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Abstract: Coronary artery centerline extraction in cardiac computed tomography angiography (CTA) 
is an effectively non-invasive method to diagnose and evaluate coronary artery disease (CAD). The 
traditional method of manual centerline extraction is time-consuming and tedious. In this study, we 
propose a deep learning algorithm that continuously extracts coronary artery centerlines from CTA 
images using a regression method. In the proposed method, a CNN module is trained to extract the 
features of CTA images, and then the branch classifier and direction predictor are designed to predict 
the most possible direction and lumen radius at the given centerline point. Besides, a new loss 
function is developed for associating the direction vector with the lumen radius. The whole process 
starts from a point manually placed at the coronary artery ostia, and terminates until tracking the 
vessel endpoint. The network was trained using a training set consisting of 12 CTA images and the 
evaluation was performed using a testing set consisting of 6 CTA images. The extracted centerlines 
had an average overlap (OV) of 89.19%, overlap until first error (OF) of 82.30%, and overlap with 
clinically relevant vessel (OT) of 91.42% with manually annotated reference. Our proposed method 
can efficiently deal with multi-branch problems and accurately detect distal coronary arteries, 
thereby providing potential help in assisting CAD diagnosis. 
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1. Introduction 

Coronary artery disease (CAD) is one of the major leading causes of death all over the world [1]. 
Currently, the gold standard for evaluating CAD is coronary angiography, while it is limited to 
invasiveness, operational complexity, and high cost [2]. The three-dimensional (3D) model 
reconstructed from cardiac computed tomography angiography (CTA) can provide intuitionistic and 
accurate information on the geometry of the coronary artery,  which crucially contributes to the 
non-invasive diagnosis of CAD [3,4]. There are already some visualized vessel structure 
techniques in clinical practice, such as curved planar Reformation (CPR) [5]. CPR can obtain 
straightened coronary artery images, helping planning intervention procedures and choosing stent 
size [6,7]. The 3D reconstruction of the coronary artery typically involves coronary centerline 
extraction and vessel lumen segmentation. Coronary centerline extraction as the first step can 
facilitate branch detection and lumen radius identification, which partly resists interference from 
nearby veins and myocardium [8]. This was in accordance with Shen et al.’s observation in which the 
model with centerline as prior knowledge could obtain a higher accuracy of vessel segmentation [9]. 
Whereas, manual extraction of coronary centerlines is a challenging task because the coronary 
arteries structure is complex and the annotation process is time-consuming. 

In recent years, deep learning, especially U-Net and its variants, has been widely used in 
medical imaging segmentation tasks [10]. The U-Net and its variants have demonstrated the ability 
of blood vessel segmentation, which achieved promising results in medical image analysis [11,12]. 
Convolutional neural network (CNN) showed advantages in extracting high-level features of 
vascular structures [13]. Dorobanțiu et al. [14] adopted 3D U-Net  architecture to segment the 
coronary artery centerline with voxel precision,  estimating whether each voxel was the centerline 
point. Rjiba et al. [15] employed a local vessel filter based on a binary classification network, 
successfully extracting centerlines by determining whether the center point of the current patch was 
located on the centerline. However, these coronary artery  structure extraction tasks still face 
numerous challenges. To start, the full CTA images are usually broken into small patches for training, 
which carry a great deal of non-vascular information. Accordingly, the process is time-consuming 
and tedious. Besides, these methods require complex post-processing techniques that can deal with 
the problem of extracted vessel discontinuities, preserving the completeness of the coronary 
centerline. Moreover, the coordinate of centerline point obtained by the binary classification network 
was imprecise, as there exist differences between the center point of patch and the centerline point. 

Consequently, the path tracing method, a continuous process, has introduced great precision and 
efficiency to coronary artery segmentation. Wolterink et al. [16] proposed a CNN-based orientation 
classifier to determine the artery direction and subsequently extracted the centerline. Specifically, 
there were various points corresponding to different directions distributed on the sphere, and then the 
direction classification detected the possible point for direction. Combined with their research，
Mostafa et al. [17] optimally developed a fully automated workflow. They employed a regression 
U-Net to identify the coronary ostia automatically and applied the improved CNNTracker to track it 
until extracting its endpoint. This method added a weight term to the loss function, which could 
calculate the angle between the predicted vector and each sampling vector, significantly improving 
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the performance of the direction classifier. Yang et al. [18] presented a discriminative coronary artery 
tracking method by alternately training a tracker and discriminator. Their discriminator could provide 
a more robust learning-based stop criterion, effectively distinguishing coronary arteries and other 
cardiac tissues. However, the classification method used in these studies has relatively limited 
accuracy. The proposed models must increase the number of sampling points to achieve higher 
accuracy, undoubtedly  causing large  memory consumption in calculating training parameters. 
Besides, the results of multiple branches and distal parts extraction are not satisfying. 

In this work, we proposed a regression method that learned to track centerlines continuously 
from coronary ostia. The regression method can calculate the deviation between the actual direction 
and the predicted direction, learning the transformation of the network output to the centerline 
direction. First, the branch classifier in this model could detect the endpoint, bifurcation point, and 
single-vessel point. Besides, the direction predictor was performed to predict the coronary artery 
centerline direction and lumen radius. Then, we developed a new loss function that associated the 
coordinates of the centerline points with the lumen radius, which achieved high accuracy extraction. 

2. Methods 

The overall workflow of our proposed network is illustrated in Figure 1. First, the acquired 
medical images were cropped into computed tomography (CT) patches for the input of the network. 
The CT patch was centered on 𝐶௜, where located on the centerline. Afterward, the CNN module 
extracted image features which were fed to branch classifier and path predictor. The branch classifier 
can predict the likelihood of single-vessel point, endpoint, and bifurcation point. Meanwhile, the 
output of path predictor consisted of direction vector  ሺ𝑥, 𝑦, 𝑧ሻ , the vessel radius r, and step. 
Subsequently, the coordinate of 𝐶௜ାଵ on the centerline can be calculated by Eq (1). If 𝐶௜ାଵ was found, 
it will be queued as the new current centerline point until tracking coronary artery centerline endpoint. 

𝐶௜ାଵ ൌ 𝐶௜ ൅
ሺ௫,௬,௭ሻ

||ሺ௫,௬,௭ሻ||మ
ൈ |𝑠𝑡𝑒𝑝|              (1) 

where 𝐶௜ାଵ is the next centerline point; 𝐶௜ is the current centerline point; ሺ𝑥, 𝑦, 𝑧ሻ is the direction 
vector; step is the spatial distance between 𝐶௜ and 𝐶௜ାଵ. 

 

Figure 1. Architecture of the proposed network. 
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2.1. Feature extraction network 

The feature extraction network was composed of two convolution blocks, namely DimConv and 
DownConv. DimConv first implemented convolution, batch normalization, and ReLU activation 
function in sequence. The batch normalization was set before the ReLU activation function and 
limited the passing value between layers within a certain range, which significantly mitigated 
vanishing or exploding gradient problem during backpropagation. Afterwards, dilated convolution, 
batch normalization, and ReLU activation function were placed twice.  The operation of dilated 
convolution instead of basic convolution contributed to obtain a broader receptive field without 
increasing the number of parameters. Besides, the patch size was about three times of the maximum 
coronary lumen diameter, which contained more neighborhood information to help locate the spatial 
location of the current vascular segment. DownConv was made up of convolution, batch 
normalization, and ReLU activation function.  It achieved down sampling operation by using 
convolution with a step size of 2, so that the output image of DownConv module could be reduced 
by half to obtain the condensed feature expression. 

The feature extraction network repeated DimConv and DownConv operations three times. The 
feature map was the output of the previous layer, by superimposing the channels of feature maps, 
multi-level features extracted from shallow network and deep network can be fused. In this case, the 
low-level feature information will not easily lose in the process of down sampling. DimConv can 
maintain the size of the input and output images while only changing the number of channels. 
Therefore, the output of DimConv had the same size as the output of the previous DownConv, whose 
channels can be superimposed and then input into DownConv for further extraction. 

2.2. Branch classifier 

A branch classifier adopting spatial attention was developed, which can aggregate feature 
information and provide a terminal criterion  for a continuous tracking process. In this part, the 
dimension of the input feature map was (64, 4, 4, 4), where 64 represented the number of channels 
and (4, 4, 4) was the size of 3D feature map. First, we calculated the mean and maximum values of 
per-pixel across all channels in feature maps  respectively, generating two channels. Then, the 
convolution operation was performed on these two channels, effectively realizing multi-level feature 
fusion. The dimension of the output of convolution operation was (1, 4, 4, 4) and finally a fully 
connected layer was added to reach the final classification. The advantage of spatial attention was 
that dimensionality reduction could be rapidly achieved when integrating global features,  which 
helps the number of input neurons of the fully connected layer more accurately close to the number 
of output classification. Each output channel of the branch classifier was considered as a feature 
classification, purely indicating the probability of the endpoint, bifurcation point, and single vessel 
point. Branch 0 and 2 indicated the endpoint and bifurcation point, respectively. When the output 
was branch 1, it represented that the current point is on the path of a single vessel, with only one 
possible direction. 

2.3. Path predictor 

For path prediction, the feature maps were first fed into the global average pooling layer for 
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information integration and the dimension of the output was (64, 1, 1, 1). Then, we input it into the 
ReLU activation layer and obtained nonlinearity. The results were sent to convolution with 1 × 1 × 1 
kernel, which could customize dimensionality to satisfy the calculation requirement of the regression 
loss with different number  of parameters. The number of output channels was 2 ൈ 5, where the 
maximum number of branches was 2 and each branch contained 5 parameters including the direction 
vector ሺ𝑥, 𝑦, 𝑧ሻ, the vessel radius r, and step. The path predictor can predict three branch conditions 
including no branch, one branch, and two branches. It was worth noting that only when the judgment 
of branch classifier was valid can the regression loss operation be performed next. 

2.4. Loss function 

The classification loss of branch classifier used cross entropy (CE) function, which was defined 
as follows: 

𝐿𝑜𝑠𝑠஼ா ൌ െ ଵ

୒
∑ ∑ 𝑦௜௖

ெ
௖ୀଵ 𝑙𝑜𝑔ሺ𝑝௜௖ሻ௜                           (2) 

where M is the number of classes; 𝑝௜௖ represents the probability that sample 𝑖 belongs to class c; 
When the actual class of sample 𝑖 is equal to c, the value of 𝑦௜௖ is 1, otherwise is 0. 

To accurately segment coronary artery in CTA images, numerous regression methods have been 
proposed, including mean square error (MSE), mean absolute error (MAE), and other optimizations 
such as smooth L1 Loss piecewise function [19]. The core idea of vascular path regression is 
precisely learning the spatial coordinates of unit direction vector ሺ𝑥, 𝑦, 𝑧ሻ in the Cartesian coordinate 
system. Regression loss can be defined as the transformation of the predicted direction vector to the 
ground truth. However, when separately calculating the losses of parameters (e.g., x, y, z, r, and step), 
it is ultimately easy to ignore the correlation between these parameters (e.g., x, y, z, r, and step). This 
phenomenon is particularly serious in dealing with the centerline extraction problem of the coronary 
artery with extreme tortuosity, which increases the difficulty of model convergence. 

 

Figure 2. Illustration of sphere dice loss. 

Currently, the maximum endovascular sphere model has made significant achievements in the 
field of lumen centerline extraction [20,21]. This approach is based on the assumption that a sphere, 
whose diameter is adaptively varying to enclose the diameter of the vessel, moves in the direction of 
blood flow. When the sphere encounters the bifurcation, it will split into two spheres and continues 
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tracking each branch parallelly. After tracking the current vessel end, the coronary centerline is 
formed by connecting the center of the sphere. Based on the idea of endovascular sphere model, we 
have designed a new loss function method, referred to as the spherical cross volume method, for 
vascular path tracking. While learning the deviation of the output parameters (e.g., x, y, z, r, and step), 
this suggested method can ensure the correlation among these parameters (e.g., x, y, z, r, and step). 

Figure 2 shows two spheres centered on 𝑂  and 𝑂௧ , respectively. The volume of the 
intersecting part of the two spheres is defined by the following formula: 

𝑉∩ ൌ ׬ 𝜋ሺ𝑟௧
ଶ െ ሺ𝑟௧ ∙ 𝑐𝑜𝑠𝛽 ൅ 𝑥ሻଶሻ𝑑𝑥

௛
଴ ൅ ׬ 𝜋ሺ𝑟ଶ െ ሺ𝑟 ∙ 𝑐𝑜𝑠𝛼 ൅ 𝑥ሻଶሻ𝑑𝑥

௛೟

଴      (3) 

where 𝑟 and 𝑟௧  are the radiuses; ℎ  and  ℎ௧   are obtained by taking radius 𝑟 and 𝑟௧  minus the 
distance between the center of the sphere to the intersecting plane, respectively；𝑐𝑜𝑠𝛼 and 𝑐𝑜𝑠𝛽 can 
be obtained as the following: 

𝑐𝑜𝑠𝛼 ൌ ୰మାௗమି௥೟
మ

ଶ௥ௗ
, ℎ௧ ൌ r െ r ∙ 𝑐𝑜𝑠𝛼                      (4) 

𝑐𝑜𝑠𝛽 ൌ ௥೟
మାௗమି௥మ

ଶ௥೟ௗ
, h ൌ 𝑟௧ െ 𝑟௧ ∙ 𝑐𝑜𝑠𝛽                (5) 

where 𝑑 is the distance between 𝑂 and 𝑂௧. Combining Newton-Leibniz formula and Eqs (3)–(5), 𝑉∩ 
can be simplified as follows: 

𝑉∩ ൌ 𝜋ℎଶ ቀ𝑟௧ െ ଵ

ଷ
ℎቁ ൅ 𝜋ℎ௧

ଶ ቀ𝑟 െ ଵ

ଷ
ℎ௧ቁ      (6) 

We formulated the sphere dice loss function similar to the Dice coefficient and extended it to 3D 
space. Dice Loss is a typical tool using in image segmentation tasks, which can count the number of 
pixel points in the segmentation area and target area. Then the similarity of the segmentation area and 
target area can be described by the ratio of the number of points in the intersecting area to the total 
number of pixel points.  We applied the concept of Diss Loss to geometry. Correspondingly, the 
similarity of two spheres was illustrated as the ratio of the volume of the intersecting parts to the total 
volume of two spheres. The value of similarity ranged from 0 to 1, while 0 and 1 denoted the two 
spheres non-intersection and perfectly coincidence, respectively.  When two spheres partially 
intersected, their deviation can be obtained by subtracting the actual similarity from 1. Specifically, 
the regression loss can be calculated by Eq (7): 

𝐿𝑜𝑠𝑠ௌ௣௛௘௥௘஽௜௖௘ ൌ 1 െ ଶ௏∩
ర
య

గ௥యାర
య

గ௥೟
య

ൌ 1 െ ଷ

ଶ
∙

௛మቀ௥೟ିభ
య

௛ቁା௛೟
మቀ௥ିభ

య
௛೟ቁ

௥యା௥೟
య      (7) 

It is acknowledged that a sphere can be constructed based on the coordinates (x, y, z) and radius 
r in 3D space. Thereby, the maximal inscribed sphere located at the current coronary lumen can be 
characterized by the annotated coordinates of coronary centerline points and the actual vessel radius. 
As described above, we constructed two sphere, one centered on the current centerline point and 
another sphere centered on the predicted centerline point, relying on the output parameters (e.g., x, y, 
z, r, and step) by the path predictor. Subsequently, the sphere dice loss was calculated according to 
the location relationship between the two spheres, which achieved outstanding performance in 
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evaluating the deviation between the predicted direction and the actual direction. 
The combined loss was the sum of the CE loss (Eq (2)) and the sphere dice loss (Eq (7)). Note 

that the diameter of the vessel end was small, which easily resulted in a larger loss even from a small 
position deviation of the sphere. 

3. Experiment and results 

3.1. Description of datasets 

The dataset consisted of 18 CTA scans provided by The Second Affiliated Hospital of Zhejiang 
University School of Medicine, whose resolution and voxel size were described in Table 1. We 
randomly picked 12 CTA scans for training and 6 CTA scans for testing. The requirement of 
written informed consent for participation was waived by the local ethics committee due to the 
retrospective nature of this study. The coronary centerlines of all images were manually annotated 
using Mimics 21.0 software (Materialise NꞏV., Belgium), which were corrected and confirmed by an 
experienced radiologist. Then, the manually marked centerlines were smoothed and the centerline 
points were resampled equidistantly. In addition, a resampling operation was performed on the CTA 
images, with uniform voxel spacing of 0.5 mm. Afterward, the CTA images were cropped into 
several CTA patches with the size of 32 × 32 × 32, which were centered at the centerline points. To 
achieve  data augmentation, we made random offset for the location of centerline point and 
over-sampled nearby the bifurcation and the vessel end. As a result, in the training set and the testing 
set, 96,834 and 18,072 patches were extracted respectively. 

Table 1. Information of CTA dataset. 

CTA Data Size (Voxels) Resolution (mm3) 
Train01 (512, 512, 275) (0.422, 0.422, 0.500) 
Train02 (512, 512, 275) (0.391, 0.391, 0.500) 
Train03 (512, 512, 275) (0.422, 0.422, 0.500) 
Train04 (512, 512, 297) (0.447, 0.447, 0.500) 
Train05 (512, 512, 275) (0.367, 0.367, 0.500) 
Train06 (512, 512, 275) (0.422, 0.422, 0.500) 
Train07 (512, 512, 275) (0.422, 0.422, 0.500) 
Train08 (512, 512, 275) (0.422, 0.422, 0.500) 
Train09 (512, 512, 275) (0.422, 0.422, 0.500) 
Train10 (512, 512, 256) (0.488, 0.488, 0.625) 
Train11 (512, 512, 256) (0.488, 0.488, 0.625) 
Train12 (512, 512, 256) (0.488, 0.488, 0.625) 
Test01 (512, 512, 275) (0.422, 0.422, 0.500) 
Test02 (512, 512, 275) (0.422, 0.422, 0.500) 
Test03 (512, 512, 256) (0.488, 0.488, 0.625) 
Test04 (512, 512, 256) (0.488, 0.488, 0.625) 
Test05 (512, 512, 275) (0.367, 0.367, 0.500) 
Test06 (512, 512, 275) (0.391, 0.391, 0.500) 
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3.2. Experiments 

We conducted the experiments on an NVIDIA GeForce GTX 1660 GPU. The algorithm was 
implemented in Python using PyTorch, an open-source deep neural network library. The continuous 
centerline extraction started from coronary ostia. The angle between the predicted direction vector 
and the previous direction vector was computed to prevent the following tracking path from 
overlapping with the already extracted centerline. 

To verify the accuracy of the loss function, we respectively applied smooth L1 Loss function 
and sphere dice loss function to calculate regression loss, as shown in Figure 3. We can observe that 
the loss curve using smooth L1 Loss function oscillates obviously and is difficult to converge. This is 
probably attributed to the fact that the process for calculating deviations in the x, y, and z directions 
using the smooth L1 Loss function  is separate. As the coronary artery structure is complex, the 
deviations in the x, y, and z directions are uncertain, resulting in poor performance. Additionally, the 
sensitivity of various sizes of coronary artery segments to deviation is different, which increases the 
difficulty of model convergence. Compared to the smooth L1 Loss function, the sphere dice loss 
function combines the deviations in three directions and relates deviations to the lumen radius, which 
can be effectively adapted to the complex coronary artery structure. As expected, the loss curve 
applying the sphere dice loss function is observed to converge quickly and smoothly. 

 
(a) (b) 

Figure 3. The loss curve in 200 epochs using different loss function. (a) the loss curve 
using smooth L1 Loss function. (b) the loss curve using sphere dice loss function. 

3.3. Evaluation measures 

We evaluated the accuracy of centerline extraction by adopting the Rotterdam algorithm 
evaluation framework rules [22]. Four evaluation metrics including overlap (OV), overlap until first 
error (OF), overlap with clinically relevant vessel  (OT), and average inside (AI) were measured, 
which can be computed by true positive method (TPM) and true positive reference (TPR). The TPR 
point refers to the point of the reference centerlines, whose defined radius is no less than the distance 
between this point and at least one connected point on the extracted centerlines. Then, The TPM 
point refers to the point of the extracted centerlines, whose defined radius is no less than the distance 
between this point and at least one connected point on the reference centerlines. OV stands for the 
completeness of the predicted coronary artery centerline. OF reveals the tracking ability of the model 
before making the first error. OT indicates the degree of overlaps between the extracted centerlines 
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and the clinically relevant centerlines (radius  ൒ 0.75 mm). AI is an accuracy index, which measures 
the average distance between the extracted point on predicted centerline and the corresponding 
extracted point on reference centerline within the radius of the reference centerline. 

Table 2 shows the average overlap and accuracy results for centerline extraction in all testing 
datasets. For each dataset, the OV, OF, OT, and AI results are listed. In terms of overlap, our method 
obtained an average OV of 89.19%, an average OF of 82.30%, and an average OT of 91.42%.  In 
terms of accuracy, our method obtained an average AI of 0.32mm. Besides, we found that errors 
mainly occurred at bifurcations or sharply curved coronary arteries.  

Table 2. Evaluation results of the proposed method. Four metrics are reported: Overlap 
(OV), overlap until first error (OF), overlap with the clinically relevant part of the vessel 
(OT), and Average inside (AI). 

Dataset OV (%) OF (%) OT (%) AI (mm) 
Test01 91.87 87.41 90.82 0.32 
Test02 94.53 90.47 95.18 0.26 
Test03 88.64 89.58 94.55 0.28 
Test04 82.67 63.45 86.84 0.40 
Test05 85.04 73.72 87.93 0.36 
Test06 92.36 89.18 93.21 0.29 
Average 89.19 82.30 91.42 0.32 

To analyze the advantages of our proposed method, we conducted the ablation experiments. 
Three conditions were performed: (i) removing the Spatial Attention module and replacing it with 
basic convolutional layer; (ii) removing the global average pooling layer in path predictor; (iii) 
simultaneously removing the Spatial Attention module and the global average pooling layer in path 
predictor. The average OV, OF, OT, and AI results were calculated and illustrated in Table 3. 
Significant decreases in performance were observed in the ablation experiments compared with our 
proposed network, which proved that the specific feature integration method designed for the output 
task was effective. 

Table 3. The average OV, OF, OT, and AI results of ablation experiments. 

Methods Av.OV (%) Av.OF (%) Av.OT (%) AI (mm) 
proposed network 89.19 82.30 91.42 0.32 
-Spatial Attention 85.83 72.67 90.55 0.36 
-Avg Pool 88.26 75.41 89.97 0.39 
-Spatial Attention & Avg Pool 84.45 70.86 89.23 0.38 

 
According to the guidelines of the American Heart Association (AHA) [23], the coronary 

arteries with a diameter ൒ 1.5 mm can be divided into 17 segments. Figure 4 shows the sensitivity of 
the proposed method for each of these 17 segments in the testing datasets. The testing sensitivity for 
right coronary artery (RCA), left anterior descending artery (LAD), left circumflex artery (LCX), 
right and left posterior descending arteries were 83.3–100%, while for the second obtuse marginal 
branch was 66.7%. 
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Figure 4. Sensitivity of 17 segments of coronary arteries using the proposed network. 

Table 4 shows the comparison results of our proposed method and the CNNTracker approach [16]. 
We reproduced the CNNTracker approach using our dataset, while the performance was not ideal. 
This may be due to the small size of our dataset. However, there was evidence that our method can 
improve the sensitivity of detecting distal segment of coronary arteries, especially for margin 
branches, left posterior descending branch, and other small vessels.  Consequently, our proposed 
method has advantages in extracting more complete coronary artery structures. 

Table 4. The sensitivity of detecting distal segment of coronary arteries. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
CNNTracker 1 1 1 0.9 1 1 1 0.9 0.9 0.8 1 0.8 0.9 0.6 0.7 0.7 - 
proposed method 1 1 1 0.8 1 1 1 0.8 1 

↑ 
0.8 1 1 

↑ 
1 
↑ 

0.6 0.8 
↑ 

1 
↑ 

0.8

Except for the 17 reference segments, our method can also detect acute marginal branches and 
conus arteriae branches, clearly reflecting the strength of our method. As shown in Figure 5, the 
green and red coronary arteries both started from coronary ostium and extracted to the end of blood 
vessel. It was evident that the computed coronary artery centerlines were longer than that obtained 
merely by manual annotations. 

Figure 6 provides the visual comparison between the results of manual annotations (Figure 6(a)) 
and our approach (Figure 6(b)), which verifies the effectiveness of our approach in predicting distal 
vessel branches without annotations.  Additionally, our approach was able to successfully extract 
coronary artery centerlines in cases where intravascular stents (Figure 6(c)) or coronary artery 
calcifications (Figure 6(d)) were present. 
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Figure 5. 3D results of extracted coronary arteries  by our method and manual 
annotations. The blue spheres indicate the location of the coronary ostia. The red 
coronary arteries were acquired by our method and the green coronary arteries were 
obtained by manual annotations. 

 

Figure 6. Straightened CPR (curved planar reconstruction) of coronary artery centerline. 
(a) the centerline extracted by manual annotations; (b) the centerline extracted by our 
method; (c) the centerline extracted by our method in the presence of intravascular stent; 
(d) the centerline extracted by our method in the presence of coronary calcification. 
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4. Discussion 

In this paper, we have presented a new method for continuously tracking robust coronary 
arteries using a regression-based network. The proposed network first uses the CNN module to 
extract CTA image features, and then enters the branch classifier and the path predictor. There, the 
direction of the coronary centerline and the radius of lumen can be identified. Previous centerline 
extraction methods based on direction classification have certain limitations [16–18]. If the 
directions of sampling are too few, the direction deviation will accumulate with the continuously 
tracking process, and the tracking process will stop when a large deviation occurs at the distal 
coronary artery. This phenomenon results in the difficulty to the centerline extraction of small vessels. 
Whereas, dense sampling directions likely reflect the imbalance issue between positive and negative 
samples associated with direction classification, resulting in extraction failure. Besides, the direction 
classification method can only predict a single direction, which need to train additional seed points to 
deal with multi-branch problems. Due to the insufficient learning of effective information for 
bifurcation, some extracted centerlines of small coronary vessels cannot cross the bifurcation instead 
tracking back to the coronary artery ostia. While in our proposed network, the branch classifier can 
creatively handle multi-branch problems and provide a termination criterion for continuous 
extraction. Moreover, the path predictor can learn the transformation of the network output to the 
actual centerline direction based on the regression method, significantly improving the accuracy of 
direction prediction. Further, the proposed new loss function comprehensively considers the 
relationship between coordinates and lumen radius, which can adapt to the tortuous coronary 
structures, enhancing the ability to track small coronary vessels. 

We conducted the tests using 6 CTA images to validate the reliability of the proposed network. 
The testing results demonstrated that the suggested method can extract the whole coronary artery tree 
structures, with a high performance of OV 89.19%, OF 82.30%, and OT 91.42%. While the manually 
annotated centerline cannot reach the most distal point of coronary artery due to the presence of 
nearby myocardium and adjacent coronary veins, our method allows more complete tracking of 
coronary artery structures. There is evidence that distal coronary arteries or small vessels also play an 
important role in coronary circulation, which can lead to myocardial ischemia [24]. Therefore, the 
extraction of distal coronary arteries and small vessels in our study could provide more 
comprehensive information for clinical diagnosis or operation. However, our suggested method still 
requires the starting point, whose coordinate should be set manually at coronary artery ostia. In 
future work, some interactive operations such as manually adding the starting points of the 
missing branches can be considered when the tracker drifts from the centerline or the extraction 
is incomplete. 

The hyper-parameters directly affect computational complexity and method performance, which 
should be modified to achieve effectiveness. During the hyper-parameter exploration, we trained the 
CNN models for 200 epochs with a 2e-5 initial learning rate and 0.8 decay rate per 50 epochs. The 
model was trained using Adam optimizer with a batch size of 32 in which the model can achieve 
better performance by observing accuracy metrics (e.g., OV, OF, OT) and visualization results. After 
experimenting with various batch size, the results reveal that the training curve would oscillate when 
the batch size was too small, which may be due to the individual coronary artery structures and 
variable vessel sizes. Whereas larger batch size will cause the gradient descent to be too slow, which 
may be attributed to the calculation of the average loss of large amounts of data affecting the learning 
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efficiency. As a consequence, the batch with 32 patches was found suitable as it could reflect 
conditions such as different numbers of branches, various coronary artery sizes, and whether 
deviation existed or not. 

Despite promising results in extracting coronary centerlines, our proposed framework suffers 
from bias, which is caused by the generation inconsistency between the training and inference 
process. To be specific, at training time, the input of the path prediction network is the CT patch, and 
the output is the parameters (e.g., x, y, z, r, and step) of the predicted centerline point. Overall, the 
training process is to learn features and optimize model from the image data. While at inference the 
trained model is constantly used to estimate outcomes until a terminal criterion is fulfilled. Hence, as 
the training grows, the errors accumulate. To address this problem, this work uses data augmentation 
which allows the tracker to make corrections to process off-centerline points. However, considering 
that the coronary artery has delicate tubular structures and complex tree shapes, the continuous path 
tracking method remains challenging as the contextual information of multiple patches is 
independent. In this case, some recent studies combined the centerline topological structure. For 
example, Gao et al. [25] constructed a hybrid model of CNNTracker and graph convolutional 
network (GCN), with the advantage of combining coronary centerline extraction and lumen 
segmentation. This approach has achieved state-of-the-art performance in capturing the geometry of 
the RCA, LAD, and LCX. Besides, Jeon et al. [26] presented a deep regression Bayesian network for 
extracting the main coronary artery centerline, creatively detecting branching sites by adopting a 
particle filter. The proposed method performed more effectively when extracting coronary arteries 
with sharp curvature. However, the extraction process combined with topological structure is 
complicated and needs large amounts of training data. In the future, based on more-powerful 
computers and large-scale data, the topological structure can be considered to improve the accuracy 
of coronary centerline extraction. 

Furthermore, our proposed method still has some limitations. Firstly, all cases in this work had 
nonsignificant coronary stenosis, whose Fractional Flow Reserve (FFR) was greater than 0.80 [27,28]. It 
is difficult to extract coronary centerline in the presence of severe epicardial stenosis (diameter 
severity [DS] ൒ 70%) [29], hence, the multi-scale model would be an interesting exploration in the 
future. Secondly, a major limitation is the low number of cases included in this study. Generally, the 
CTA examination is more suitable for early screening of CAD and the prognosis of interventional 
treatment. A large number of nonsignificant coronary stenosis patients have not received sufficient 
attention and complete examination in clinical practice. Therefore, it is difficult to collect large 
amounts of data in a short period. Besides, to more accurately identify coronary small vessels, we 
used 256-slice spiral CT images in this study, whose high cost also increased difficulties in data 
collection. In future studies,  large-scale studies can be considered to improve the accuracy of 
coronary centerline extraction and optimize our method for severe coronary artery stenosis. However, 
a large training set requires time-consuming manual annotations. In this case, semi-automatic 
supervision method is recently used in medical image analysis, which can effectively address the 
insufficient data problem and has achieved  significant performance [30–33]. Accordingly, our 
approach can be further investigated by combining the semi-automatic supervision method. 

5. Conclusions 

In summary, we proposed a regression-based tracking method for coronary artery centerline 
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extraction. Our approach can effectively deal with multi-branch problems and realize further 
coronary artery extraction. Future work can combine multi-scale model or semi-automatic 
supervision method for improvement, powerfully assisting CAD diagnoses. 
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