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Abstract: This paper presents a mixed active controller (NNPDCVF) that combines cubic velocity 
feedback with a negative nonlinear proportional derivative to reduce the nonlinear vibrating behavior 
of a nonlinear dynamic beam system. Multiple time-scales method treatment is produced to get the 
mathematical solution of the equations for the dynamical modeling with NNPDCVF controller. This 
research focuses on two resonance cases which are the primary and 1/2 subharmonic resonances. 
Time histories of the primary system and the controller are shown to demonstrate the reaction with 
and without control. The time-history response, as well as the impacts of the parameters on the 
system and controller, are simulated numerically using the MATLAB program. Routh-Hurwitz 
criterion is used to examine the stability of the system under primary resonance. A numerical 
simulation, using the MATLAB program software, is obtained to show the time-history response, 
the effect of the parameters on the system and the controller. An investigation is done into how 
different significant effective coefficients affect the resonance’s steady-state response. The results 
demonstrate that the main resonance response is occasionally impacted by the new active feedback 
control's ability to effectively attenuate amplitude. Choosing an appropriate control Gaining quantity 
can enhance the effectiveness of vibration control by avoiding the primary resonance zone and 
unstable multi-solutions. Optimum control parameter values are calculated. Validation curves are 
provided to show how closely the perturbation and numerical solutions are related. 
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1. Introduction  

Unwanted vibrations have a detrimental impact on the functionality and, in certain severe 
circumstances, the structural integrity of machinery and other constructions. Establishing the 
conditions required to get rid of these undesirable operating states is essential in order to modify the 
modal properties of the applicable structural elements of the mechanical system. Basic structural 
components called beam structures are employed in both civil and mechanical structures. One of the 
main objectives in the structural design of beam constructions should be the capacity to minimize or 
lessen the degree of undesired vibrations. The dynamical properties of beam structures [1–3] are 
determined by their structures, geometrical parameters, and material properties. Beam structures 
frequently lack the required dynamic properties because they are typically made of homogeneous 
materials. In recent decades, there has been a lot of interest in the dynamic problems of structures 
subjected to moving loads [4–10]. The dynamics of multi-span bridges excited by a moving object 
with numerous degrees of freedom were studied by Marchesiello et al. [11]. Fryba [12] examined 
numerous straightforward moving-load issues in his monograph and offered analytical responses. 
Vibration control is a significant challenge, in addition to the dynamic modeling and analysis of civil 
and mechanical structures. Passive, semi-active, active, and hybrid vibration control methods have 
been developed [13–16]. 

Due to research showing that active control of structures is a more effective method than passive 
control [17,18], it has grown in popularity. For active structural control, there are numerous control 
algorithms based on control theory, such as PID control [13], optimal control [19], adaptive control [20,21], 
and intelligent control [22]. Due to the increasing speed of moving mass and structural flexibility, 
vibration control of beams subjected to a moving mass has recently received a lot of interest in both 
physics and engineering [23–26]. Since the analytical solution to the flexible structure model is 
commonly stated in modal space, independent modal space control is a key technique in the vibration 
control of flexible structures. The well-known phenomenon of spillover presents one of the major 
difficulties in the modal space control of flexible systems [27,28]. Positive position feedback (PPF) 
control is a simple and efficient control approach in practical applications [29,30] due to its 
fundamental property of being insensitive to spillover, or the capacity to regulate the target mode 
independently without affecting other uncontrolled modes.  

Optimal control in modal space is the most widely used method for reducing vibration in a beam 
caused by a moving mass [31,32]. It is anticipated that the regulated state can be established using all 
of the measured or estimated data. But it's likely that not all sensors will be installed in order to capture 
the whole set of states [33]. Modeling and measurement errors are inevitable in real-world 
implementations. Therefore, to correct modeling errors brought on by modal truncation and 
measurement errors, a robust control mechanism is required. A powerful, resilient control method that 
can handle both outside disturbances and modeling uncertainty is sliding mode control (SMC) [34,35]. 
Qiu et al. [36] created a type of discrete-time sliding mode control approach to lessen the vibration of 
a flexible plate. Bauomy and EL-Sayed [37–41] developed several constructed control techniques that 
were used to control harmful vibrations caused by various nonlinear dynamical systems.  

A novel magneto-electro-elastic (MEE) model of bi-directional (2D) functionally graded materials 
(FGMs) beams is developed for investigating the nonlinear dynamics [42]. The outcomes appear that 
the MEE materials significantly affect the asymmetric modes, which can further vary the mechanics 
of 2D FG beams. Furthermore, the three-directional (3D) functionally graded materials (FGMs) are 
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used to fabricate the slender beams to resist 3D loads and study the nonlinear mechanics to provide an 
insight reference for possible applications [43]. It is found that the three directional FG indexes can 
tune the mechanical performance of the beam, such as improving on the load-bearing capacity and 
enhancing in the flexibility of dynamic design, which is tremendously different from nonlinear 
behaviors of 2D and 1D FGMs beams. Besides, a novel model of bi-directional (2D) functionally 
graded materials (FGMs) nanobeams resting on the Pasternak foundation under the magneto-electro-
elastic (MEE) fields based on the Timoshenko beam theory is presented to investigate the dynamic 
interaction behavior [44]. Formerly, the mathematical model of the non-prismatic Timoshenko beam 
considering shear and bending deformations is developed [45]. The numerical analyses of forced 
vibrations of the beam show that its points oscillate in different manners depending on their relative 
position along the beam. Therefore, a novel fractional order PDμ control of lattice grid beam with 
piezoelectric fiber composite face sheets is proposed [46]. Consequently, it is proved that the fractional 
order PDμ control can reduce the vibration amplitude of lattice grid beam more significantly and more 
rapidly, by comparing its numerical results with those of the integer order PD algorithm and 
uncontrolled results. Also, a recently-developed metaheuristic method called Crystal Structure 
Algorithm (CryStAl) is used to achieve optimized vibration control in structural engineering [47]. At 
last, the nonlinear free and forced vibration of functionally graded strain gradient Timoshenko 
microbeam are analytically investigated [48]. The analytical mode shapes are then closely verified via 
numerical simulations and the effect of different parameters on the fundamental natural frequency of 
the beam is studied.  

The key goal of this research is to provide a new active controller strategy for removing high 
vibrations of the specified beams model via a suitable control technique.  

The new active control includes increasing the nonlinear parameters such as negative cubic 
velocity feedback and a nonlinear negative proportional derivative controller in order to further 
eliminate the potentially harmful vibrations of the related framework. The system is made more stable 
by the researched controller, which comprises NNPD plus CVF as a new nonlinear control approach 
(NNPDCVF). The analytical result received by using multiple-time scales technique process near two 
resonances of primary and 1/2 subharmonic responses of a dynamical beam with moving load. The 
comprehensive mathematical solutions, frequency response equations (FREs), and stability analysis 
with NNPDCVF process are obtained using the perturbation method. Numerical solution and effect of 
all parameters on the vibrating system and the controlled system are plotted and reported. The 
MATLAB software is used to simulate the impact of various parameters and the controller on the 
system. The validations of the analysis's time history and frequency response curves (FRCs), as well 
as the numerical results, were satisfied by comparing them. Before and after providing the controller 
in the two measured resonance cases, the system is numerically and graphically examined. The 
simulation outcomes give that the new controller NNPDCVF method is found to be the most effective 
at eliminating high vibrations and making the system more stable. Finally, numerical results are 
obtained that show an outstanding agreement per the analytical results. 

2. Governing equations and perturbation solution 

As indicated in Figure 1, the dynamic beam structure is subjected to the dynamic load P , which 
transfers along the longitudinal direction of the beam with a velocity V   within the novel active 
control method by a servomechanism. The beam's motion equation is given as follows [14]: 
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                 0 0( ) ( ) ( )                EI m c P x Vt M x a M x L a            (2.1) 

where the prime indicates the derivative with respect to x  and the dot indicates the derivative with 
respect to t ; E  is the Young’s modulus of the beam; I  is the moment of inertia of the cross-section; 

( , ) x t is the transverse displacement of the beam; m  is the mass per unit length of the beam; c  is the 

damping coefficient;   is the Dirac delta function and    is the derivative; L  is the span length of the 
beam; a   is the distance between the servohinge and the end of the beam; In order to balance the 
bending deformation of the beam under a moving load, a servomechanism is installed below the middle 

of the beam span to generate a control torque 0M . The working principle is to adjust the control spring 

to attain the desired control effect. The control torque is designated as: 

                     0 [ ( ) ( , ) (L , )]      M lK Kl u t l v a t l v a t                     (2.2) 

where K   remains the stiffness of the spring; l   stands the arm length of servomechanism; ( )u t  

remains the spring displacement caused by servomechanism, and   is the displacement of the spring. 

When ( ) 0u t , it is a passive control system.  

The transverse displacement (x, )v t   can be expressed in terms of the expansion using the 

Galerkin method: 

                               
1

(x, ) ( ) ( )


 
N

k k
k

v t q t x                             (2.3) 

where ( )kq t  is the generalized displacement; ( ) sin(k x/ L) k x   is the k-th mode shape; N   is the 

number of the shape functions used in the approximation. Substituting Eq (2.3) into Eq (2.1), 

multiplying both sides of the resulting equation by ( )k x  and integrating over the span of the beam, 

the j-th mode can be obtained as [14]: 

           2 0
2

4 ( )2
( ) 2 ( ) ( ) sin( ) cos(k a/ L)sin( / 2)

        k k k k k

k M tP
q t q t q t k t k

mL mL
   (2.4) 

where 
0

( ) (2 / ) ( , ) ( )  
L

k kq t L x t x dx is the beam displacement of the k -th mode,   is the damping 

ratio, 4 4 4 1/2[( / )( / )] k k L EI m is the natural angular frequency of the k -th mode, /  V L is the 

natural angular frequency, and 
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                      0
1,3,5,..

( ) [ ( ) 2 cos ( )]
 





    k
k

k k a
M t lK Kl u t l q t

L L
              (2.5) 

Only the fundamental mode is taken into account because the high order modes of motion barely affect 
bending displacement and the nonlinear features. The motion equation can therefore be found as 

                       2 3
0( ) ( ) ( ) sin( ) ( )       q t q t q t f t q t                      (2.6) 

 
The modified controlled system is 

          2 3 2
0( ) ( ) ( ) sin( ) ( )sin( ) ( ) ( ) ( )q t q t q t f t f q t t q t q t u t                  (2.7) 

where, 

2 2 4 2 4 2
1 0 1 1

0

( ) (2 / ) ( , ) ( ) , 2 cos , 2 , 2 / ( ), / ( ),
L a

q t L x t x dx Kl f P mL E L A
L

               

2 2/ ( ),E L A   A stands the cross-section area of the beam. ( )u t  is the active control force which 

consists of mixed of negative nonlinear proportional derivative (NNPD) and cubic velocity feedback 
(CVF) controller which called (NNPDCVF) controller that is in the form 

3 2 2 3
1 1 1 2 3 1( ) ( ( ) d ( ) ( ) ( ) ( ) ( ) ( ) G ( ))            u t p q t q t q t q t q t q t q t q t  

 

Figure 1. The simple controlled beam structure model. 
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3. NNPDCVF influences of various resonance cases of the framework 

In this section, the new controller NNPDCVF method will be studied with different effective 
resonance cases that have acted on the vibrations of the system. The primary, internal, and subharmonic 
resonances of the new controller NNPDCVF are studied. 

3.1. Primary resonance case 0   

To find the approximate solution of Eq (2.7), it is helpful to apply the method of multiple 
scales [49,50] as follows:  

                              2
0 0 1 1 0 1( , ) , , ( )    q t q T T q T T O                    (3.1) 

where   is the perturbation parameter, 0 T t , 1 T t  are the two time scales.  

The two time scales that can be used to express the time derivatives of Eq (2.7) are as follows: 

                 0 1

d
D D

dt
   , 

2
2
0 0 12

(2 )
d

D D D
dt

  ,  ( 0,1)n
n

D n


 


         (3.2) 

Assume, in the case of primary resonance, 

                           0                                      (3.3) 

where    is detuning parameter. The following results are obtained by inserting Eqs (3.1)–(3.3) 
relevant to Eq (2.7), comparing coefficients of similar power of   as  

 0O  : 

                           2 2
0 0 0 0 D q                               (3.4) 

 1O  : 

 2 2 3 2
0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 12( ) ( ) sin( ) sin( )                D q D D q D q q q f T T f q T T  

               3 2 2 3
1 0 1 0 0 1 0 2 0 0 0 3 0 0 0 1 0 0( ) ( ) ( ) ( )p q d D q q q D q q D q G D q                  (3.5) 

The solution of Eq (3.4) is: 

                       0 0
0 1( ) e . i Tq A T cc                                (3.6) 

where 1( )A T  is complex function in 1T , cc  locate for the complex conjugate of the preceding terms. 
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Substitute Eq (3.6) for Eq (3.5), we get 

  
1

0 0

2 2
0 1 0 1 1 0 12 2

0 0 1
2 2 2 3 2

0 2 3 0 0 1

2 3 3
2

3


    


    

           
    

i T
i T

i
i D A i A A A f e p A id A A A

D q e

i A A A A i G A A

0 0 0 03 23 3 3 2 3 3 3 2
1 0 2 0 3 0 1

               
i T i TA A i A A i G A e A e  

                0 0 1 1(2 )

2 2
      i T T i Tf f

AA Ae Ae cc                    (3.7) 

Removing the secular terms from Eq (3.7), we acquire 

12 2 2
0 1 0 1 1 0 1 0 22 3 3 3

2
             i Tf

i D A i A A A i e p A id A A A i A A      

            2 2 3 2
3 0 0 1 0    A A i G A A                              (3.8) 

Let 
1

2
 iA a e  and substituting it into Eq (3.8) and separating the real and imaginary part yield the 

averaged equation as follows: 

                
2

3 30 11 2

0

3
cos

2 2 2 8 8

 


      
Gdf

a a a a a                        (3.9) 

              3 3 30 31 1

0 0 0 0

33
sin

2 2 8 8 8

   
   

      
p f

a a a a a a                 (3.10) 

where, 1   T . The frequency response relations are then acquired as follows: 

      

2 2 2 20 31 1

0 0 0

2 22 2
1 1 1

2 2 2
0 0

2 2
20 1 0 1 1 3 12 1 2 1 1 1

2 2
0 0

2 2 2 2 22 22
0 1 2 0 1 0 32 1 1

2 2
0 0

33

4 4 4

4 4 2 4 4

3 3 3 3

8 8 8 8 8 8 8

39 9 99

64 64 32 64 64 64

  
  


 

     
 

      
 

 
     
 

 
    

 
 

        
 

     

p
a a a

d d p f

a

G d G pd p p
a

G G 43 1 3
2
0

3 3

32 32 32

  


 
 
 
  
 
 
        

a

      (3.11) 

Using the Newton-Raphson method and Matlab software, the steady-state responses may then be 
extracted from the algebraic equations. Using the Lyapunov first technique, the right-hand side 
eigenvalues of the Jacobian matrix at Eqs (3.9) and (3.10) are calculated, and the stability of the steady-
state shell system is evaluated as follows: 
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                            11 12

21 22

R Ra a

R R 
     
         

                                (3.12) 

where,  

2
20 12

11 1

391

2 8 8
( ) ( )

Ga
R d a

a




     


,    
12

02
cos

a f
R 

 


 


, 

  0 31 1
21

0 0 0

399

2 8 8 8
( )

p
R a

a a a

  
  


     


,   
22

02
sin

f
R

a
 
 


  


 

The previous matrix acquires the stable regions of the controlled model by solving the following 
determinant: 

                              11 12

21 22

0
R R

R R








                            (3.13) 

Then, 

                                 2 2

1 2 0                                   (3.14) 

where,   signifies the eigenvalue of the Jacobian matrix, 
1 11 22R R     and 

2 11 22 12 21R R R R   . The 

sufficient and necessary conditions for the structure to be stable according to Routh-Hurwitz criterion 

are 
1 0   and 

2 0  . If the eigenvalues have negative real parts, the system is stable; otherwise, it is 

unstable. In frequency response curves, stable and unstable periodic responses are indicated by solid 
and dotted lines, respectively.  

3.2. ½ Subharmonic resonance case 0

1

2
   

We introduce the detuning parameter   in accordance with Eq (2.7) analysis of subharmonic 
resonance as 

                                  0

1

2
                                  (3.15) 

Substituting Eqs (3.6) and (3.5) into Eq (2.7) and equating coefficients of similar power of   yields 
the following: 

 0O  : 
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                                2 2
0 0

1
0

4
   

 
D q                              (3.16) 

 1O  : 

2 2 3 2
0 1 1 0 0 0 0 0 0 0 0 0 0

1
2( ) ( ) sin( ) sin( )

4
                

 
D q D D q q D q q q f T f q T     

                    3 2 2 3
1 0 1 0 0 1 0 2 0 0 0 3 0 0 0 1 0 0( ) ( ) ( ) ( )p q d D q q q D q q D q G D q            (3.17) 

The solution of Eq (3.16) is: 

                              0 /2
0 1( ) e . i Tq A T cc                              (3.18) 

where 1( )A T  is complex function in 1T , cc  locate for the complex conjugate of the preceding terms. 

Substitute Eq (3.18) in Eq (3.17) yields: 

0

2
1 1 1

/22 2
0 1

2 2 2 2 3 2
1 2 3 1

3
1 2 2

3 1 34
3

2 4 8


    


    

            
        

i T

i i
i D A A A A A p A d A

D q e

A A i A A A A i G A A
    

               03 /23 3 3 2 3 3 3
1 2 3 1

1

2 2 4 8
i Ti i i

A A A fA A G A e              
 

                       02

2
i Ti

A f e A A cc       
                           (3.19) 

The secular terms of Eq (3.19) vanish if and only if 

2 2
1 1 1 13 3

2 2
           

i i
i D A A A A A p A d A A A  

                 2 2 2 3 2
2 3 1

3 1 3
0

2 4 8
      i A A A A i G A A                         (3.20) 

Let 
1

2
 iA a e  and substituting it into Eq (3.20) and separating the real and imaginary parts yield the 

averaged equation as follows: 

                        
2

3 31 2 13 3

2 2 8 32

      
d G

a a a a a                      (3.21) 
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               3 3 331 133

4 4 16

 
  

     
p

a a a a a a                     (3.22) 

For steady-state solutions, 0  a and the periodic solution at the fixed points corresponding to 

Eqs (3.21) and (3.22) is given by: 

                       
2

3 31 2 13 3
0

2 2 8 32

 
    

d G
a a a a                       (3.23) 

                       3 3 331 133
0

4 4 16


  

    
p

a a a a a                     (3.24) 

As a result, the frequency response relationships are obtained as follows: 

         

2 2 2
2 2 2 21 1 3 1 1 1

2

2 2 2 2 2
22 1 1 2 1 1 1 1 1 3 1 2 1

2 2

2 3 3

2 2 8 4 4 2

3 3 3 3 3 3 9 9

8 32 8 32 2 2 8 64 1024

p d d p
a a a

G d d G p p p G
a

     
   

        
 

               
  

          
  

 

2 2 2 2 2
42 1 1 3 1 3 1 3

2 2 2

9 9 9 9 3 3
0

128 16 16 256 8 32 32

G
a

         
  


       


           (3.25) 

We offer the following forms to assess the stability of the fixed point solutions of Eqs (3.23) and (3.24). 

                               1(( ) / 2)   i TA p iq e                             (3.26) 

where ,p q  are real coefficients. Substitution of Eq (3.26) for the linearized form of Eq (3.20), we get: 

                   1 1 0
2 2

        
i i

i A A A p A d A                    (3.27) 

We get the following equations by substituting Eq (3.26) into Eq (3.27) and then equating the 
imaginary and real parts: 

                        1 1( ) ( ) 0
2 2



    

d p
p p q                          (3.28) 

                 1 1( ) ( ) 0
2 2




   
p d

q p q                           (3.29) 

The zeros of the characteristic equation determine the stability of a certain fixed point with regard to a 

proportional )exp( 1T : 
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1
1

1
1

1
( ( ))

2 0
1

( ( ))
2

 


 


 


  

p
d

p
d

                      (3.30) 

where,   is the eigenvalue. To analyze the stability of the non-trivial solution, one uses Eq (3.30) to 
obtain:  

                              2 2
1 2 0   r r                             (3.31) 

where, 1 1( ) r d  and 
2 22

1 1 1
2 24 4 2




   
d d p

r  are constants. The Routh-Hurwitz criterion states that 

the following conditions must be met in order for all of Eq (3.31) roots to have negative real parts: 

1 0,r   and 2 0r . If the eigenvalues have negative real parts, the system is stable; otherwise, it is 

unstable. Solid or dotted lines on frequency response curves denote stable or unstable periodic 
responses, respectively. 

4. Numerical response influence outcomes 

4.1. The new active vibration control influences at the primary resonance case 0    

Using the Runge-Kutta algorithm and the MATLAB 20.0 software, the original system Eqs (2.6) 
and (2.7) are numerically depicted in this section. Figure 2 displays the model’s responses and phase-
plane at primary resonance 0    one of the worst resonance instances), and zero initial. 
Furthermore, Figure 3 illustrates the response and phase-plane for the nonlinear dynamical system 
with NNPDCVF in the primary resonance situation 0   , where the initial values 

(0) 0.5, (0) 0.5 q q   are used. The system’s amplitude ( )q t   is dramatically reduced, as seen in 
Figure 3. Additionally, using the NNPDCVF controller close to the primary resonance case that was 
measured, we will confirm all effects occurring in model parameters in this branch. As shown in 
Figures 2 and 3, the frequency response equations (FRE) defined by Eqs (3.9) and (3.10) were resolved 
and plotted by matching parameter values. Figure 4 shows the response diagram for the controlled 
system a  against the detuning value  . Stable solutions are represented by solid lines presented 
graphically by (ــــــــــــ), whereas unstable solutions refer by dashed lines presented graphically by (-----). 
In this figure stable areas are less than the unstable regions. The steady state amplitude a   is 
monotonic decreasing function of the linear damping coefficient    and monotonic increasing 
function of the natural angular frequency coefficient 0  showing the stable and unstable regions as 
plotted in Figure 5a,b, respectively. Figure 6a presents when the nonlinear parameter  decrease the 
curve is bent slightly to the right making increasing in instability zones, while the nonlinear control 
parameter 1 decrease the curve is bent to the left making increasing in stability zones illustrated in 
Figure 6b, which gives an excellent result for controlling the model. Besides, when the nonlinear 
parameter 2  decrease the  amplitude a   is decreased making decreasing in instability zones as 
plotted in Figure 7a, while the nonlinear control parameter 3 decrease the curve is bent to the left 
making increasing in stability zones demonstrated in Figure 7b, which gives excellent result for 
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controlling the model. Moreover, the steady-state amplitude a   is increased with increasing the 
excitation coefficient f making increasing in the unstable area as exemplified in Figure 8a, while at 
choosing lessen values of 1p  the amplitude a  is bent slightly to right making increasing the area of 
stable regions as plotted in Figure 8b. Furthermore, Figure 9a presents that when the values of the 
linear control force parameter 1d  decreased the amplitude a  is increased appearing the stable and 
unstable regions, whereas, at lessen values of the gain coefficient 1G  the amplitude a  is increased 
with increasing in instability counties as seen in Figure 9b. 

 

Figure 2. Response of the framework without controller on primary resonance. 

( 00.02; 1.5; 0.15; 0.02; 2.15;          f ). 

 

Figure 3. Response of the model with NNPDCVF controller on primary resonance case. 

 0 1 1 1 2 3 10.02, 1.5, 0.15, 0.02, 2.15, , 0.5, 1.2, 0.3, 0.4, 0.25,G 0.5f p d                   . 
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Figure 4. Frequency-response diagram over the controlled model within primary 

resonance case 0  . 

  

Figure 5. Effect outcomes of (a) damping coefficient  and (b) the natural angular frequency 0 . 

  

Figure 6. Effect outcomes of (a) nonlinear coefficient  and (b) the nonlinear control parameter 1 . 

a  b 

a  b 
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Figure 7. Effect outcomes of (a) nonlinear control coefficient 2 and (b) the nonlinear 

control parameter 3 . 

 

Figure 8. Effect outcomes of (a) excitation force f  and (b) the linear control force 1p . 

a  b 

a  b
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Figure 9. Effect outcomes of (a) the linear control force 1d  and (b) the gain coefficient 1G . 

4.2. The new active vibration control impacts at ½ Subharmonic resonance 0 / 2   

In this section, Figure 10 shows responses and phase-plane of the framework with no controller 
on the ½ subharmonic resonance 0 / 2   (one of worse resonance cases) within zero initial. Also, 
Figure 11 conclude the response and phase-plane for the nonlinear dynamical framework with 
NNPDCVF on 0 / 2   with the initial values (0) 0.5, (0) 0.5 q q . The amplitudes of the system 

( )q t   is decreased dramatically as appeared in Figure 11. Additionally, we will verify all model 
parameter changes with the NNPDCVF controller in this branch, which is close to the measured 
subharmonic resonance condition. As shown in Figures 10 and 11, the frequency response equations 
(FRE) given by Eqs (3.21) and (3.22) were resolved and plotted by matching parameter values. 
Figure 12 displays the response diagram aimed at the controlled framework a   versus detuning 
coefficient  . Only stable solutions is appeared which stand by solid lines presented graphically by 
 without any unstable solutions. This refers to that the new active controller made the system ,(ــــــــــــ)
more stable in this resonance case. The steady state amplitude value a  is decreasing when the linear 
damping coefficient   values are decreased as designed in Figure 13. Also, Figure 14 presents the 
effect outcomes of the natural angular frequency   as when it increased the steady-state amplitude 
a  is also increased. Moreover, when the values of the nonlinear coefficient   are decreased the 
values of the amplitude a  are lessen as seen in Figure 15. On the other hand, Figure 16 shows that 
when the values of the nonlinear control coefficient 1  are decreased the values of the amplitude a  
are increased. Besides, the amplitude a  is increased when the values of the nonlinear control 
parameter 2  are increased as strategized in Figure 17. Furthermore, the values of the nonlinear 
control parameter 3   are increased when the values of a  are decreased as shown in Figure 18. 
Additionally, Figure 19 appears a special effect of the linear control force 1p  as when it takes an 
increasing values, the curve is shifted to the right without any change influence in the amplitude 
behavior diagram. In addition, at increasing values of the linear control force 1d  , value of a   is 
decreased as realized in Figure 20. Finally, at lessen values of the gain coefficient 1G  the value of a  
is increased with increasing in stability regions as seen in Figure 21. 

a  b 
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Figure 10. Response of the system with no controller at sub-harmonic resonance case 0 / 2  . 

 

Figure 11. Response of the system with NNPDCVF controller at sub-harmonic resonance 

case 0 / 2  . 

 

Figure 12. Frequency-response chart on the controller system at sub-harmonic resonance 

case 0 / 2    within the values 

 1 1 1 2 3 10.2, 1.5, 0.5, 0.5, 1.2, 0.3, 0.4, 0.5,G 0.5           p d . 
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Figure 13. Influence diagram of the 

damping coefficient  . 

Figure 14. Influence diagram of the 
natural angular frequency  . 

  

Figure 15. Influence diagram of nonlinear 
coefficient  . 

Figure 16. Influence graph of the 

nonlinear control the parameter 1 . 

 

Figure 17. Influence curve of the nonlinear 

control parameter 2 . 

Figure 18. Influence chart of the 

nonlinear control parameter 3 . 
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Figure 19. Influence diagram of the linear 

control force 1p . 

Figure 20. Influence diagram of the 

linear control force 1d . 

 

Figure 21. Influence diagram of the gain coefficient 1G . 

5. The optimum control parameters 

The mechanism of the NNPDCVF controller at the primary resonance can be explained simply 
with the aid of Eqs (3.9) and (3.10). It is clear from Eqs (3.9) and (3.10) that the integration of the 

NNPDCVF controller to the considered system has modified the linear damping term    to the 

controlled term  primary . Moreover, the detuning parameter   is modified to  primary , where  primary  

and  primary are given as follows: 

                              1

1
( )

2
  primary d                              (5.1) 
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                             1

02
 


 primary

p
                              (5.2) 

It is clear from Eqs (5.1) and (5.2) that  primary   and  primary  are periodic functions on the 

controller, where the controlled system has the equivalent linear damping 1

1
( )

2
  primary d  and 

detuning parameter 1 1
0

0 0

( )
2 2

   
 

    primary

p p . This means that the linear control force 1( )p  

is responsible for changing the system natural frequency ( 0  ), while the velocity gain 1( )d   is 

responsible for modifying the system linear damping coefficient ( ) . Accordingly, to improve the 

vibration suppression efficiency of the considered system, the linear control forces ( 1 1,p d ) should be 

selected in a way that maximizes the objective function  primary   and primary  . By comparing the 

obtained results in Figures 8(b) and 9(a) with the objective function given by Eqs (5.1) and (5.2), we 

can notice that the best vibration suppression condition has occurred at the maximum values of  primary  

and primary  as summarized in Table 1. It is worth to mention that the same mechanism occurred at the 

½ subharmonic resonance cases. The objective functions in the ½ subharmonic resonance can be 

deduced simply from Eqs (3.21) and (3.22), respectively, where 1

1
( )

2
  sub d , 1 


 sub

p
.  

Table 1. Optimum control parameter. 

Figure 1p  1d  0  1

1
( )

2
  primary d 1

02
 


 primary

p
Max ( primary ) Max( primary )

Figure 
8b 

-
0.5 

0.0 1.5 
1

( 0)
2
   

0.5

2(1.5)
   0.5  

1

6
   

Figure 
9a 

0.0 2.2 1.5 
1

( 2.2)
2
   0   0.5 1.1     

6. Verification of analytical solutions using numerical simulation solutions 

The system which set by Eq (2.7) solved numerically at the two resonances which are primary 

case where ( 0   ) and ½ subharmonic resonance cases where ( 0 / 2   ) compared with the 

analytical solution of the modulating Eqs (3.8) and (3.20), respectively as presented in Figure 22. On 
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the other hand, the continuous lines symbolize the time histories which obtained numerically (using 
Runge-Kutta method) for Eq (2.7) and the dashed lines confirm inflection of amplitude for the 

coordinate ( )q t  at similar values of parameters which using in Figure 3. 

 

 

Figure 22. Relationship connecting numerical solution (using Runge-kutta method) and 
mathematical solution (using perturbation method) of the system and NNPDCVF. 

7. Conclusions 

A novel control technique is used to investigate the response of a moving load excited nonlinear 
dynamic system to nonlinear primary resonances and 1/2 subharmonic resonances. The controller 
NNPDCVF reduces the vibration amplitude of the two resonances. The stability analysis via 
NNPDCVF on the two measured resonances is studied and investigated using MATLAB software. The 
effect of various effective control system parameters on the outcome is discussed. In the case of 
primary resonance, a suitable choice of some effective coefficients can reduce the response's peak 
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amplitude (or the free oscillation term’s peak amplitude) and the unstable regions. Using the new 
controller, the instability solutions for 1/2 subharmonic resonance are minimized in this case. Only 
stable solutions were found, indicating that in this situation the new controller is the best. Optimal 
control parameters are calculated. Finally, numerical confirmations for all obtained analytical results 
are introduced 
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