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Abstract: The imbalanced data makes the machine learning model seriously biased, which leads to 
false positive in screening of therapeutic drugs for breast cancer. In order to deal with this problem, 
a multi-model ensemble framework based on tree-model, linear model and deep-learning model is 
proposed. Based on the methodology constructed in this study, we screened the 20 most critical 
molecular descriptors from 729 molecular descriptors of 1974 anti-breast cancer drug candidates 
and, in order to measure the pharmacokinetic properties and safety of the drug candidates, the 
screened molecular descriptors were used in this study for subsequent bioactivity, absorption, 
distribution metabolism, excretion, toxicity, and other prediction tasks. The results show that the 
method constructed in this study is superior and more stable than the individual models used in the 
ensemble approach. 
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1. Introduction  

Breast cancer is a very common female cancer in the world affecting women’s health [1,2]. The 
development of breast cancer is closely related to estrogen receptor. Some studies have shown that 
estrogen receptor α subtypes are expressed in no more than 10% of normal breast epithelial cells, but 
about 50% in 80% of breast tumor cells. Therapies targeting estrogen receptor  (ER ) have 
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transformed the treatment of breast cancer [3]. ERα plays an important role in breast development. In 
general, compounds that antagonize ER α activity can be used as candidate drugs for breast cancer 
treatment, many scholars regard it as an important index for screening anti-breast cancer drugs [3,4]. 
However, in order to become a candidate drug, a compound needs not only good biological activity, 
but also good pharmacokinetic properties and safety in human body, which is known as ADMET 
(Absorption, Distribution, Metabolism, Excretion, Toxicity) [5]. Among them, ADME mainly refers 
to the pharmacokinetic properties of the compound, describes the law of the concentration of the 
compound in the organism with time, and T mainly refers to the toxic and side effects that the 
compound may produce in the human body. 

In the process of drug research and development, Quantitative Structure-Activity Relationship 
(QSAR) model and ADMET property relationship model needs to be constructed to save time and 
cost [6]. The model was then used to screen new compounds with better bioactivity and ADMET 
properties. However, in the practical screening process, excessive molecular descriptors will increase 
the noise of the data and the error of the learning algorithm [7], therefore, critical molecular descriptors 
should be selected as main indicators of relational models. Moreover, it is a crucial issue that data 
imbalance is quite common in the field of bioinformatics due to the limited availability of data, and 
the imbalance caused by the excessive difference in the number of samples from different categories 
tends to bias the prediction results of the model toward the category with a larger number, so 
overcoming the effect of imbalanced data is another crucial issue. 

In recent years, machine learning methods have gained popularity in bioinformatics [8–11] and 
have been successful in dealing with issues such as feature selection for high-dimensional data [12,13], 
error correction [14,15], category imbalanced data [16,17], and other important problems [18–20]. 
Ensemble learning, as an efficient machine learning method, combines independent feature sub-
models and might give a better approximation to the target dataset [7,21]. Whereas ensemble systems 
have been proven to be competent in reducing the variance of automated decision systems and are very 
effective and extremely versatile in a broad spectrum of problem domains and real-world applications [22].  

Motivated by the idea above, we propose a novel framework for breast cancer drug screening. 
This framework can correct for errors among different algorithms to handle imbalanced data and can 
learn decision weights among individual models based on training data, which is described as follows: 

1) A novel molecular descriptor filtering approach based on Random Forest, XGBoost, Lasso and 
neural network is constructed to calculate the importance of each variable for selecting the top 20 
molecular descriptors with the most significant impact on biological activity from a large number of 
molecular descriptors. 

2) An ensemble model based on Random Forest, XGBoost, Lasso and neural network is 
constructed to predict the ER  value, and the weights of sub-models are obtained adaptively by 
machine learning. Based on which, the pIC50 (negative logarithm of IC50) value of compounds were 
predicted. The bioactivity value of the compound to ER α can be expressed by IC50, which is 
experimentally measured values in nM. The smaller the IC50 is, the greater the biological activity is. 
In QSAR model, pIC50 is generally used to represent the bioactivity value. 

3) The ensemble model described in 2) is applied to pharmacokinetic properties and safety 
(ADMET) prediction. The absorption, distribution, metabolism, excretion and toxicity of 
compounds were predicted respectfully. The results showed that the model in this study has strong 
stability and accuracy. 



5119 

Mathematical Biosciences and Engineering  Volume 20, Issue 3, 5117–5134. 

2. Materials and methods 

 

Figure 1. Ensemble framework for screening of therapeutic drugs. 

The screening modeling of anticancer drug candidates is mainly to establish the prediction model 
of biological activity and classification models of ADMET properties. Firstly, key variables need to be 
identified from  numerous molecular descriptors for drug candidates using ensemble method (see 
Figure 1(b)). Secondly, based on the variables selected before, a pIC50 prediction model need to be 
build (see Figure 1(c)). Finally, the ADMET properties’ prediction model of drug candidates need to 
be built up separately (see Figure 1(d)). Figure 1 shows the algorithm framework for screening of 
therapeutic drugs, and the details of the entire modeling process are as follows. 

2.1. Feature selection methods 

Facing large number of variables, different features election and prediction algorithms may yield 
local optima in the space of feature subsets [7]. An ensemble feature selection algorithm could capture 
independent features from different sub-models, so we choose XGBoost, Random Forest, Lasso 
Regression and neural networks as sub-models of the ensemble model. Besides, an ensemble model 
also can fix the problem of imbalanced data, which is useful in ER  and ADMET prediction. 
Therefore, we need to screen the most critical input variables in different single models and measure 
the degree of importance of the variables using feature importance. 

2.1.1. XGBoost feature selection  

The essence of XGBoost is an effective boosting algorithm, which is a tree structure constructed 
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by a variety of weak classifiers. Each weak classifier corrects the previously misclassified samples, 
therefore, XGBoost is more focusing on reducing bias. One of XGBoost metrics for importance is 
“weights”, and each node of XGBoost is “weakly classified” based on one variable, and the final 
feature score is obtained by adding the gradient The final feature score requires adding up the gradient 
and second-order gradient statistics on each leaf, and then applying the scoring formula. The higher 
the weight, the more important the corresponding variable is [23]. 

𝑤௝
∗ ൌ െ

∑ ௚ೕ೔∈಺ೕ

∑ ௛ೕାఒ೔∈಺ೕ
 (1) 

In Eq (1), 𝑤௝
∗ is the j-th leaf node of the current tree, 𝑔௝ is the first−step degree of the ith sample 

falling on the j-th leaf node, ℎ௝ is the second-order gradient of the i-th sample falling on the JTH leaf 
node, and λ is the regularization coefficient. 

2.1.2. Random Forest (RF) feature selection  

Random forests are a combination of tree predictors [24], it is also an ensemble bagging algorithm. 
This algorithm builds up a large number of decision trees and gets the final result by equally voting, 
therefore, RF pays more attention to reducing variance. The most commonly used variable filtering 
indicator in RF models is Gini importance, which is the total reduction of criterion (Gini) brought by 
a feature, Similar to the boost method, the higher the Gini value, the more critical the corresponding 
input descriptor is. 

𝐺𝑖𝑛𝑖ሺ𝑡ሻ ൌ 1 െ ∑ 𝑝ሺ𝑖|𝑡ሻଶ ௖ିଵ
௜ୀ଴   (2) 

In Eq (2), t  is on behalf of a given node, i  represents any classification of the label, pሺi|tሻ 
represents the proportion of label 𝑖 on node 𝑡. 

2.1.3. Lasso feature selection 

Lasso is a classical linear regression method with L1-regularization. It reduces model complexity 
and makes model more robust by constructing L1 penalty term. At this point, the absolute value of the 
coefficient before the variable in lasso’s regression measures the importance of the variable [25], it 
represents the marginal impact of the input variables on the final prediction, and a larger value means 
that the corresponding variable is more critical in the prediction. 

𝛽∗ ൌ 𝑎𝑟𝑔𝑚𝑖𝑛ఉሺ
ଵ

௡
∥ 𝑦 െ 𝑋𝛽 ∥ଶ

ଶ൅ 𝜆 ∥ 𝛽 ∥ଵሻ  (3) 

In Eq (3), n is the number of samples, 𝜆  is a self-defined penalty coefficient and 𝛽  is the 
coefficient vector of Lasso’s regression. 

2.1.4. Neural network feature selection 

BP neural network was proposed in 1986 and has been proved to be useful in processing high 
dimensional data in the next decades [26–29], as a nonparametric model, which could deal with data 
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with complex noise [30]. Mean impact value (MIV) is an indicator to evaluate the importance of 
variables, and commonly used in measuring the importance of neural network’s inputs [31,32]. 

𝑀𝐼𝑉௜ ൌ ℱሺ𝑑𝑖𝑎𝑔ሺ𝜌ଵ, 𝜌ଶ,⋅⋅⋅ 𝜌௜,⋅⋅⋅ 𝜌௡ሻ𝑋ሻ െ ℱሺ𝑑𝑖𝑎𝑔ሺ𝜎ଵ, 𝜎ଶ,⋅⋅⋅ 𝜎௜,⋅⋅⋅ 𝜎௡ሻ𝑋ሻ (4) 

𝜌௞ ൌ ൜
1.1, 𝑖𝑓 𝑘 ൌ 𝑖
1, 𝑖𝑓 𝑘 ് 𝑖 , 𝜎௞ ൌ ൜

0.9, 𝑖𝑓 𝑘 ൌ 𝑖
1, 𝑖𝑓 𝑘 ് 𝑖   

It indicates the difference between the outputs of a model when a variable increases or decreases 
by 10% independently, similarly, the larger the MIV value, the more prominent the corresponding 
molecular descriptor. 

To correct for sub-method errors and to synthesize the importance of the features calculated by 
each sub-method, we adopted a fair weighting strategy, i.e., weighting by the standard deviation of the 
importance metrics calculated by each sub-method. (As shown in Figure 1(a),(b) and Eq (5)) 

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒௜ ൌ
ଵ

ସ
 ሺ𝑓ሚሺ𝑤௜ሻ ൅ 𝑓ሚሺ𝛻𝐺𝑖𝑛𝑖௜ሻ ൅ 𝑓ሚሺ𝛽௜ሻ ൅ 𝑓ሚሺ𝑀𝐼𝑉௜ሻሻ  (5) 

In Eq (5), 𝑓ሚሺ𝑥௜ሻ ൌ ሺ𝑥௜ െ 𝑥̅௜ሻ/𝜎௜, 𝜎௜ is the standard deviation of the importance value for i-th 
input variable, 𝑥̅௜ is the mean value of the importance value for i-th input variable. This also means 
that in the stage of feature selection, the weight of each sub-method is determined by the distribution 
of its respective importance. 

2.2. Ensemble model for ER  prediction 

Multi-model ensemble learning combines multiple learners and can obtain better generalization 
ability than single learner and can correct errors among multiple models. Firstly, from a statistical point 
of view, the hypothesis space of task learning is usually large, and there may be multiple hypotheses 
that achieve the same performance in the training set [33]. Secondly, from the point of view of 
computation, a single algorithm is more likely to fall into local minima, and some local minima may 
lead to weak generalization ability of the model, but ensemble learning can effectively improve this 
situation through multiple runs. Thirdly, from the perspective of representation, the hypothesis space 
involved in a single learner may not contain the real hypothesis of the task, while ensemble learning 
can increase the hypothesis space.  

Therefore, this study builds the QSAR model based on ensemble learning of two classical tree 
models, Lasso linear model and neural network model. Through this method, the bioactivity (ER α) of 
the compound is predicted. Lasso captures the linear relationship between molecular descriptors and 
biological activity; random forest (bagging) and XGBoost (boosting) aims to reduce variance and bias. 
Neural network was introduced to measure the complex nonlinear relationship between molecular 
descriptors and biological activity. Finally, the outputs of the four sub-models are fused by a fully 
connected layer (as shown in Figure 1(c)), which is also a commonly used method in machine 
learning [34,35]. The parameters of the full connected layer and the neural network will be trained by 
optimizing the MSE loss function. 

 ℒᇱ ൌ
ଵ

௡
∑ ൫𝑦ොሺ௜ሻ െ 𝑦ሺ௜ሻ൯

ଶ௡
௜ୀଵ  (6) 
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ER  QSAR model can also be written as: 

 𝑦ො ൌ 𝜂ଵ 𝑋𝐺𝐵𝑜𝑜𝑠𝑡ሺ𝑥ሻ ൅ 𝜂ଶ 𝑅𝐹ሺ𝑥ሻ ൅ 𝜂ଷ  ∑ 𝛽𝑥 ൅ 𝜂ସ 𝑁𝑁ሺ𝑥ሻ   (7) 

Equation (7) shows the expanded form of the final prediction, where 𝜂ଵ to 𝜂ସ are the decision 
coefficients for each of the four submodels, and we fit the objective function to assign the values of 
the four parameters. This means that the weights of each submodel are also adaptively determined by 
the data in the training set during the prediction phase. 

2.3. Ensemble model for ADMET prediction 

To classify and predict the properties of ADMET, this paper finishes the binary classification task 
of Caco-2, CYP3A4, hERG, HOB and MN. Caco-2: ‘1’ represents that the intestinal epithelial cells of 
this compound have good permeability, and ‘0’ represents that the intestinal epithelial cells of this 
compound have poor permeability. CYP3A4: ‘1’ means that the compound can be metabolized by 
CYP3A4, ‘0’ means that the compound cannot be metabolized by CYP3A4; hERG: ‘1’ means that the 
compound is cardiotoxic, ‘0’ means that the compound is not cardiotoxic; HOB: ‘1’ means that the 
oral bioavailability of the compound is good, and ‘0’ means that the oral bioavailability of the 
compound is poor. MN: ‘1’ means that the compound is genotoxic, and ‘0’ means that the compound 
is not genotoxic. First, the top 20 molecular descriptors with the most significant impact on the five 
dependent variables were selected. Secondly, based on the most significant molecular descriptors, 
similar to 2.1, five prediction models for Caco-2, CYP3A4, hERG, HOB and MN were established 
respectively under the model framework of Figure 1(d). 

Different from 2.2, both the neural network sub-model in ADMET prediction and the final output 
are two 0/1 values, respectively representing the probability of being divided into positive and negative, 
while other sub-models are added a classifier with threshold value of 0.5 on the basis of Figure 1(c). 

Parameters of the full connection layer and neural network are obtained by optimizing the Binary 
cross-entropy loss function:  

ℒ∗ ൌ െ
ଵ

௡
∑ ሾ𝑦𝑙𝑛𝑦ො ൅ ሺ1 െ 𝑦ሻ lnሺ1 െ 𝑦ොሻሿ௫   (8) 

In Eq (8), 𝑦ො is the conditional estimation of given molecular descriptors, and 𝑦 is the true label 
of the compound. 

3. Experimental results and decision 

3.1. Data description and preprocessing 

The data used in this paper is obtained from ChEMBL database (version: ChEMBL27) 
(www.ebi.ac.uk/chembl/), which Search with ‘Estrogen receptor alpha’ as the keyword. Click ‘Homo 
sapiens’ in the ‘Organism’ menu of the filter, and the ChEMBL ID of the Target was confirmed as 
‘CHEMBL206’. Download IC50 data related to ‘CHEMBL206’ in the database. To process the 
downloaded data, only the data with a clear IC50 value (Standard Relation is “=”) and the assay is 
‘Homo sapiens’ are retained. The obtained compounds were then further processed using Pipeline Pilot 
Software 2017 R2 (BIOVIA, USA), including desalinization, weight removal, inorganic removal, 
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compound standardization, and removal of duplicate compounds. The IC50 value of the final compound 
was treated with negative logarithm, that is, the pIC50 value of each compound was obtained. After 
obtaining the compounds, 1D and 2D molecular descriptors for each compound were calculated using 
software PaDEL-Descriptor. The dataset provides 729 molecular descriptors of 1974 anticancer drug 
candidates (including nAcid, ALogP, ALogp2, etc.) and 729 molecular descriptors of an additional 50 
candidates with gold standard for testing, pIC50 values and five dichotomies of ADMET for each 
candidate. These parameters describe the structure and property characteristics of compounds, 
including physicochemical properties (e.g., molecular weight, LogP, etc.), topological characteristics 
(e.g., number of hydrogen bond donors, number of hydrogen bond receptors, etc.), and so on. 

 

Figure 2. Dataset overview. 

The part a and b of Figure 2 indicate the distribution of pIC50 (ER  activity) and ADMET, from 
these two figures, it can be seen that except for hERG, the difference in sample size between the 
positive and negative classes of other indicators is relatively large, which is called imbalance and a 
common problem in statistics [36,37]. This imbalance will make the model built biased towards the 
majority class [33,38], and we must try to overcome this issue, which is one of the reasons we chose 
the ensemble model for dealing with the task. Besides, to present the chemical structures of the selected 
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compounds, we used the tSNE method to visualize them, which is better than PCA to characterize the 
non-linear and complex relationships between the variables. As can be seen in Figure 2(c), the chemical 
space of the compounds selected for this study covers a wide range. 

In dataset, 1215 cases were Caco-24 negative, accounting for 61.55%. There were 513 CYP3A4 
negative patients, accounting for about 25.99%; there were 875 hERG negative patients, accounting 
for 44.32%; there were 1465 HOB positive patients, accounting for about 74.21%; there were 460 MN 
negative cases, accounting for about 23.30%. For the reliability of ensemble model, the labelled dataset 
is randomly split into two groups: training subset, validation subset, the ratio of two groups is 8:2 on 
subjects. During the training phase, the training set is used to optimize the parameters of ensemble 
model. The validation set is used to validate the model to avoid overfitting. And the additional test 
dataset with gold standard is used measure the performance of models. It is necessary to clarify that 
feature selection and subsequent model training are performed in the training set, which is to avoid 
introducing too many input variables in the prediction task, and the most important variables need to 
be selected before based on the training set filtering noise. 

Before the establishment of bioactivity prediction and classification prediction of ADMET in 
multi-model ensemble learning, the top 20 molecular descriptors with the most significant influence 
on ER ，ADMET properties were respectively selected in this paper. Before selecting the molecular 
descriptors, z-score standardization was performed for them due to their different dimensions: 

𝑍௜ ൌ
௑೔ିఓ೔

ఋ೔
  (9) 

3.2. Feature selection 

According to the methodology proposed above, the selected 20 input variables for ER  
prediction is as Table 1. Table 1 also shows the importance value (normalized) of each molecular 
descriptor in four sub-models. R means the rank of importance of each molecular descriptor. 

Most of the 20 molecular descriptors screened by this model are variables commonly used in 
organic chemistry to estimate or predict molecular properties. In biochemistry, these indicators also 
have a theoretical basis for predicting biological activity. 

MDEC-23 is the molecular distance between all secondary carbon and tertiary carbon. Carbon 
atoms in organic matter generally have four atomic bonds to them. The number of hydrogen atoms 
connected to different carbon atoms can be divided into four types: primary carbon atoms connected 
to three hydrogen atoms; secondary carbon atoms connected to two hydrogen atoms. A carbon atom 
connected to one hydrogen atom is called a tertiary carbon, and a carbon atom not connected to a 
hydrogen atom is called a quaternary carbon. Secondary carbon and tertiary carbon, as “skeleton” 
carbon atoms in organic compounds, the molecular distance between them may have a great influence 
on the properties of compounds. MLFER_A is the total solute hydrogen bond acidity, many properties 
of matter such as boiling point, melting point, viscosity, surface tension and so on are related to it. 
ATSc index is an autocorrelation descriptor weighted by atomic valence. Lipoaffinity Index is the fat 
affinity index, which is used to measure the maximum soluble number of compounds in a certain mass 
of fat and is one of the indicators that can better measure the biological activity of compounds. AMR 
is the molar refractive index. The molar refraction can be used as a measure of electron polarizability 
in a molecule. Molar refraction is generally measured by abbe refractometer. Computational methods 
can also be used to organically combine group contribution methods and topological methods 
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according to the properties and connectivity of the groups in the molecule, by exploring the quantitative 
relationship between the molar refraction of alkynes and molecular structure. 

Table 1. Contribution of molecular descriptors (normalized) and rank of importance (Top 20). 

Molecular Descriptor 
MIV RF Lasso XGBoost Ensemble 

Im R Im R Im R Im R Im R 

MDEC-23 0.0031 44 1.0000 1 1.0000 1 0.0684 23 0.5179 1 

BCUTp-1h 0.0008 98 0.0251 32 0.9673 2 0.1075 10 0.2752 2 

ATSp4 1.0000 1 0.0050 168 0.0000 21 0.0489 48 0.2635 3 

ALogP 0.0003 144 0.0129 62 0.0000 21 1.0000 1 0.2533 4 

MLFER_A 0.0000 271 0.0738 11 0.8674 3 0.0521 41 0.2483 5 

minsssN 0.0001 228 0.1823 4 0.7615 4 0.0358 89 0.2449 6 

ATSp1 0.9280 2 0.0029 237 0.0000 21 0.0261 130 0.2392 7 

minHsOH 0.0001 230 0.1295 7 0.7148 6 0.0423 68 0.2217 8 

LipoaffinityIndex 0.0006 111 0.2396 2 0.5464 7 0.0391 77 0.2064 9 

mindO 0.0022 54 0.0157 54 0.7335 5 0.0423 68 0.1984 10 

ATSp5 0.7196 3 0.0077 110 0.0000 21 0.0228 149 0.1875 11 

C1SP2 0.0000 355 0.1855 3 0.5450 8 0.0163 184 0.1867 12 

ATSc4 0.0000 384 0.0181 46 0.5409 9 0.1270 9 0.1715 13 

C3SP2 0.0007 104 0.0159 52 0.5048 10 0.0391 77 0.1401 14 

maxsssCH 0.0000 310 0.0077 112 0.3549 11 0.0163 184 0.0947 15 

maxHBd 0.0000 317 0.0186 44 0.3111 12 0.0456 59 0.0938 16 

minHBint10 0.0007 100 0.0251 33 0.2992 13 0.0456 59 0.0927 17 

ATSc3 0.0000 382 0.0520 14 0.0000 21 0.2476 3 0.0749 18 

maxHsOH 0.0000 340 0.1680 5 0.1081 17 0.0163 184 0.0731 19 

AMR 0.0162 15 0.0050 169 0.0000 21 0.2704 2 0.0729 20 

Table 2. The number of variables that are properly selected in each model. 

class variables MIV RF Lasso XGB Ensemble 

AlogP AlogP √   √ √ 

Carbon types C3SP2/C1SP2  √ √  √ 

Autocorrelation (charge) ATSc1-4  √ √ √ √ 

Lipoaffinity Index Lipoaffinity Index  √ √  √ 

BCUT 
BCUTc-1l/1h; 
BCUTp-1l/1h 

 √  √ √ 

XLogP XLogP      

Molecular distance edge MDEC-22/23; MDEC-33  √ √ √ √ 

Continued on next page 
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class variables MIV RF Lasso XGB Ensemble

Atom type electrotopological 

state 
minssCH2/ 
minHBa/mindssC 

  √ √  

Molecular linear free energy 

l i
MLFER_A  √ √  √ 

Crippen logP and MR CrippenLogP      

Acidic group count nAcid    √  

sum  1 6 6 6 7 

The variable selection criteria of the final announcement of the competition have 11 categories of 
variables, and if one of the variables of each category is selected, it will be correct. As shown in Table 2, 
The ensemble algorithm has a higher performance of feature selection than other methods. 

3.3. ER  prediction 

The model was trained and run on a laptop computer with i7 6700-HQ CPU + Nvidia GeForce 
GTX-960m. During training the ensemble model, we use a popular optimizer Adam [39], the detailed 
parameters of the optimizer are shown in Table 3. By minimizing the binary cross-entropy between 
label 𝑦 and estimation 𝑦ො, the final model could be obtained.  

Table 3. Details parameters of the optimizer. 

Optimizer Learning rate 𝛽ଵ 𝛽ଶ 𝜀 

Adam 2e-2 0.9 0.999 1e-7 

 

Figure 3. Loss in the training set and validation set during training. 

In Table 3, learning rate controls the step length of parameter update, 𝛽ଵ the exponential decay 
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rate for the 1st moment estimates, 𝛽ଶ is exponential decay rate for the 2nd moment estimates, 𝜀 is a 
small constant for numerical stability.  

As can be seen from Figure 3, after 200 iterations, loss of the model tends to zero in both training 
and verification sets, indicating strong generalization ability of the model. In order to compare the 
prediction effect of the models, XGBoost, random forest, Lasso and compound QSAR model based 
on ensemble learning are compared in this paper (See Table 4). 

Table 4. Comparison of prediction errors (MSE) among different algorithms. 

 XGBoost Lasso Random Forest Ensemble 

Train_MSE 0.0220 0.9864 0.0855 0.0576 

Val_MSE 0.5720 0.9273 0.5172 0.5063 

Test_MSE 0.8502 1.2118 0.7994 0.7191 

As shown in Table 4, on the validation set, a multi-model ensemble method is slightly less than 
other models, but as part of methodology said, the advantage of ensemble algorithm is to correct the 
error between multiple models and dealing with the problem of imbalanced data, plus the accuracy in 
test set also shows that the ensemble algorithm at the same time weakens the over fitting of sub-models, 
and also ensure its low MSE on the validation and test set. Therefore, the ensemble algorithm has 
strong stability and generalization ability in predicting the bioactivity of ER . 

 

Figure 4. Model performance varied with pIC50. 

Furthermore, for assessing the performance of the model under different pIC50, we plotted the error 
of the model at different prediction values under the test set, and it can also be seen from Figure 4 that 
the prediction of pIC50 shows a large deviation when the prediction value is greater than 8, and the 
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error in all other cases is acceptable. 

3.4. ADMET prediction 

Caco-2, CYP3A4, hERG, HOB and MN are the binary indicators of ADMET (Absorption, 
Distribution, Metabolism, Excretion, Toxicity). According to the algorithm proposed above, we select 
most important molecular descriptors for Caco-2, CYP3A4, hERG, HOB and MN respectfully, and 
the ensemble learning models were established according to the selected molecular descriptors. By 
minimizing the objective function between model outputs and true label, a final prediction model could 
be obtained (as shown in Figure 1(d)). 

To verify idea above more closely, we experimented with the effect of imbalance using stratified 
sampling, and the results are shown in Table 5. Specifically, we evaluated the model performance in 
predicting Caco-2 property of different submodels as well as the ensemble model at different 
imbalance rates ℐ , where ℐ ൌ 𝑁௣௢௦௜௧௜௩௘/𝑁௡௘௚௔௧௜௩௘ , 𝑁௣௢௦௜௧௜௩௘  and 𝑁௡௘௚௔௧௜௩௘  are the number of 
positive class samples and negative class samples, respectively. It should be noted that for achieving a 
comprehensive verification, we downsample the majority class samples to the same number as the 
minority class samples and then control the number of minority class samples. 

Table 5. AUC value of Caco-2 classification under different imbalance rate. 

Model ℐ ൌ 1.0 ℐ ൌ 0.7 ℐ ൌ 0.5 ℐ ൌ 0.1 

XGBoost 0.9169 0.9286 0.8571 0.7143 

Lasso 0.8571 0.7043 0.7857 0.5000 

Random Forest 0.9884 0.9053 0.9169 0.6429 

Ensemble 0.9884 0.9286 0.9285 0.7143 

Table 6. Accuracy of ADMET model classification. 

  XGBoost Lasso Random Forest Ensemble 

Caco-2 

Training 1.0000 0.8455 1.0000 1.0000 

Validation 0.9030 0.8329 0.9013 0.9038 

Test 0.9400 0.7600 0.9800 0.9800 

CYP3A4 

Training 1.0000 0.8955  1.0000 0.9994 

Validation 0.9302  0.8810  0.9291  0.9336 

Test 1.0000 0.7600 0.9800 1.0000 

hERG 

Training 1.0000 0.8271  1.0000 0.9975 

Validation 0.9160  0.8127  0.8987  0.9165 

Test 0.8200 0.7200 0.7000 0.8000 

HOB 

Training 1.0000 0.7999 1.0000 1.0000 

Validation 0.8405 0.8228 0.8404 0.8405 

Test 0.8400 0.6800 0.7800 0.8600 

MN 

Training 1.0000 0.8423  1.0000 1.0000 

Validation 0.9419 0.8000  0.9468 0.9468 

Test 0.9400 0.8000 0.9400 0.9400 
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Table 5 shows that the performance (AUC value) of individual models in the test set deteriorates as 
the imbalance level increases, and the performance of individual sub-models is not guaranteed to be 
always optimal at different imbalance levels, but the ensemble of multiple models does enable the error 
between different sub-models to be “corrected”, thus achieving a more stable and superior performance. 

Table 6 shows the accuracy in training and validation and test set of five indicators with different 
models. In most cases, the ensemble learning model proposed in this study performs better than other 
algorithms, besides, Table 6 also indicates that the ensemble learning model is more advantageous in 
dealing with unbalanced data. Although the accuracy of our algorithm is not much higher than other 
algorithms, the over-fitting phenomenon of our algorithm is generally better than that of other models. 

With imbalance data label, the accuracy metric is not fully plausible, and we plot the ROC curves 
and AUC values of the submodel and ensemble model in the five test sets for predicting ADMET 
properties, and the corresponding results are shown in Figure 5. 

 

Figure 5. ROC curve and AUC in test dataset. 

Combining Tables 5 and 6 and Figure 7, the ensemble model is not always noticeably superior 
to the other submodels, but the point is that a single submodel does not guarantee that it is the 
optimal choice in all scenarios, and it may perform worse in some cases, for example, the random 
forest outperforms in the prediction of Caco-2 and CYP3A4 but poorly in the prediction of hERG 
and MN, but the ensemble model proposed in this study provides more stable promising even 
superior predictions. 
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4. Conclusions 

In order to overcome the influence of imbalanced data in the drug candidate screening process 
and achieve more promising molecular descriptor screening and drug property prediction, we proposed 
a multi-model ensemble algorithm to select key features from the huge number of molecular 
descriptors, so that the model could ignore more noise. This innovative ensemble model includes 
classical models of different types, each with a different perspective on the study data, and finally the 
different models are fused by an adaptive trainable weight to obtain the final prediction results. With 
the ensemble of different models, we are capable of finding more plausible molecular descriptors in high-
dimensional chemical structures and achieve more promising predictions compared to a single model. 

Experimental results based on data of 1974 anti-breast cancer drug candidates containing 729 
molecular descriptors and additional 50 candidates with gold standard show that the proposed model 
can effectively complete the tasks of feature screening, numerical prediction and classification task, 
and well restrain the occurrence of over-fitting, and the model is more universal in different tasks. 
Particularly, in terms of feature selection, our proposed approach is significantly able to select a more 
comprehensive set of important molecular descriptors compared to a single approach. Combining all 
prediction tasks, a single model is not guaranteed to maintain excellent prediction performance again 
in all tasks, and it performs well in the Caco-2 and CYP3A4 prediction but poorly in the hERG and 
MN predictions, while the ensemble model proposed in this study, even if it does not significantly 
outperform the other submodels, is able to consider all of them together, so that the final output always 
corrects for the errors from the individual submodels to achieve equal or even superior performance with 
one of them. This also suggests that the predictions of the ensemble model are more plausible than those 
of a single model, and the ensemble approach can be considered in other drug screening task. 

Although the model proposed in this severe performed well in feature selection and prediction 
tasks, it still has some limitations. Firstly, this study used dense layers to fuse the outputs of different 
single models, but this can only represent the linear relationship between feature subsets, and in the 
future, a multilayer neural network approach can be chosen to fuse different features extracted from 
single model to represent the nonlinear complex relationship between different feature subsets. 
Secondly, the focus of this study is biased towards methodological innovation for feature selection and 
prediction tasks, and the screening of anti-cancer drug candidates needs to rely on more experimental 
data and validation for further research. Finally, in terms of methodological innovation, we may consider 
combining with edge computing [40], subspace clustering [41] and other frontier areas [42–47] to 
expand the algorithms in this study further in the future. 

Data availability  

The data that support the findings of this study are obtained from ChEMBL database (version: 
ChEMBL27) (www.ebi.ac.uk/chembl/), which Search with ‘Estrogen receptor alpha’ as the keyword. 
Click ‘Homo sapiens’ in the ‘Organism’ menu of the filter, and the ChEMBL ID of the Target was 
confirmed as ‘CHEMBL206’. Download IC50 data related to ‘CHEMBL206’ in the database. The 
processed data can be obtained by contacting the corresponding author. 
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