, Minimum general Randić index on chemical trees with given order and number of pendent vertices, MATCH Commun. Math. Comput. Chem., 60 (2008), 539-554.
49. X. Li, Y. Yang, Sharp bounds for the general Randić index, MATCH Commun. Math. Comput. Chem., 51 (2004), 155-166.
50. J. Palacios, A resistive upper bound for the ABC index, MATCH Commun. Math. Comput. Chem., 72 (2014), 709-713.
51. J. Rada, Bounds for the Randic index of catacondensed systems, Util. Math., 62 (2002), 155-162.
52. J. Rada, Vertex-degree-based topological indices of hexagonal systems with equal number of edges, Appl. Math. Comput., 296 (2017), 270-276. http://dx.doi.org/10.1016/j.amc.2016.10.015
53. J. Rada, R. Cruz, I. Gutman, Benzenoid systems with extremal vertex-degree-based topological indices, MATCH Commun. Math. Comput. Chem., 72 (2014), 125-136.
54. R. Wu, H. Deng, The general connectivity indices of benzenoid systems and phenylenes, MATCH Commun. Math. Comput. Chem., 64 (2010), 459-470. https://doi.org/10.1166/jctn.2011.1896
55. Q. Ye, F. Li, R. Ye, Extremal values of the general Harmonic index and general sum-connectivity index of f-benzenoids, Polycycl. Aroma. Comp., 42 (2022), 2815-2833. https://doi.org/10.1080/10406638.2020.1852275
56. S. Hosseini, M. Ahmadi, I. Gutman, Kragujevac trees with minimal atom-bond connectivity index, MATCH Commun. Math. Comput. Chem., 71 (2014), 5-20.
57. F. Harary, H. Harborth, Extremal animals, J. Comb. Inf. Syst. Sci., 1 (1976), 1-8.
58. S. Ji, X. Li, Y. Shi, The extremal matching energy of bicyclic graphs, MATCH Commun. Math. Comput. Chem., 70 (2013), 697-706. https://doi.org/10.1109/DCABES.2013.52
59. F. Li, Q. Ye, H. Broersma, Some new bounds for the inverse sum indeg energy of graphs, Axioms, 11 (2022), 243. https://doi.org/10.3390/axioms11050243
60. X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012. https://doi.org/10.1007/978-1-4614-4220-2
61. X. Li, Y. Shi, M. Wei, J. Li, On a conjecture about tricyclic graphs with maximal energy, MATCH Commun. Math. Comput. Chem., 72 (2014), 183-214.
62. Q. Ye, F. Li, ISI-equienergetic graphs, Axioms, 11 (2022), 372. https://doi.org/10.3390/axioms11080372
63. M. Knor, B. Lužar, R. Škrekovski, I. Gutman, On Wiener index of common neighborhood graphs, MATCH Commun. Math. Comput. Chem., 72 (2014), 321-332.
64. K. Das, S. Sorgun, On Randić energy of graphs, MATCH Commun. Math. Comput. Chem., 72 (2014), 227-238.
65. J. Ma, Y. Shi, J. Yue, The Wiener polarity index of graph products, Ars Comb., 116 (2014), 235244.
66. S. B. Bozkurt, D. Bozkurt, On incidence energy, MATCH Commun. Math. Comput. Chem., 72 (2014), 215-225.
67. M. Azari, A. Iranmanesh, Harary index of some nano-structures, MATCH Commun. Math. Comput. Chem., 71 (2014), 373-382.
68. S. Cao, M. Dehmer, Y. Shi, Extremality of degree-based graph entropies, Inf. Sci., 278 (2014), 22-33. https://doi.org/10.1016/j.ins.2014.03.133
69. Z. Chen, M. Dehmer, F. Emmert-Streib, Y. Shi, Entropy bounds for dendrimers, Appl. Math. Comput., 242 (2014), 462-472. https://doi.org/10.1016/j.amc.2014.05.105
70. X. Li, Y. Li, Y. Shi, I. Gutman, Note on the HOMO-LUMO index of graphs, MATCH Commun. Math. Comput. Chem., 70 (2013), 85-96. https://doi.org/10.1155/2013/397382
71. Y. Shang, Distance Estrada index of random graphs, Linear Multilinear Algebra, 63 (2015), 466471. https://doi.org/10.1080/03081087.2013.872640
72. Y. Shang, Further results on distance Estrada index of random graphs, Bull. Malays. Math. Sci. Soc., 41 (2018), 537-544. https://doi.org/10.1007/s40840-016-0306-6
© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
