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Abstract: This research deals with formulating a multi-species eco-epidemiological mathematical 
model when the interacting species compete for the same food sources and the prey species have 
some infection. It is assumed that infection does not spread vertically. Infectious diseases severely 
affect the population dynamics of prey and predator. One of the most important factors in population 
dynamics is the movement of species in the habitat in search of resources or protection. The 
ecological influences of diffusion on the population density of both species are studied. The study 
also deals with the analysis of the effects of diffusion on the fixed points of the proposed model. The 
fixed points of the model are sorted out. The Lyapunov function is constructed for the proposed 
model. The fixed points of the proposed model are analyzed through the use of the Lyapunov 
stability criterion. It is proved that coexisting fixed points remain stable under the effects of 
self-diffusion, whereas, in the case of cross-diffusion, Turing instability exists conditionally. 
Moreover, a two-stage explicit numerical scheme is constructed, and the stability of the said scheme 
is found by using von Neumann stability analysis. Simulations are performed by using the 
constructed scheme to discuss the model’s phase portraits and time-series solution. Many scenarios 
are discussed to display the present study’s significance. The impacts of the transmission parameter 𝛾 
and food resource f on the population density of species are presented in plots. It is verified that the 
availability of common food resources greatly influences the dynamics of such models. It is shown 
that all three classes, i.e., the predator, susceptible prey and infected prey, can coexist in the habitat, 
and this coexistence has a stable nature. Hence, in the realistic scenarios of predator-prey ecology, 
the results of the study show the importance of food availability for the interacting species. 
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1. Introduction  

Competition is the fundamental relation of ecological systems in which species of one kind have 
to fight for limited resources in some particular habitat. These sorts of competitions become severe 
when the potential biological needs exceed the resources. The predator-prey populations are 
reasonably the building blocks for dynamic ecosystems. In ecology, among different kinds of 
relationships between species, the most important relationship is the predator-prey relationship. 
Mathematical models governed by differential equations are more appropriate for modeling the 
interaction in which populations are overlapped. Lotka and Volterra first put forward the fundamental 
predator-prey model in the early twentieth century. This basic model comprises two first-order 
nonlinear ordinary differential equations. Since then, researchers have presented many models 
covering several issues regarding the complex natural relationship. Consider  

 = 𝛼  𝑈 − 𝛼  𝑈𝑉 (1) 

 = 𝛼  𝑈𝑉 − 𝛼  𝑉 (2) 

where 𝑈 and 𝑉 respectively indicate the populations of prey and predator; 𝛼 , 𝛼 , 𝛼  and 𝛼  are 
the positive real parameters. Holling introduced the density-dependent response [1], after which 
several researchers came forward to contribute their valuable research using density-dependent 
responses. The main concern in the population dynamical models is the stability of fixed points. 
Many mathematical models have been presented and fixed-point stability has been studied [2]. The 
stability of the predator-prey model has been brought into the discussion by many researchers [3–5]. 
The other targeted area is the positivity of the solution of the prey-predator relation [6]. During the 
last few decades, many species have faced extinction due to limited resources, over-exploitation, 
pollution and predation exercise. Mostly, the extinction of some species occurs due to transgression 
of the environment or ecological structure. To impede species from extinction, external supporting 
trends are the refuge and restriction of the population to a specific area [7–9]. Considering the issue 
of extinction, many researchers have formulated models to deal with the problem and discussed the 
factors in detail. A mathematical model of two prey and one predator was considered by Takeuchi 
and Adachi [10]. Equilibrium points were investigated, and a mathematical analysis of equilibrium 
points was performed. Another important issue is bifurcation, which is the critical behavior of fixed 
points. Bifurcation analysis for interacting predator-prey models has been provided by many 
investigators [10–13]. In [14], the authors investigated the influence of nonlocal competition among 
the species. The study was further enhanced to investigate the effects of such competition on the 
stability of equilibrium points. Due to the overuse of chemicals for the higher production of crops 
and other factors, infectious diseases are spreading among the human population and animals. 
Researchers have published several articles on the problem of population density dynamics. 
Whenever a disease spreads in an environment, it seriously affects the population dynamics and 
disturbs the whole ecosystem. A model was presented by Haque [15] to discuss the impact of the 
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diseased predator on the population dynamics of predator and prey. He showed that the absence of 
prey has a moderately strong impact on the predator population when there exists an infection in 
the predator. The mathematical model for infected predator and prey, as presented by the author, is 
as follows: 

 = 𝑎𝑈(1 − ) − 𝑐𝑉 𝑈 − 𝑐𝑞𝑉  (3) 

 = 𝑟𝐹(1 − ) + 𝑒𝑐𝑉 𝑈 + 𝑒𝑐𝑞𝑉 𝑈 (4) 

 = (𝑏 − )𝐹 − (𝑑 +
( )

)𝑉 − + 𝛾𝑉 + 𝑒𝑐𝑉 𝑈 (5) 

 = 𝐹𝑉 (1 − ) + − 𝛾𝑉 − (𝑑 +
( )

)𝑉 + 𝑒𝑐𝑞𝑉 𝑈 (6) 

Here, 𝑃 and 𝐹 = 𝑉 + 𝑉  respectively represent the prey and predator populations (susceptible and 
infected). Fang and Wang discussed the interaction between two species when the predator and prey 
use common food resources. Moreover, the predator is also consuming the prey species. The model 
suggested by them is as follows [16]: 

 = 𝑈( + 𝛼 𝑉 − 𝑚) (7) 

 = 𝑉( − 𝛼 𝑈 − 𝑛) (8) 

where 𝑈 and 𝑉 respectively represent the population of predator and prey, 𝑓 is the common 
resource, 𝑎 and 𝑏 are the consumption rates of resources by predator and prey, respectively, and 𝑚 
and 𝑛 are the natural death rates of predator and prey, respectively. Fang and his co-author discussed 
the global stability of the above dynamical system with the additional effects of diffusion. A detailed 
discussion was provided on the effects of diffusion by the authors. They discussed the instability of 
equilibrium points due to the involvement of diffusion. Moreover, to carry out the stability of the 
system the Lyapunov method was employed. Inseba et al. studied the nonlinear interaction of 
multi-species, taking into account diffusion and prey taxis. The authors also investigated the 
linearized stability of the system [17]. Chen and Yu discussed the multi-species predator-prey 
diffusive system. They showed the pattern formation of the bifurcating system in which the 
conversion rate was taken as a bifurcation parameter [18]. Djilali discussed the effect of the prey’s 
social behavior on the diffusive predator-prey system. He also discussed the bifurcation and stability 
analysis [19]. In [20], Ferreira et al. studied the stability of the cross-diffusive system for the 
three-species interacting model. The equilibrium points were examined to perform a local stability 
analysis. Kant and Kumar studied the interacting model of species in which predator and prey are 
diseased. They showed that, for the basic reproductive number 𝑅 > 1, the disease spread [21]. 
Owolabi formulated a numerical scheme to deal with the fractional diffusion system of interacting 
species. He applied the Caputo fractional operator rather than the first-order time derivative [22]. 
Song et al. presented a qualitative approach to study the diffusive predator-prey system. They also 
discussed the system’s instability when cross-diffusion was introduced [23]. Zhang et al. discussed 
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the influence of diffusion on predator-prey predators’ hyperbolic mortality. The turning instability 
region was also found by linear stability [24]. Ghosh et al. investigated the stability and performed a 
bifurcation analysis of Bozykin’s prey-predator model. The authors also discussed some properties of 
the solution, like uniqueness and boundedness [25]. In [26], Owolabi formulated a numerical scheme 
for the computation of fractional (time) derivatives by using the finite difference and Fourier 
algorithm. Many researchers have discussed the effects of diseased species on the evolution of 
population dynamics when prey, predator or both have some infection. The authors have investigated 
the models by using core characteristics like the existence and positivity of equilibria and local and 
global stability. Some authors have also discussed the bifurcation parameters in the model. Such 
studies have been supported by simulating the models via numerical schemes [27–31]. 

Recent years have seen a rise in the application of fractional differential calculus to solve 
critical and practical problems. In [32], a prey-predator model with three species is examined within 
the framework of a fractional operator. Two species, both of which grow logistically, are represented 
in the model. A competitor is considered to fall behind the third group due to their Holling type II 
functional response. To represent the interplay between tumor growth and the immune system, the 
authors of [33] provided some new approximate solutions to a computational formulation by using 
numerous fractional and fractal operators. 

In [34], the researcher looked at a computer model to investigate the spread of a viral infectious 
disease that is more common in children, i.e., hand, foot, and mouth syndrome. A contribution of [35] 
is the development of a new, time-saving method for obtaining exact fractional solutions to local 
fractional equations. Equation of Gardner on Cantor sets defined by efficient numerical methods 
are studied. 

In [36], the authors study the stability of a disease model with susceptible prey and infected 
predators around an internal steady state. The Mittag-Leffler kernels from the Liouville-Caputo idea, 
which are used to calculate fractional derivatives, have been considered for this purpose. In [37], the 
researchers looked at one realistic application from the current state of edge detection research. To 
achieve this goal, they first suggested two overarching structures that can be used to create 
brand-new fractional masks. Then, the Atangana-Baleanu operator, a fractional integral, was used to 
assess the roles of the various parts in these two architectures. 

In [38], the authors suggested a predator-prey model with a Michaelis–Menten functional 
response and split prey into susceptible and infected subpopulations. The researchers presented an 
eco-epidemiological model of an infected predator-prey system [39]. Incorporating prey refuge ensures 
that a portion of the diseased prey is available for ingestion by the predator. The authors of [40] 
suggested a predator-prey model in which the prey population is affected by a disease. Here, healthy 
prey species exhibited defense mechanisms in response to a predator attack. A Leslie-Gower 
predator-prey model incorporating disease in the predator has been developed [41]. The genetic 
repercussions of the Lesli-Gower model allow it to be considered an evolutionary version of the 
Lotka-Volterra model. In [42], the authors created an eco-epidemic model with two prey populations 
and one predator population, where only the first prey population is affected by an infectious disease. 
More literature on predator-prey models can be seen in [43–47]. 

In the present research work, we formulate a multi-species eco-epidemiological model. Two 
major aspects of ecology are discussed, i.e., food resources and infection in the species. These factors 
bring drastic changes in the population density of the species under consideration. It is shown that 
this kind of interaction leads to system stability even under self-diffusion. It is also proved that the 
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system becomes unstable when cross-diffusion is considered. A two-stage numerical scheme is also 
applied in the present work, and numerical simulations support the theoretical findings. The stability 
of the proposed scheme is presented by using the von Neumann stability criterion. It is proved that 
the scheme is conditionally stable. 

2. Model formulation 

The ecosystem refers to a natural complex structure in which interacting species affect the 
population density of one another on a large scale. At the same time, the interacting species are in 
danger of infectious diseases in the real environment. Numerous mathematical models present the 
interaction among species with infection in some species. The infections are so critical that they 
disturb the whole ecosystem. The population density of all species is affected badly, as they depend 
on one another directly or indirectly. This problem has motivated several investigators to develop 
their model to study population dynamics effectively. Here, we propose a model to study the 
predator-prey system in which both species use the same food resources and there is a fatal infectious 
disease in the prey population. Suppose that 𝑈, 𝑉 respectively represent the predator and prey 
populations at any time t. Here, we assume that 𝑉 = 𝑉 + 𝑉 , where 𝑉 ∧ 𝑉  respectively denote the 
susceptible and infected prey.  

 = 𝑈( + 𝛼 𝑉 + 𝛼 𝑉 − 𝑚) (9) 

 = 𝑉 ( − 𝛾𝑉 − 𝛼 𝑈 − 𝑛  (10) 

 = 𝑉 ( + 𝛾𝑉 − 𝛼 𝑈 − 𝑛 ) (11) 

where  

 𝜙 = {𝑈(0) = 𝑈 ≥ 0, 𝑉 (0) = 𝑉 , ≥ 0, 𝑉 (0) = 𝑉 , ≥ 0} (12) 

is the set of initial conditions. Here, m, 𝑛  and 𝑛  are the death rates of the predator and preys, and 
𝑛 = 𝑛 + 𝛿 displays the sum for the related natural and infectious disease. 

3. Stability for the predator-prey system of equations   

The present section deals with the computation and stability of the equilibria of the system 
described by (9)–(11). By solving the system when the rate of change of population becomes zero, it 
is easy to obtain the equilibria of the system, which are seven in number for the present case. The 
equilibria of the system are described as follows:  

 𝐸 = (0, , 0), 𝐸 = (0, 0, ), 𝐸 = ( , 0, 0)  

 𝐸 = (𝑈 , 𝑉 , , 𝑉 , ), 𝐸 = (𝑈 , 𝑉 , , 𝑉 , ), 𝐸 = (𝑈 , 𝑉 , , 𝑉 , ), 𝐸 = (𝑈∗, 𝑉∗, 𝑉∗) (13) 

where  
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 𝑈 = 0,  𝑉 , = −
 

 ( )
,  𝑉 , =

 

 ( )
  

 𝑈 = −
 ( )

, 𝑉 , =
 ( )

, 𝑉 , = 0  

 𝑈 = −
 ( )

, 𝑉 , = 0, 𝑉 , =
 ( )

  

 𝑈∗ = +  (14) 

 𝑉∗ = +  (15) 

 𝑉∗ = −  (16) 

In the present section, we study the stability of the fixed point, which deals with the coexistence 
of all species. The existence condition for the coexistence equilibrium point 𝐸  is  

 𝑓𝛾(𝜒 + 𝑎𝛾) >  𝛿 (𝛾 𝑚 + 𝜉 ), 𝑓𝛼 (𝜒 + 𝑏𝛼 ) >  −𝛿 (𝑛  𝛼 + 𝜉 ),  

 𝑓𝛼 (𝜒 +  𝑐𝛼 ) > −𝛿  (𝑛   𝛼 − 𝜉 ) 𝑎𝑛𝑑 𝛼𝛽 > 0 (17) 

where 

 𝛿 =  𝑏𝑛 − 𝑐𝑛 , 𝛿 =  𝑎𝑛 − 𝑐m, 𝛿 =  𝑎𝑛 − 𝑏𝑚, 𝜉 =  𝑛  𝛼 − 𝑛  𝛼 ,  

 𝜉 =  𝛾 𝑚 − 𝑛  𝛼 , 𝜉 =  𝛾 𝑚 + 𝑛  𝛼 , 𝛼 = 𝛾 𝑚 + 𝜉 , 𝛽 = 𝑎𝛾 + 𝜒 ,  

 𝜒 = 𝑏𝛼 − 𝑐𝛼 ,     𝜒 = 𝑎𝛾 − 𝑐𝛼 , 𝜒 = −𝑏𝛼 − 𝑎𝛾  

Theorem 1: Let 𝑎, 𝑏, 𝑐, 𝑓, 𝛼 , 𝛼 , 𝑚, 𝑛  and 𝑛  be positive; then, (𝑈∗, 𝑉∗, 𝑉∗) is globally stable in  
𝜔 = {(𝑈, 𝑉 , 𝑉 ): 𝑈 > 0, 𝑉 > 0, 𝑉 > 0}. 

Proof: We construct the Lyapunov function to determine the stability of the coexistence equilibrium 
point. Consider the following 

 𝑊(𝑈, 𝑉 , 𝑉 ) = ∫ ∗

∗

𝑑𝜂 + ∫ ∗

∗

𝑑𝜅 + ∫ ∗

∗

𝑑𝜉 (18) 

By taking derivative with respect to t, we have  

 =
∗

+
∗

+
∗

 (19) 

 = (𝑈 − 𝑈∗) + 𝛼 𝑉 + 𝛼 𝑉 − 𝑚   

 +(𝑉 − 𝑉 ∗) − 𝛼 𝑈 − 𝛾𝑉 − 𝑛   

 +(𝑉 − 𝑉 ∗)( − 𝛼 𝑈 + 𝛾𝑉 − 𝑛 ) (20) 
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After some simplification, we get  

 = (𝑈 − 𝑈∗)𝑎𝑓
∗ ∗ ∗

( ) ∗ ∗ ∗   

 +(𝑉 − 𝑉∗)𝑏𝑓
∗ ∗ ∗

( ) ∗ ∗ ∗   

 +(𝑉 − 𝑉∗)𝑐𝑓
∗ ∗ ∗

( )( ∗ ∗ ∗)
  

 = −𝑓
( ( ∗ ∗ ∗))

( )( ∗ ∗ ∗)
≤ 0 (21) 

 = 0 iff 𝑎𝑈 + 𝑏𝑉 + 𝑐𝑉 = 𝑎𝑈∗ + 𝑏𝑉∗ + 𝑐𝑉∗  

Using the values from (16)–(18) and applying further simplification of (9) leads to the following 
result 

 = 𝑈( (𝑈∗ − U) + ( − 𝛼 )(𝑉∗ − 𝑉 )) (22) 

Then 𝑈→𝑈∗  and 𝑉 →𝑉∗  when t→∞ provided that  𝑈(0) ≥ 0. Similarly 𝑉 →𝑉∗;  hence, the 

largest invariant set {𝑈, 𝑉 , 𝑉  𝜖 𝜔:  = 0} has the unique positive equilibrium (𝑈∗, 𝑉∗, 𝑉∗). 

According to the LaSalle theorem (𝑈∗, 𝑉∗, 𝑉∗) is globally stable in 𝜔. 

 

Figure 1. Phase portrait for the systems (9–11) at 𝑈(0) = 0.60, 𝑉 (0) = 0.06, 𝑉 (0) =

0.73. 
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Corollary 1. For the equilibrium points 𝐸  (𝑖 = 1,2,3, … ,6), we have the following results. 
(a). 𝐸 , 𝐸  and 𝐸  always exist and are globally stable. 
(b). 𝐸  exists if 𝑛 𝛿 > 𝑐𝑓𝛾 and 𝑛 𝛿 > 𝑐𝑓𝛾, and it is globally stable.  
(c). 𝐸  and 𝐸  do not exist. 
Proof: 
(a). The results are straightforward from Eqs (13) and (22). 
(b). Consider 𝐸 = 𝑈 , 𝑉 , , 𝑉 , , where 

 𝑈 = 0,  𝑉 , = −
 

 ( )
,  𝑉 , =

 

 ( )
  

 𝑉 , = −
 

 ( )
  

 =
 

 ( )
  

We can rewrite as 

 𝑉 , =
 

  
 ⇒  𝑛 𝛿 > 𝑐𝑓𝛾  

Similarly,  

 𝑉 , =
 

 ( )
 ⇒  𝑏𝑓𝛾 > 𝑛 𝛿   

The global stability is obvious from Eq (22). 
(c). Consider 𝐸 = (𝑈 , 𝑉 , , 𝑉 , ), where 

 𝑈 = −
 ( )

, 𝑉 , =
 ( )

, 𝑉 , = 0  

 𝑈 = −
 ( )

 ⇒ 𝑈 =  −𝑏𝑓𝛼 − 𝑛 𝛿 < 0  

Hence, the result, similarly, 𝐸  does not exist. 

4. Global stability for a diffusive system 

In the dynamical population model, random walking plays a central role in the structure of the 
habitat. The movement of species can vary from region to region depending on the distribution of 
food resources in the habitat. In addition, the species can vary with respect to density in the area 
where they live. The following section deals with the influence of diffusion on the coexistence of 
fixed points. 

4.1. Global stability for the self-diffusive system 

The self-diffusive system for (9)–(11) can be written as  
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 = 𝐷 △ 𝑈 + 𝑈( + 𝛼 𝑉 + 𝛼 𝑉 − 𝑚),    x ϵ Ω, t > 0 (23) 

 = 𝐷 △ 𝑉 + 𝑉 ( − 𝛾𝑉 − 𝛼 𝑈 − 𝑛 ),    x ϵ Ω, t > 0 (24) 

 = 𝐷 △ 𝑉 + 𝑉 ( + 𝛾𝑉 − 𝛼 𝑈 − 𝑛 ),     x ϵ Ω, t > 0 (25) 

 = = = 0, x 𝜖 𝜕Ω, t >  0 (26) 

with the following initial condition  

 𝜙(0) = {𝑈(0) = 𝑈 ≥ 0, 𝑉 (0) = 𝑉 , ≥ 0, 𝑉 (0) = 𝑉 , ≥ 0} (27) 

where the self-diffusion coefficients 𝐷 , 𝐷 , 𝐷  are non-negative. According to Hollis’ results, the 
solution to the above system has global existence and boundedness [47]. The self-diffusive system 
has an equilibrium point  𝐸 = (𝑈∗, 𝑉∗, 𝑉∗) under the assumption of (17) 
Theorem 2: Let 𝑎, 𝑏, 𝑐, 𝐷 , 𝐷 , 𝐷 , 𝑓, 𝑔, 𝑚, 𝑛 , 𝑛 , 𝛼 , 𝛼  and 𝛾  be positive; then, (𝑈∗, 𝑉∗, 𝑉∗) is 
globally stable in ꙍ = {(𝑈, 𝑉 , 𝑉 ): 𝑈 > 0, 𝑉 , 𝑉 > 0}. 
Proof. It is obvious that {(𝑈, 𝑉 , 𝑉 ): 𝑈 = 0} , {(𝑈, 𝑉 , 𝑉 ): 𝑉 = 0}  and {(𝑈, 𝑉 , 𝑉 ): 𝑉 = 0}  are the 
invariant manifolds. We establish the Lyapunov function to determine the global stability of the 
self-diffusive system as follows 

 𝑊(𝑈, 𝑉 , 𝑉 ) = ∫Ω ∫ ∗

∗

𝑑𝜂𝑑𝑋 + ∫Ω ∫ ∗

∗

𝑑𝜅𝑑𝑋 + ∫Ω ∫ ∗

∗

𝑑𝜉𝑑𝑋 (28) 

Now, taking derivative with respect to t on both sides, we get  

 = ∫
∗

𝑑𝑋 + ∫
∗

𝑑𝑋 + ∫
∗

𝑑𝑋  

 = ∫
∗

𝐷 △ 𝑈 + U + 𝛼 𝑉 + 𝛼 𝑉 − 𝑚   

 + ∫
∗

𝐷 △ 𝑉 + 𝑉 − 𝛾𝑉 − 𝛼 𝑈 − 𝑛   

 + ∫
∗

(𝐷 △ 𝑉 + 𝑉 ( + 𝛾𝑉 − 𝛼 𝑈 − 𝑛 ))  

 ≕ 𝑀 + 𝑀 + 𝑀 + 𝑀  (29) 

where 

 𝑀 = −𝐷 𝑈∗ ∫ |∇𝑈| 𝑑𝑋 ≤ 0 (30) 
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 𝑀 = −𝐷 𝑉∗ ∫ |∇𝑉 |𝑑𝑋 ≤ 0 (31) 

 𝑀 = −𝐷 𝑉∗ ∫ |∇𝑉 |𝑑𝑋 ≤ 0 (32) 

 𝑀 = ∫ (𝑈 − 𝑈∗) + 𝛼 𝑉 + 𝛼 𝑉 − 𝑚 𝑑𝑋  

 + ∫ (𝑉 − 𝑉∗) − 𝛾𝑉 − 𝛼 𝑈 − 𝑛 𝑑𝑋  

 + ∫ (𝑉 − 𝑉∗)[( + 𝛾𝑉 − 𝛼 𝑈 − 𝑛 )]𝑑𝑋 ≤ 0 (33) 

 𝑀 = − ∫ 𝑓
( ( ∗ ∗ ∗))

( )( ∗ ∗ ∗)
≤ 0  (34) 

It is obvious that 

 ≤ 0 (35) 

  = 0  iff   𝑎𝑈 + 𝑏𝑉 + 𝑐𝑉 = 𝑎𝑈∗ + 𝑏𝑉∗ + 𝑐𝑉∗  

Further simplification of (23) by using the values of the coexistence equilibrium point (𝑈∗, 𝑉∗, 𝑉∗) 
leads to the following 

 = 𝐷 + 𝑈( (𝑈∗ − U) + − 𝛼 (𝑉∗ − 𝑉 ))  

It is well known that the above equation represents a gradient system, where every orbit converges to 
a unique steady state U = 𝑈∗ and 𝑉 = 𝑉∗ [47]. Thus, 𝑉  → 𝑉∗ since (𝑈, 𝑉 , 𝑉 ) is on  𝛤 ≔

{(𝑈, 𝑉 , 𝑉 ): 𝑎𝑈 + 𝑏𝑉 + 𝑐𝑉 = 𝑎𝑈∗ + 𝑏𝑉∗ + 𝑐𝑉∗, 𝑈 ≥ 0, 𝑉 ≥ 0, 𝑉 ≥ 0} . Therefore, positive 
solution (𝑈∗, 𝑉∗, 𝑉∗) is globally asymptotically stable. 

 

Figure 2. Phase portrait for the self-diffusive system at𝑈(0) = 0.53, 𝑉 (0) = 0.0101, 𝑉 (0) =

0.70. 
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4.2. Induced stability for the cross-diffusive system 

The predator is attracted to its prey in search of food resources. This attraction causes prey taxis, 
which is the predator’s movement as controlled by the density of prey, and on the contrary, the prey 
is repelled by the predator. This results in the cross-diffusion of species in the habitat. Consider the 
following system of equations: 

 = 𝐷 △ 𝑈 + 𝐷 △ 𝑉 + 𝐷 △ 𝑉 + 𝑈 + 𝛼 𝑉 + 𝛼 𝑉 − 𝑚 ,  

 𝑥 𝜖 𝛺, 𝑡 >  0 (36) 

 = 𝐷 △ 𝑈 + 𝐷 △ 𝑉 + 𝑉 − 𝛾𝑉 − 𝛼 𝑈 − 𝑛 ,  

 𝑥 𝜖 𝛺, 𝑡 >  0 (37) 

 = 𝐷 △ 𝑈 + 𝐷 △ 𝑉 + 𝑉 + 𝛾𝑉 − 𝛼 𝑈 − 𝑛 ,   

   𝑥 𝜖 𝛺, 𝑡 >  0 (38) 

 = = = 0 , 𝑥 𝜖 𝜕𝛺, 𝑡 >  0  

 𝜙(0) = {𝑈(0) = 𝑈 ≥ 0, 𝑉 (0) = 𝑉 , ≥ 0, 𝑉 (0) = 𝑉 , ≥ 0}, x ϵ Ω, t > 0 (39) 

One can see that the coexisting equilibrium point also holds for the cross-diffusive system. The 
self-diffusive system does not induce instability, but the Turing instability can be seen in the 
following section. The above system, as described by Eqs (36)–(38), can be written in the following 
way:  

 𝑅Φ = 𝐷 △ Φ + 𝐽Φ (40) 

 Φ(𝑡, 𝑥) =  

𝜙(𝑡, 𝑥)

𝜑(𝑡, 𝑥)

𝜓(𝑡, 𝑥)
, 𝐷 =

𝐷 𝐷 𝐷
𝐷 𝐷 0
𝐷 0 𝐷

 and 𝐽 =

𝐴 𝐴 𝐴
𝐴 𝐴 𝐴
𝐴 𝐴 𝐴

  

where 

 𝐴 = −
∗

∗ ∗ ∗
,  

 𝐴 = −
∗

∗ ∗ ∗
+ 𝛼  𝑈∗,  

 𝐴 = −
∗

∗ ∗ ∗
+ 𝛼  𝑈∗,   

 𝐴 = −
∗

∗ ∗ ∗
− 𝛼  𝑉∗,  
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 𝐴 = −
∗

∗ ∗ ∗
,  

 𝐴 = −
∗

∗ ∗ ∗
− 𝛾 𝑉∗,  

 𝐴 = −
∗

( )
− 𝛼  𝑉∗,  

 𝐴 = −
∗

∗ ∗ ∗
+ 𝛾 𝑉∗,  

 𝐴 = −
∗

∗ ∗ ∗
 (41) 

If all of the eigenvalues of the operator 𝑅 are negative, then (𝑈∗, 𝑉∗,  𝑉∗) is asymptotically 
stable [47]. Next, it is clear that − △ under the Neumann boundary condition has eigenvalues  

 0 = 𝜇 < 𝜇 ≤ 𝜇 ≤ ⋯  

and 𝜇  → ∞ when t → ∞. It is also known that 𝜈 is the eigenvalue of the operator 𝑅 if and only if 
it is the eigenvalue of 𝐽 = −𝜇 𝐷 + 𝐽 for 𝑖 ≥ 0. Moreover, we obtain 

 trace(𝐽 ) = −𝜇 (𝐷 + 𝐷 + 𝐷 ) + trace(𝐽)  

It is obvious from (41) that 

 trace(𝐽) = 𝐴 + 𝐴 +  𝐴  < 0.  

Next, we prove Turing instability for the cross-diffusive system described by (36)–(38). 
Theorem 3: Let 𝑎, 𝑏, 𝑐, 𝐷 , 𝐷 , 𝐷 , 𝑓, 𝑔, 𝑚, 𝑛 , 𝑛 , 𝛼 , 𝛼  and 𝛾 be positive and  

 𝑑𝑒𝑡(𝐷) = (𝐷  𝐷  𝐷 − 𝐷  𝐷  𝐷 + 𝐷  𝐷  𝐷 ) > 0  

then, there exists an unbounded region where 𝑠 < 𝑠 + 𝑠 + 𝑠  
such that (𝑈∗, 𝑉∗, 𝑉∗) is unstable in the region where the above condition holds.  
Additionally,  

 𝑠 = −[
( , )  ( ) ( , ) ( , )

( )
] det(𝐷)  

 𝑠 = [
( , )  ( ) ( , ) ( , )

( )
] 𝐹(𝐽, 𝐷)  

 𝑠 = [1/3 
( , )  ( ) ( , ) ( , )

( )
]𝑓(𝐽, 𝐷)  

 𝑠 = 𝐴  𝐴  𝐴 − 𝐴  𝐴  𝐴 − 𝐴  𝐴  𝐴   

 +𝐴  𝐴  𝐴 + 𝐴  𝐴  𝐴 − 𝐴  𝐴  𝐴   



5078 

Mathematical Biosciences and Engineering  Volume 20, Issue 3, 5066–5093. 

Proof. It is clear from the value of 𝐽  that 𝑡𝑟𝑎𝑐𝑒(𝐽 ) is negative. To show the instability of 
(𝑈∗, 𝑉∗, 𝑉∗), we shall prove that 𝑑𝑒𝑡(𝐽 ) > 0 for some𝑖, where 𝑖 ≥ 1. As  

 det(𝐽 ) = −𝐴  𝐴  𝐴 + 𝐴  𝐴  𝐴   

 +𝐴  𝐴  𝐴 − 𝐴  𝐴  𝐴   

 +𝐴  𝐴  𝐴 − 𝐴  𝐴  𝐴  (42) 

  𝑑𝑒𝑡(𝐽 ) =

−𝜇  𝐷 + 𝐴 −𝜇  𝐷 + 𝐴 −𝜇  𝐷 + 𝐴
−𝜇  𝐷 + 𝐴 −𝜇  𝐷 + 𝐴 𝐴
−𝜇  𝐷 + 𝐴 𝐴 −𝜇  𝐷 + 𝐴

 (43) 

𝑑𝑒𝑡(𝐽 ) = −𝐷  𝐷  𝐷  𝜇 + 𝐴  𝐷  𝐷  𝜇 + 𝐴  𝐷  𝐷  𝜇 + 𝐴  𝐷  𝐷  𝜇

− 𝐴  𝐴  𝐷  𝜇 − 𝐴  𝐴  𝐷  𝜇 − 𝐴  𝐴  𝐷  𝜇 + 𝐴  𝐴  𝐷  𝜇

+ 𝐷  𝐷  𝐷  𝜇 − 𝐴  𝐷  𝐷  𝜇 − 𝐴  𝐷  𝐷  𝜇 + 𝐴  𝐷  𝐷  𝜇

− 𝐴  𝐷  𝐷  𝜇 + 𝐴  𝐴  𝐷  𝜇 + 𝐴  𝐴  𝐷  𝜇 − 𝐴  𝐴  𝐷  𝜇

− 𝐴  𝐴  𝐷  𝜇 + 𝐴  𝐴  𝐷  𝜇 + 𝐷  𝐷  𝐷  𝜇 − 𝐴  𝐷  𝐷  𝜇

− 𝐴  𝐷  𝐷  𝜇 + 𝐴  𝐷  𝐷  𝜇 − 𝐴  𝐷  𝐷  𝜇 − 𝐴  𝐴  𝐷  𝜇

+ 𝐴  𝐴  𝐷  𝜇 + 𝐴  𝐴  𝐷  𝜇 + 𝐴  𝐴  𝐷  𝜇 − 𝐴  𝐴  𝐷  𝜇

− 𝐴  𝐴  𝐴 + 𝐴  𝐴  𝐴 + 𝐴  𝐴  𝐴 − 𝐴  𝐴  𝐴 + 𝐴  𝐴  𝐴

− 𝐴  𝐴  𝐴  

By collecting the terms containing 𝜇 , we obtain 

𝑑𝑒𝑡(𝐽 ) =  (−𝐷  𝐷  𝐷 + 𝐷  𝐷  𝐷 + 𝐷  𝐷  𝐷 )𝜇

+ (𝐴  𝐷  𝐷 + 𝐴  𝐷  𝐷 + 𝐴  𝐷  𝐷 − 𝐴  𝐷  𝐷 − 𝐴  𝐷  𝐷

+ 𝐴  𝐷  𝐷 − 𝐴  𝐷  𝐷 − 𝐴  𝐷  𝐷 − 𝐴  𝐷  𝐷 + 𝐴  𝐷  𝐷

− 𝐴  𝐷  𝐷 )𝜇

+ (−𝐴  𝐴  𝐷 − 𝐴  𝐴  𝐷 − 𝐴  𝐴  𝐷 + 𝐴  𝐴  𝐷 + 𝐴  𝐴  𝐷

+ 𝐴  𝐴  𝐷 − 𝐴  𝐴  𝐷 − 𝐴  𝐴  𝐷 + 𝐴  𝐴  𝐷 − 𝐴  𝐴  𝐷

+ 𝐴  𝐴  𝐷 + 𝐴  𝐴  𝐷 + 𝐴  𝐴  𝐷 − 𝐴  𝐴  𝐷 )𝜇 + 𝐴  𝐴  𝐴

− 𝐴  𝐴  𝐴 − 𝐴  𝐴  𝐴 + 𝐴  𝐴  𝐴 + 𝐴  𝐴  𝐴 − 𝐴  𝐴  𝐴  

 det(𝐽 ) = −𝜇 det(𝐷) + 𝜇 𝐹(𝐽, 𝐷)  

 +𝜇  𝑓(𝐽, 𝐷) + 𝐴  𝐴  𝐴 − 𝐴  𝐴  𝐴 − 𝐴  𝐴  𝐴   

 +𝐴  𝐴  𝐴 + 𝐴  𝐴  𝐴 − 𝐴  𝐴  𝐴  (44) 

where  

 𝑑𝑒𝑡(𝐷) = (𝐷  𝐷  𝐷 − 𝐷  𝐷  𝐷 + 𝐷  𝐷  𝐷 ) > 0  

 𝐹(𝐽, 𝐷) =

𝐴  𝐷  𝐷 + 𝐴  𝐷  𝐷
+𝐴  𝐷  𝐷 − 𝐴  𝐷  𝐷 − 𝐴  𝐷  𝐷

+𝐴  𝐷  𝐷 − 𝐴  𝐷  𝐷 − 𝐴  𝐷  𝐷 − 𝐴  𝐷  𝐷
+𝐴  𝐷  𝐷 − 𝐴  𝐷  𝐷

 (45) 

 𝑓(𝐽, 𝐷) = −𝐴  𝐴  𝐷 − 𝐴  𝐴  𝐷 − 𝐴  𝐴  𝐷   

 +𝐴  𝐴  𝐷 + 𝐴  𝐴  𝐷   
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 +𝐴  𝐴  𝐷 − 𝐴  𝐴  𝐷 − 𝐴  𝐴  𝐷   

 +𝐴  𝐴  𝐷 − 𝐴  𝐴  𝐷 + 𝐴  𝐴  𝐷   

 +𝐴  𝐴  𝐷 + 𝐴  𝐴  𝐷 − 𝐴  𝐴  𝐷  (46) 

The above equality of (44) leads to its minimum value  𝑚𝑖𝑛    det(𝐽 ) at  

 µ =  1/3 
( , )  ( ) ( , ) ( , )

( )
  

After substituting the above value in (44), we get 

 Det(𝐽 ) =  −[1/3 
( , )  ( ) ( , ) ( , )

( )
] det(𝐷)  

 +[1/3 
( , )  ( ) ( , ) ( , )

( )
] 𝐹(𝐽, 𝐷)  

 +
( , )  ( ) ( , ) ( , )

( )
𝑓(𝐽, 𝐷)  

 +𝐴  𝐴  𝐴 − 𝐴  𝐴  𝐴 − 𝐴  𝐴  𝐴   

 +𝐴  𝐴  𝐴 + 𝐴  𝐴  𝐴 − 𝐴  𝐴  𝐴   

 det(𝐽 ) = −𝑠 + 𝑠 + 𝑠 + 𝑠  (47) 

For the instability of the system, we must have 𝑑𝑒𝑡(𝐽 ) > 0. Therefore above the equilibrium point 
(𝑈∗, 𝑉∗, 𝑉∗) is unstable in the region where 𝑠  <  𝑠 +  𝑠 +  𝑠 . 

5. Construction of numerical scheme 

A numerical scheme is constructed for solving Eqs (23)–(27). The scheme’s construction 
discretizes the time variable, and suitable difference formula can be adopted to discretize the space 
variable. The scheme is the two-stage explicit scheme. The scheme is constructed on three-time 
levels. Consider the following equation:  

 = 𝐺(𝑉 ) (48) 

The first stage of the scheme is written as  

 𝑉 = 𝑉 + ∆𝑡( )  (49) 

The second stage of the scheme contains three unknowns. Their values will be found later. The 
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second stage is written as  
 

 𝑉 = (𝑉 + 𝑉 ) + Δ𝑡 𝑎 + 𝑏 + 𝑐  (50) 

To find the values of unknowns 𝑎 , 𝑏  and 𝑐 , the Taylor series expansions for 

𝑉 , 𝑉 ,  and  are given as  

 𝑉 = 𝑉 + Δ𝑡 +
( )

+
( )

+ 𝑂((Δ𝑡) ) (51) 

 𝑉 = 𝑉 − Δ𝑡 +
( )

−
( )

+ 𝑂((Δ𝑡) ) (52) 

 = + Δ𝑡 +
( )

+ 𝑂((Δ𝑡) ) (53) 

 = − Δ𝑡 +
( )

+ 𝑂((Δ𝑡) ) (54) 

Substituting Taylor series expansions (51)–(54) into Eq (50), we obtain the following 

Comparison of coefficients of 𝑢 , Δ𝑡 , (Δ𝑡)  and (Δ𝑡)  leads to the following 

 

1 = 𝑎 + 𝑏 + 𝑐

= + 𝑎 − 𝑐

= − +

 (55) 

Solving the above system of equations gives the values of the unknown parameters 𝑎 , 𝑏  and 𝑐  
as 

 𝑎 = , 𝑏 = − , 𝑐 =  (56) 

5.1. Stability analysis 

The stability condition of the proposed scheme for the parabolic Eq (48) von Neumann stability 
criterion is applied. For applying the stability analysis, some transformations are substituted into 
difference equations. For the considered problem, the transformations are given as follows. 

Using a second-order central difference formula for the diffusion term, the first stage of the 
proposed scheme for the linearized equation is given as  

 𝑉 = 𝑉 + 𝑢 + 𝑑(𝑉 − 2𝑉 − 𝑉 ) (57) 

where 
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 𝑑 =
∆

(∆ )
  

According to von Neumann’s stability criterion, consider the following transformations  

 𝑉 = 𝐸 𝑒 θ, 𝑉 ± = 𝐸 𝑒( ± ) θ, 𝑢 ± = 𝐸 𝑒( ± ) θ  

 where 𝐼 = √−1 (58) 

Substituting the transformations of (50) into Eq (49), the following is obtained:  

 𝐸 = 𝐸 + 𝑑(𝑒 − 2 + 𝑒 )𝐸   

 𝐸 = (1 + 2𝑑(𝑐𝑜𝑠𝜃 − 1))𝐸  (59) 

By using the second-order central difference formula for the diffusion term, the second stage of the 
proposed scheme for the linearized equation is given as  

 𝑉 = (𝑉 + 𝑉 ) + 𝑑

𝑎 (𝑉 − 2𝑉 +𝑉 )

+𝑏 (𝑉 − 2𝑉 + 𝑉 )

+𝑐 (𝑉 − 2

  

 𝑉 + 𝑉 )}  (60) 

Substituting the transformations of (58) into (60) and dividing the resulting equation by 𝑒 θ, we get 

 𝐸 = (𝐸 + 𝐸 ) + 𝑑

𝑎 (𝑒 − 2 + 𝑒 )𝐸 +

𝑏 (𝑒 − 2 + 𝑒 )𝐸 +

𝑐 (𝑒 − 2 + 𝑒 )𝐸

  

Collecting the coefficients of 𝐸  on the left-hand side of Eq (61) provides 

 𝐸 = + 2𝑎 𝑑(𝑐𝑜𝑠𝜃 − 1) 𝐸 + 2𝑏𝑑(𝑐𝑜𝑠𝜃 − 1)𝐸 + + 2𝑐 𝑑(𝑐𝑜𝑠𝜃 − 1) 𝐸   

 𝐸 = 𝐴 𝐸 + 𝐵 𝐸   (61) 

 𝐴 = + 2𝑎 𝑑(𝑐𝑜𝑠𝜃 − 1) (1 + 2𝑑(𝑐𝑜𝑠𝜃 − 1))+2𝑏 𝑑(𝑐𝑜𝑠𝜃 − 1)  

 𝐵 = + 2𝑐 𝑑(𝑐𝑜𝑠𝜃 − 1)  

 𝐸 = 𝐸 + 0𝐸  (62) 

Equations (61) and (62) can be written in matrix form as  

 𝐸
𝐸

=
𝐴 𝐵
1 0

𝐸
𝐸

  (63) 
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The stability conditions can be imposed on the eigenvalue of the coefficient matrix, and these 
conditions are expressed as  

 ≤ 1 and ≤ 1 (64) 

The proposed scheme will be stable if it satisfies inequalities of (64). 

6. Numerical simulations 

The spatial terms in (23)–(25) are discretized by using the classical central difference formula to 
apply the proposed scheme for the considered diffusive model. The discretized equations for the 
model are given as 

 𝑈 = 𝑈 + ∆𝑡
𝐷 (𝑈 − 2𝑈 + 𝑈 ) (∆𝑥)⁄

+𝑈
, ,

+ 𝛼 𝑉 , + 𝛼 𝑉 , − 𝑚
 (65) 

 𝑉 , = 𝑉 , + ∆𝑡
𝐷 𝑉 , − 2𝑉 , + 𝑉 , (∆𝑥)⁄

+𝑈 ,
, ,

− 𝛼 𝑈 − γ𝑉 , − 𝑛
 (66) 

 𝑉 , = 𝑉 , + ∆𝑡
𝐷 𝑉 , − 2𝑉 , + 𝑉 , (∆𝑥)⁄

+𝑈 ,
, ,

− 𝛼 𝑈 − γ𝑉 , − 𝑛
 (67) 

 𝑈 = 𝑈 + ∆𝑡

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑎

𝐷 (𝑈 − 2𝑈 + 𝑈 ) (∆𝑥)⁄ +

𝑈
, ,

+ 𝛼 𝑉 , + 𝛼 𝑉 , − 𝑚
+

𝑏
𝐷 (𝑈 − 2𝑈 + 𝑈 ) (∆𝑥) +⁄

𝑈
, ,

+ 𝛼 𝑉 , + α 𝑉 , − 𝑚
+

𝑐
𝐷 (𝑈 − 2𝑈 + 𝑈 ) (∆𝑥)⁄ +

𝑈
,

+ 𝛼 𝑉 , + α 𝑉 , − 𝑚
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  

 𝑉 , = 𝑉 , + ∆𝑡

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑎

𝐷 𝑉 , − 2𝑉 , + 𝑉 , (∆𝑥)⁄ +

𝑈
, ,

+ 𝛼 𝑉 , + 𝛼 𝑉 , − 𝑛
+

𝑏
𝐷 𝑉 , − 2𝑉 , + 𝑉 , (∆𝑥) +⁄

𝑈
, ,

+ 𝛼 𝑉 , + α 𝑉 , − 𝑛
+

𝑐
𝐷 𝑉 , − 2𝑉 , + 𝑉 , (∆𝑥)⁄ +

𝑈
,

+ 𝛼 𝑉 , + α 𝑉 , − 𝑛
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
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 𝑉 , = 𝑉 , + ∆𝑡

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑎
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Figure 3. Solution for 𝑡 = 5 and 𝛾 = 0.20, 0.30, 0.35, 0.45. 

 

Figure 4. Time series solution for t = 3500 and 𝑓 = 0.40. 
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Figure 5. Time series solution for 𝑡 = 3500 and 𝑓 = 0.40. 

 

Figure 6. Time series solution for t = 3500 and 𝑓 = 0.40. 

 

Figure 7. Contour plot for the predator. 
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Figure 8. Contour plot for the susceptible prey. 

 

Figure 9. Contour plot for the infected prey. 
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Figure 10. Population density for non-diffusive system. 

 

 

Figure 11. Population density for self-diffusive system. 
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Figure 12. Population density for self-diffusive system. 

7. Results and discussion 

T he present research yielded an eco-epidemiological model for the predator-prey system. We 
considered two classes of prey species, i.e., susceptible and infected prey. It is supposed in this study 
that the transmission of infection is non-vertical. Predation activity influences the biological 
environment on a large scale. Here, we considered that there is no disease transmission due to 
predation. The populations of two classes of prey species face disturbance due to infection. Figures 1 
and 2 show the stability of the coexisting equilibrium point for the original and self-diffusive systems. 
The parameters used for the simulation in Figure 1 are 𝒂 = 𝟎. 𝟒𝟓, 𝒃 = 𝟎. 𝟔𝟒, 𝒄 = 𝟎. 𝟓𝟑, 𝒇 =

𝟎. 𝟓𝟑, 𝜶𝟏 = 𝟎. 𝟏𝟒, 𝜶𝟐 = 𝟎. 𝟐𝟕, 𝒎 = 𝟎. 𝟓𝟔, 𝒏𝟏 = 𝟎. 𝟓𝟓, 𝒏𝟐 = 𝟎. 𝟒𝟗, 𝜸 = 𝟎. 𝟒𝟗, whereas, in Figure 2, 
the values of all of the parameters are the same as in Figure 1, with the diffusion coefficients 𝑫𝟏𝟏 =

𝟎. 𝟏𝟎, 𝑫𝟐𝟐 = 𝟎. 𝟐𝟎 ∧ 𝑫𝟑𝟑 = 𝟎. 𝟏𝟎 . Figure 3 shows the solution of the system for 𝜸 =

𝟎. 𝟐𝟎, 𝟎. 𝟑𝟎, 𝟎. 𝟑𝟓,∧ 𝟎. 𝟒𝟓. Other parameters have the same values as in Figure 1. Figures 4–6 show 
time-series solutions for the self-diffusive system with 𝑫𝟏𝟏 = 𝟎. 𝟎𝟏, 𝑫𝟐𝟐 = 𝟎. 𝟎𝟔 ∧ 𝑫𝟑𝟑 = 𝟎. 𝟎𝟕 
for different resource values (𝒇 = 𝟎. 𝟒𝟎, 𝟎. 𝟒𝟓,∧ 𝟎. 𝟓𝟎); the values of the other parameters were the 
same as in Figure 1. For Figure 3, the initial condition was (0.1, 0.1, 0.1), whereas, for all Figures 4–6, 
the initial condition was (0.6096, 0.2060, 0.1533). The Figures 4–6 results indicate that the 
oscillation produced in the system dies out, resulting in the stability of the species’ coexistence. 
Figures 7–9 present contour plots for the predator, susceptible prey and infected prey, respectively. 
The values of the parameters were 𝒂 = 𝟎. 𝟗𝟏, 𝒃 = 𝟎. 𝟓𝟎, 𝒄 = 𝟎. 𝟓𝟓, 𝒇 = 𝟎. 𝟗𝟏, 𝜶𝟏 = 𝟎. 𝟕𝟕, 𝜶𝟐 =

𝟎. 𝟗𝟓, 𝒎 = 𝟎. 𝟎𝟔, 𝒏𝟏 = 𝟎. 𝟖𝟓, 𝒏𝟐 = 𝟎. 𝟎𝟓𝟓, 𝜸 = 𝟎. 𝟔𝟎. The values of the diffusion parameters were 
𝑫𝟏𝟏 = 𝟎. 𝟎𝟐, 𝑫𝟏𝟐 = 𝟎. 𝟖𝟒, 𝑫𝟏𝟑 = 𝟎. 𝟓 , 𝑫𝟐𝟏 = 𝟎. 𝟒, 𝑫𝟐𝟐 = 𝟎. 𝟎𝟕, 𝑫𝟐𝟑 = 𝟎 , 𝑫𝟑𝟏 = 𝟎. 𝟐, 𝑫𝟑𝟐 = 𝟎 ∧
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𝑫𝟑𝟑 = 𝟎. 𝟎𝟏. In Figures 1 and 2, it is evident that the systems described by (9)–(11) and (23)–(25) 
turn to the coexistence of the fixed point, which is biologically important. Figure 3 shows the direct 
impact of 𝛾 on the infected prey population. When the value of 𝛾 is raised from 0.20 to 0.45, there is 
a significant increase in the said population. In the time-series plots, it is interesting to note that 
increased values of the food parameter f lead to a remarkable increase in the predator and susceptible 
prey populations. Still, a reverse effect is obvious on the infected population of prey species. Figures 
10–12 show a comparison among the systems presented in (9)–(11), (23)–(25) and (36)–(38). The 
population density of all species is remarkably affected by the inclusion of self- and cross-diffusion. 
The values of the parameters taken in Figure 9 are𝒂 = 𝟎. 𝟏, 𝒃 = 𝟎. 𝟓𝟎, 𝒄 = 𝟎. 𝟎𝟓, 𝒇 = 𝟎. 𝟎𝟏, 𝜶𝟏 =

𝟎. 𝟎𝟏𝟕𝟕, 𝜶𝟐 = 𝟎. 𝟗𝟓, 𝒎 = 𝟎. 𝟎𝟔, 𝒏𝟏 = 𝟎. 𝟏𝟖𝟓, 𝒏𝟐 = 𝟎. 𝟎𝟓𝟓,∧ 𝜸 = 𝟎. 𝟔𝟎. In Figure 10, all of the 
parameters have the same value, except 𝜶𝟏 = 𝟎. 𝟎𝟏𝟕𝟕, and the diffusion coefficients are 𝑫𝟏𝟏 =

𝟎. 𝟒𝟔, 𝑫𝟐𝟐 = 𝟎. 𝟕 ∧ 𝑫𝟑𝟑 = 𝟎. 𝟕𝟏. All of the parameters have the same values as those applied in 
Figure 9, except 𝑫𝟏𝟐 = 𝟎. 𝟑𝟏, 𝑫𝟏𝟑 = 𝟎. 𝟕𝟓 ∧ 𝑫𝟐𝟏 = 𝟎. 𝟏𝟒, 𝑫𝟐𝟑 = 𝟎, 𝑫𝟑𝟏 = 𝟎. 𝟔𝟓 ∧ 𝑫𝟑𝟐 = 𝟎. 

8. Conclusions  

In the present article, we have formulated a dynamical nonlinear eco-epidemiological 
population model considering two species, i.e., the predator and prey, taking into account the species' 
dependence on the same food resources. Moreover, it is assumed that a fatal infectious, transmissible 
disease is present in the prey species. The equilibria of the proposed model have been found. We 
analyzed the global stability of the coexistence equilibrium point for the non-diffusive and diffusive 
cases by establishing the Lyapunov function. We have proved in Theorems 1 and 2 that the 
coexisting equilibrium point (𝑈∗, 𝑉∗, 𝑉∗) is globally stable for the original and self-diffusive models, 
respectively. Also, it is proved in Theorem 3 that Turing instability of the system for the 
cross-diffusive case exists conditionally. Phase portraits were drawn to support the theoretical results 
and show the equilibrium point’s stability for the non-diffusive and self-diffusive cases. Moreover, a 
two-stage explicit numerical scheme was constructed, and the stability of the proposed scheme was 
evaluated by using the von Neumann stability criterion. The impacts of parameters like the disease 
transmission parameter 𝛾 and food resource f have been analyzed through the use of plots. It is 
obvious from the plots that increasing the disease transmission parameter 𝛾 enhances the infected 
population density, and vice versa. The solution of the self-diffusive system for different values of 
the resource parameter f has been obtained, and it is shown that the increment in the food resource 
affects the population size. 
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Appendix A 

For the proof of (22):  

 = 𝑈( (𝑈∗ − U) + ( − 𝛼 )(𝑉∗ − 𝑉 ))  

We consider  

 𝑎𝑈 + 𝑏𝑉 + 𝑐𝑉 = 𝑎𝑈∗ + 𝑏𝑉∗ + 𝑐𝑉∗  

 𝑎𝑈 + 𝑏𝑉 + 𝑐𝑉 = 𝑎
       

( )(    )
  

 +𝑏
        

( )(    )
  

 +𝑐(−
        

( )(    )
)  

 = 
( )

(    )
  

 𝑏𝑉 =
( )

(    )
−  𝑎𝑈 − 𝑐𝑉   

 𝛼 𝑉 =
( )

(    )
− −   

Using above value in (9) and applying simplification leads us to the following result: 

 = 𝑈( (𝑈∗ − U) + ( − 𝛼 )(𝑉∗ − 𝑉 ))  

Appendix B 

To prove the value of 𝑀 = −𝐷 𝑈∗ ∫ |∇𝑈| 𝑑𝑋 ≤ 0 in (28), we proceed as follows:  

 As      𝑀 = ∫
∗

𝐷 △ 𝑈𝑑𝑋  

By using Green’s first identity, we have 

 ∫
∗

𝐷 △ 𝑈𝑑𝑋  

 = 𝐷  (∫
∗

𝑑𝑋 -∫ 𝛻
∗

. 𝛻 𝑈𝑑𝑋)  

 = -𝐷 ∫ 𝛻
∗

. 𝛻 𝑈𝑑𝑋  
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 = -𝐷 ∫ 𝛻 1 −
∗

𝛻 𝑈𝑑𝑋  

Further simplification leads to the following:  

 = −𝐷 ∫
∗

|∇𝑈| 𝑑𝑋  

So, we have  

 𝑀 = −𝐷 𝑈∗ ∫ |∇𝑈| 𝑑𝑋 ≤ 0  

Similarly, (31) and (32) can be proved. 
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