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Abstract: A two-dimensional diffusion process is controlled until it enters a given subset of R2. The
aim is to find the control that minimizes the expected value of a cost function in which there are no
control costs. The optimal control can be expressed in terms of the value function, which gives the
smallest value that the expected cost can take. To obtain the value function, one can make use of
dynamic programming to find the differential equation it satisfies. This differential equation is a non-
linear second-order partial differential equation. We find explicit solutions to this non-linear equation,
subject to the appropriate boundary conditions, in important particular cases. The method of similarity
solutions is used.
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1. Introduction

We consider a two-dimensional controlled diffusion process (X1(t), X2(t)) defined by the following
system of stochastic differential equations:

dX1(t) = f1[X1(t)]dt + b1[X1(t)]u2(t)dt + {v1[X1(t)]}1/2 dB1(t), (1.1)
dX2(t) = f2[X2(t)]dt + b2[X2(t)]u(t)dt + {v2[X2(t)]}1/2 dB2(t), (1.2)

where fi(·) is a real function, bi(·) , 0, u(t) is the control variable, vi(·) > 0 and {Bi(t), t ≥ 0} is a
standard Brownian motion, for i = 1, 2. The two Brownian motions are assumed to be independent.
The functions fi(·) and vi(·) are respectively the infinitesimal mean and variance of the uncontrolled
process, for i = 1, 2. The functions b1(·) and b2(·) are control coefficients or parameters.

Let
T (x1, x2) = inf{t > 0 : (X1(t), X2(t)) ∈ D | (X1(0) = x1, X2(0) = x2) < D}, (1.3)

http://http://www.aimspress.com/journal/MBE
http://dx.doi.org/10.3934/mbe.2023239


5160

where D is a subset of R2. The random variable T is called a first-passage time in probability theory.
The aim is to minimize the expected value of the cost function

J(x1, x2) =

∫ T (x1,x2)

0
{q[X1(t), X2(t)] + λ} dt + K[X1(T ), X2(T )], (1.4)

where q(·, ·) ≥ 0, λ is a real constant and K(·, ·) is a general termination cost function. This type of
stochastic optimal control problem is known as a homing problem; see Whittle [1, p. 289] or Whittle
[2, p. 222]. Notice however that there are no control costs. Therefore, the above problem is actually
an extension of the classic homing problem. Moreover, we see in Eqs (1.1) and (1.2) that the control
variable does not have the same effect on each component of the two-dimensional diffusion process
(X1(t), X2(t)). Notice also that the problem is time-invariant, because the functions fi(·), bi(·) and vi(·),
for i = 1, 2, as well as q(·, ·) and K(·, ·) do not depend explicitly on t.

Recent papers on homing problems include the following ones: Kounta and Dawson [3], Makasu
[4] and Lefebvre [5]. The original homing problem has been extended in various ways: Lefebvre and
Kounta [6] replaced the diffusion processes by discrete-time Markov chains, Lefebvre and Moutassim
[7] considered the problem for jump-diffusion processes, and Lefebvre [8] treated the case of controlled
autoregressive processes.

There are some papers on optimization problems for which the final time is random. However,
this final time is not a first-passage time, as in homing problems. Such problems were considered, in
particular, in Yan and Koo [9], Rodosthenous and Zhang [10], Yun and Choi [11], Khatab et al. [12]
and Yu [13].

Homing problems are sometimes expressed as dynamical games; see Lefebvre [14]. It is possible
to find papers on differential games with a random time horizon; see, for instance, Marı́n-Solano and
Shevkoplyas [15] and Zaremba et al. [16]. However, in these papers, the final time is again not a
first-passage time.

Next, we define the value function by

F(x1, x2) = inf
u(t)

0≤t≤T (x1,x2)

E[J(x1, x2)]. (1.5)

That is, F(x1, x2) is the expected cost obtained by using the optimal control in the interval [0,T ]. In
Section 2, we will make use of dynamic programming to find the differential equation it satisfies. This
differential equation is a non-linear second-order partial differential equation (PDE). We will see that
the optimal control u∗ can be expressed in terms of the value function as follows:

u∗ = −
b2(x2)

2b1(x1)
Fx2(x1, x2)
Fx1(x1, x2)

. (1.6)

In Section 3, we will find explicit solutions to the non-linear PDE satisfied by the value function,
subject to the appropriate boundary conditions, in important particular cases. The method of similarity
solutions will be used. Finally, some final remarks will be made in Section 4.

2. Dynamic programming

Bellman’s principle of optimality states that “an optimal policy has the property that, whatever
the initial state and the initial decision, it must constitute an optimal policy with regards to the state
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resulting from the first decision”. Hence, any remaining part of an optimal policy is also optimal.
Therefore, we can write that

F(x1, x2) = inf
u(t)

0≤t≤∆t

E
[ ∫ ∆t

0
{q[X1(t), X2(t)] + λ} dt (2.1)

+ F
(
x1 + [ f1(x1) + b1(x1)u2(0)]∆t + v1/2

1 (x1)B1(∆t),
x2 + [ f2(x2) + b2(x2)u(0)]∆t + v1/2

2 (x2)B2(∆t)
)

+ o(∆t)
]
.

We have ∫ ∆t

0
{q[X1(t), X2(t)] + λ} dt ' [q(x1, x2) + λ]∆t. (2.2)

Moreover, a standard Brownian motion {B(t), t ≥ 0} is such that

E[B(∆t)] = 0 and E
[
B2(∆t)

]
= Var[B(∆t)] = ∆t. (2.3)

It follows, assuming that F(x1, x2) is twice differentiable with respect to x1 and x2 and making use
of Taylor’s formula, that

F(x1, x2) = inf
u(t)

0≤t≤∆t

{
[q(x1, x2) + λ]∆t + F(x1, x2) (2.4)

+ [ f1(x1) + b1(x1)u2(0)]∆t Fx1 +
1
2

v1(x1)∆t Fx1,x1

+ [ f2(x2) + b2(x2)u(0)]∆t Fx2 +
1
2

v2(x2)∆t Fx2,x2

+ o(∆t)
}
.

Finally, dividing each side of the previous equation by ∆t and letting ∆t decrease to zero, we obtain
the following dynamic programming equation:

0 = inf
u(0)

{
q(x1, x2) + λ (2.5)

+ [ f1(x1) + b1(x1)u2(0)]Fx1 +
1
2

v1(x1)Fx1,x1

+ [ f2(x2) + b2(x2)u(0)]Fx2 +
1
2

v2(x2)Fx2,x2

}
.

Differentiating Eq (2.5) with respect to u(0), we find, as mentioned in the Introduction section, that
the optimal control is

u∗(0) = −
b2(x2)

2b1(x1)
Fx2(x1, x2)
Fx1(x1, x2)

. (2.6)

Then, substituting the above expression into Eq (2.5), we can state the following proposition.
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Proposition 2.1. The value function F(x1, x2) satisfies the second-order, non-linear PDE

0 = q(x1, x2) + λ −
b2

2(x2)
4b1(x1)

F2
x2

Fx1

+

2∑
i=1

{
fi(xi)Fxi +

1
2

vi(xi)Fxi xi

}
, (2.7)

subject to the boundary condition

F(x1, x2) = K(x1, x2) if (x1, x2) ∈ D. (2.8)

In the next section, explicit solutions to (2.7), (2.8) will be obtained in important particular cases.
The method of similarity solutions will be used.

3. Explicit solutions

Case I. The first particular case that we consider is the one for which fi(·) ≡ 0, bi(·) ≡ 1, vi(·) ≡ 1, for
i = 1, 2, q(·, ·) ≡ 0, λ = 1, K(·, ·) ≡ 0 and we choose the first-passage time

T1(x1, x2) = inf{t > 0 : X1(t) − X2(t) = k1 or k2 | k1 < x1 − x2 < k2}, (3.1)

where xi = Xi(0) for i = 1, 2. The diffusion process (X1(t), X2(t)) is then defined by the stochastic
differential equations

dX1(t) = u2(t)dt + dB1(t), (3.2)
dX2(t) = u(t)dt + dB2(t). (3.3)

Thus, (X1(t), X2(t)) is a controlled two-dimensional standard Brownian motion. This case is ar-
guably the simplest non-degenerate two-dimensional problem that can be examined. Equation (2.7)
reduces to

0 = 1 −
1
4

F2
x2

Fx1

+
1
2

Fx1 x1 +
1
2

Fx2 x2 , (3.4)

subject to the boundary conditions

F(x1, x2) = 0 if x1 − x2 = k1 or k2. (3.5)

To solve (3.4), (3.5), we will make use of the method of similarity solutions. We look for a solution
of the form

F(x1, x2) = H(w), (3.6)

where w := x1 − x2 is the similarity variable. For the method to work, we must be able to express both
the Eq (3.4) and the boundary conditions (3.5) in terms of w. We find that Eq (3.4) is transformed into
the second-order linear ordinary differential equation

0 = 1 −
1
4

H′(w) + H′′(w), (3.7)
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while the boundary conditions become

H(k1) = H(k2) = 0. (3.8)

The general solution of Eq (3.7) can be expressed as follows:

H(w) = c1 ew/4 + 4w + c2. (3.9)

The particular solution that satisfies the boundary conditions (3.8) is

H(w) = 4w + 4
k1 ek2/4 − k2 ek1/4 − (k1 − k2)ew/4

ek1/4 − ek2/4
(3.10)

for k1 ≤ w ≤ k2. Let us choose k1 = 0 and k2 = 1. Then, the above solution reduces to

H(w) = 4w + 4
ew/4 − 1
e1/4 − 1

for 0 ≤ w ≤ 1. (3.11)

It follows that the value function F(x1, x2) is given by

F(x1, x2) = 4(x1 − x2) + 4
e(x1−x2)/4 − 1

e1/4 − 1
(3.12)

for (x1, x2) ∈ R2 such that 0 ≤ x1 − x2 ≤ 1.
Next, we deduce from Eq (2.6) and the fact that Fx1 = H′(w) = −Fx2 that the optimal control in this

particular problem is actually a constant:

u∗(0) ≡
1
2
. (3.13)

Hence, the optimally controlled diffusion process satisfies

dX∗1(t) =
1
4

dt + dB1(t), (3.14)

dX∗2(t) =
1
2

dt + dB2(t). (3.15)

That is, {X∗1(t), t ≥ 0} (respectively {X∗2(t), t ≥ 0}) is a Wiener process with drift parameter 1/4
(resp. 1/2) and variance parameter 1. Since the two processes are independent, we can state that the
one-dimensional process {X∗(t), t ≥ 0} defined by

X∗(t) = X∗1(t) − X∗2(t) for t ≥ 0 (3.16)

is a Wiener process with drift parameter µ = −1/4 and variance parameter σ2 = 2.
Remarks. (i) With the choices q(·, ·) ≡ 0, λ = 1 and K(·, ·) ≡ 0 that we made above, the cost function
J(x1, x2) defined in Eq (1.4) reduces to T1(x1, x2). Therefore, the aim is to make the two-dimensional
controlled process leave the continuation region as soon as possible. Even though there are no control
costs, we saw that the optimal solution consists in choosing a (finite) constant control.
(ii) Let T ∗1(x1, x2) be the first-passage time when we use the optimal control. We may write that
F(x1, x2) = E[T ∗1(x1, x2)]. The function m(w) := E[T ∗1(w = x1 − x2)] satisfies the second-order lin-
ear ordinary differential equation

m′′(w) −
1
4

m′(w) = −1, (3.17)
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subject to the boundary conditions m(0) = m(1) = 0. We then deduce from Eqs (3.7) and (3.8) (with
k1 = 0 and k2 = 1) that the functions H(w) and m(w) are the same.

Case II. Assume now that fi(·) ≡ 0, bi[Xi(t)] = Xi(t), vi[Xi(t)] = X2
i (t), for i = 1, 2, q(·, ·) ≡ 0, λ = 1 and

K(·, ·) ≡ 0. Moreover, we define

T2(x1, x2) = inf
{

t > 0 :
X2

1(t)
X2

2(t)
= k1 or k2

∣∣∣∣∣ k1 <
x2

1

x2
2

< k2

}
, (3.18)

where k1 > 0. The controlled diffusion process (X1(t), X2(t)) is such that

dX1(t) = X1(t)u2(t)dt + X1(t)dB1(t), (3.19)
dX2(t) = X2(t)u(t)dt + X2(t)dB2(t). (3.20)

This time, (X1(t), X2(t)) is a controlled two-dimensional geometric Brownian motion. A geometric
Brownian motion {Y(t), t ≥ 0} can be expressed as the exponential of a Wiener process. Therefore, if
we assume that Y(0) > 0, then we can state that Y(t) > 0 for any t ≥ 0.

Equation (2.7) takes the form

0 = 1 −
x2

2

4 x1

F2
x2

Fx1

+
1
2

x2
1 Fx1 x1 +

1
2

x2
2 Fx2 x2 , (3.21)

and is subject to the boundary conditions

F(x1, x2) = 0 if x2
1/x2

2 = k1 or k2. (3.22)

Based on the boundary conditions, we now look for a solution of the form F(x1, x2) = H(w = x2
1/x2

2).
We have

Fx1 = H′(w)(2 x1/x2
2), Fx2 = H′(w)(−2 x2

1/x3
2), (3.23)

Fx1 x1 = H′′(w)(2 x1/x2
2)2 + H′(w)(2/x2

2) (3.24)

and
Fx2 x2 = H′′(w)(−2 x2

1/x3
2)2 + H′(w)(6 x2

1/x4
2). (3.25)

Substituting these expressions into Eq (3.21), we find that it becomes

0 = 1 +
7
2

wH′(w) + 4w2 H′′(w). (3.26)

The boundary conditions are simply H(k1) = H(k2) = 0, as in Case I.
The general solution of Eq (3.26) is

H(w) = c1 w1/8 + 2 ln(w) + c2. (3.27)

With k1 = 1 and k2 = 2, we find that

H(w) =
2 ln(2)
21/8 − 1

(1 − w1/8) + 2 ln(w) for 1 ≤ w ≤ 2. (3.28)
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Finally, from the expressions in Eq (3.23), we calculate

u∗(0) = −
x2

2 x1

(−2 x2
1/x3

2)

(2 x1/x2
2)
≡

1
2
. (3.29)

Thus, the optimal control is again a constant. It follows that

dX∗1(t) =
1
4

X∗1(t)dt + X∗1(t)dB1(t), (3.30)

dX∗2(t) =
1
2

X∗2(t)dt + X∗2(t)dB2(t). (3.31)

The optimally controlled process {X∗i (t), t ≥ 0} is also a geometric Brownian motion, for i = 1, 2.
We can write that X∗1(t) = eZ1(t), where {Z1(t), t ≥ 0} is a Wiener process with drift parameter −1/4
and variance parameter 1. Similarly, X∗2(t) = eZ2(t), where {Z2(t), t ≥ 0} is a Wiener process with drift
parameter 0 and variance parameter 1. Hence, by independence,

W(t) :=
[X∗1(t)]2

[X∗2(t)]2 = eZ(t), (3.32)

where {Z(t), t ≥ 0} is a Wiener process with drift parameter −1/2 and variance parameter 8. The
infinitesimal parameters of {W(t), t ≥ 0} are given by 7w/2 and 8w2. Therefore, we may write that the
function m(w) := E[T ∗2(w = x2

1/x2
2)] satisfies the second-order linear ordinary differential equation

4m′′(w) +
7
2

m′(w) = −1, (3.33)

subject to m(1) = m(2) = 0, from which we may conclude that the functions m(w) and H(w) coincide,
as required.

Case III. To conclude this section, we will present a case when the optimal control is not a con-
stant. Assume, in Case II, that b1[X1(t)] = X2

1(t), b2[X2(t)] = X3/2
2 (t), λ = 0 and K(X1(T2), X2(T2)) =

X2
1(T2)/X2

2(T2). Hence, there is only a termination cost. The aim is now to make the controlled process
(X1(t), X2(t)) leave the continuation region through a given part of its boundary. Indeed, the optimizer
must try to make X2

1(t)/X2
2(t) take on the value k1 before k2 (> k1).

We find that Eq (3.26) becomes

0 =

(
−

1
2

w1/2 + 4w
)

H′(w) + 4w2 H′′(w), (3.34)

subject to H(ki) = ki, for i = 1, 2. The general solution of the above equation is

H(w) = c1 + c2 Ei1

(
1

4
√

w

)
, (3.35)

where Ei1 is an exponential integral function defined by

Ei1(z) =

∫ ∞

1
e−vz v−1 dv. (3.36)
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The particular solution that satisfies the boundary conditions H(1) = 1 and H(2) = 2 is

H(w) =
−Ei1

(
1

4
√

w

)
+ 2Ei1

(
1
4

)
− Ei1

( √
2

8

)
Ei1

(
1
4

)
− Ei1

( √
2

8

) for 1 ≤ w ≤ 2. (3.37)

We can now calculate the optimal control. We find that

u∗(0) =

√
x2

2 x1
. (3.38)

We notice that not only the optimal control is not a constant, it is not a function of w := x2
1/x2

2 either.
The optimally controlled process (X∗1(t), X∗2(t)) satisfies the following stochastic differential equations:

dX∗1(t) =
1
4

X∗2(t)dt + X∗1(t)dB1(t), (3.39)

dX∗2(t) =

[
X∗2(t)

]2

2X∗1(t)
dt + X∗2(t)dB2(t). (3.40)

Remark. Another case for which the optimal control is not a constant is the one when we replace
b1[X1(t)] by 1 and b2[X2(t)] by

√
X2(t) in Case III. This time, the value function is

F(x1, x2) =
Ei1

(
−

x1
4 x2

)
+ Ei1

(
−
√

2
4

)
− 2Ei1

(
−1

4

)
Ei1

(
−
√

2
4

)
− Ei1

(
−1

4

) (3.41)

for x1 > 0 and x2 > 0 such that 1 ≤ x2
1/x2

2 ≤ 2. Finally, the optimal control is given by

u∗(0) =
x1

2
√

x2
. (3.42)

4. Conclusions

In this paper, a stochastic optimal control problem for a two-dimensional diffusion process
(X1(t), X2(t)) has been considered. This problem is an extension of the so-called homing problems,
in which the final time, rather than being either a fixed constant or infinity, is a random variable. The
optimizer stops controlling the processes the first time a certain event occurs. Here, the cost function
was modified: there were no control costs. However, the control variable u(t) was assumed to influ-
ence each part of the controlled process differently; namely, the state dynamics are quadratic in u(t) for
X1(t), while they are linear in the case of X2(t).

In Section 2, we gave the PDE satisfied by the value function in the general case. Then, in Section 3,
we presented various particular cases for which we were able to obtain explicit and exact solutions
to the problems considered. The method of similarity solutions was used to solve the appropriate
equations. Although there are no control costs, the optimal control was never either identical to zero
or infinite.

When the method of similarity solutions fails, we could of course at least try to obtain numerical
solutions to any particular problem. However, the aim of this paper was to present exact analytical
solutions to important problems.

Mathematical Biosciences and Engineering Volume 20, Issue 3, 5159–5168.



5167

Acknowledgments

This research was supported by the Natural Sciences and Engineering Research Council of Canada
(NSERC). The author also wishes to thank the anonymous reviewers of this paper for their constructive
comments.

Conflict of interest

The author reports that there are no competing interests to declare.

References

1. P. Whittle, Optimization Over Time, Vol. I, Wiley, Chichester, 1982.

2. P. Whittle, Risk-Sensitive Optimal Control, Wiley, Chichester, 1990.

3. M. Kounta, N. J. Dawson, Linear quadratic Gaussian homing for Markov processes with regime
switching and applications to controlled population growth/decay, Methodol. Comput. Appl.
Probab., 23 (2021), 1155–1172. https://doi.org/10.1007/s11009-020-09800-2

4. C. Makasu, Homing problems with control in the diffusion coefficient, IEEE Trans. Autom.
Control, 67 (2022), 3770–3772. https://doi.org/10.1109/TAC.2022.3157077

5. M. Lefebvre, Minimizing or maximizing the first-passage time to a time-dependent boundary,
Optimization, 71 (2022), 387–401. https://doi.org/10.1080/02331934.2021.1914039

6. M. Lefebvre, M. Kounta, Discrete homing problems, Arch. Control Sci., 23 (2013), 5–18.
https://doi.org/10.2478/v10170-011-0039-6

7. M. Lefebvre, A. Moutassim, Exact solutions to the homing problem for a Wiener process with
jumps, Optimization, 70 (2021), 307–319. https://doi.org/10.1080/02331934.2019.1711084

8. M. Lefebvre, The homing problem for autoregressive processes, IMA J. Math. Control Inf., 39
(2022), 322–344. https://doi.org/10.1093/imamci/dnab047

9. Z. Yang, H. K. Koo, Optimal consumption and portfolio selection with early retirement option,
Math. Oper. Res., 43 (2018), 1378–1404. https://doi.org/10.1287/moor.2017.0909

10. N. Rodosthenous, H. Zhang, Beating the omega clock: an optimal stopping problem with random
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