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Abstract: Aiming at the problem of on-load tap changer (OLTC) fault diagnosis under imbalanced 

data conditions (the number of fault states is far less than that of normal data), this paper proposes an 

OLTC fault diagnosis method based on an Improved Grey Wolf algorithm (IGWO) and Weighted 

Extreme Learning Machine (WELM) optimization. Firstly, the proposed method assigns different 

weights to each sample ac-cording to WELM, and measures the classification ability of WELM 

based on G-mean, so as to realize the modeling of imbalanced data. Secondly, the method uses 

IGWO to optimize the input weight and hidden layer offset of WELM, avoiding the problems of low 

search speed and local optimization, and achieving high search efficiency. The results show that 

IGWO-WLEM can effectively diagnose OLTC faults under imbalanced data conditions, with an 

improvement of at least 5% compared with existing methods. 
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1. Introduction  

An on-load tap changer (OLTC) is the core component in a load-ratio voltage transformer and 

the only movable component in a transformer. As the mechanical structure of an on-load tap-changer 

is complicated and the voltage is frequently regulated, it experiences frequent faults. According to 

international transformer fault data, the faults caused by OLTCs account for more than 20% of total 
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transformer faults, and the fault rate is on the rise [1]. In view of the characteristics of OLTCs, such as 

high failure rate, frequent actions, and wide influence range, it is necessary to further improve the 

online monitoring of OLTCs to ensure the high-quality, safe and stable operation of power systems [2]. 

As one of the most effective fault diagnosis methods at present, the vibration analysis method is 

widely used in mechanical fault diagnosis because of its advantages of simple operation, accurate 

analysis and nondestructive testing [3,4]. This method has already achieved good results in large power 

equipment such as transformers. The application of the vibration analysis method to OLTC mechanical 

condition detection started late, and was first proposed by Bengtsson and others of ABB Company in 

the 1990s, and has been paid increasing attention by Chinese and foreign scholars since then [5]. How 

to extract the effective characteristic quantity from OLTC vibration and build a fault diagnosis model 

for OLTCs is the key to this detection technology. For example, P. Kang et al. proposed to judge the 

mechanical state of an OLTC by using the characteristics of envelope [6] by setting typical OLTC 

mechanical faults, collecting vibration signals to extract envelope, and distinguishing different states. 

Continuous Wavelet Transform (CWT) has been used to analyze the vibration signal of OLTCs [7,8]. 

The state database of the OLTC is established by a two-dimensional wavelet coefficient “ridge 

distribution map”, and the different working conditions of the OLTC are judged. In ref [9], the phase 

space reconstruction method is used to reconstruct the vibration signal from low dimension to high 

dimension, and the phase trajectory diagram of the vibration signal is clustered by K-means, and 

different working conditions of the OLTC are judged. Ref [10] and Ref [11] use the empirical mode 

decomposition method and variational mode decomposition method to decompose the OLTC vibration 

signal to obtain natural frequency and then applies an optimized correlation vector machine and 

support vector machine to classify and diagnose the OLTC under different working conditions. The 

OLTC fault diagnosis model based on the vibration signal power spectrum and hidden Markov model 

is proposed in ref [12]. The experimental results show that the method has a good classification effect. 

In ref [13], an OLTC mechanical fault diagnosis model based on homologous and heterogeneous data 

fusion is proposed. Through the fusion of four features and image features, the fusion data is used to 

train the support vector machine for diagnosis. The results show that this method has good accuracy. 

However, in an actual fault diagnosis environment, the data collected on the spot generally have the 

problem of imbalanced distribution of categories (more samples in the normal state and fewer samples 

in the abnormal state), which cannot meet the requirements of model training.  

However, in the actual fault diagnosis environment, the data collected on site usually has the 

problem of imbalanced distribution of categories (more samples under normal conditions and fewer 

samples under abnormal conditions), which cannot meet the requirements of model training. Therefore, 

it is necessary to further adopt appropriate mathematical models to solve the problem of OLTC 

imbalanced data failure. Many scholars have studied imbalanced data using AdaBoost, CNN, LSTM, 

Smote and WELM. Among them, refs [14–16] deals with data imbalance through the combination of 

AdaBoost and SVM, GUS-LSTM and an improved AdaBoost algorithm, respectively. Refs [17,18] 

uses layered CNN and adaptive cost sensitive CNN to train samples as data, so as to solve the problem 

of imbalanced data. Ref [19] uses the advantages of AdaBoost adaptive weight assignment, and 

combines with CNN to solve the problem of imbalanced data. Ref [20] uses the advantage of time 

perception to improve the LSTM model, so as to solve the problem of imbalanced data. Refs [21–23] 

uses K-medoids-Smote, ACC Smote and Smote ASVM to deal with the problem of imbalanced data, 

and the results show that they have high classification accuracy. Ref [24] and ref [25] respectively use 

the PSO algorithm and DA to optimize WELM correlation against the defects of WELM. The results 
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showed that the classification accuracy of the optimized WELM was significantly improved compared 

with the unmodified WELM. 

The WELM method is used to solve the problem of OLTC imbalanced data based on the idea of 

ref [21]. Based on the advantages of GWO in parameter optimization, this paper uses the GWO 

algorithm to optimize WELM input weight and hidden layer offset parameters. However, similar to 

other methods, in the late iteration period of GWO algorithm, the grey wolf individual search speed 

gradually decreases, and the overall convergence is premature, which increases the probability of 

falling into local optimum. Considering that the PSO algorithm has better search ability and higher 

execution strategy, this paper introduces the PSO algorithm into the update equation of the grey wolf 

algorithm, and proposes the improved grey wolf optimization (IGWO) and OLTC fault diagnosis 

method of WELM (IGWO-OLTC for short). As an improvement strategy, IGWO-OLTC can improve 

the search ability and development ability of the whole algorithm, and reduce the probability of falling 

into local optimum. 

This paper presents an OLTC fault diagnosis method based on improved Grey Wolf Optimization 

(IGWO) algorithm and WELM. The research consists of three parts: 1) Aiming at the problem that the 

classification results of traditional machine learning algorithms are not accurate when dealing with 

imbalanced data, a WELM based OLTC fault diagnosis model is proposed; 2) Because WELM is 

easily affected by input weight and hidden layer deviation, GWO is used to optimize WELM; 3) 

Considering that the GWO can easily fall into local optimum and the convergence speed is slow, the 

particle swarm optimization algorithm is used to optimize it, and the IGWO-WELM fault diagnosis 

model is proposed. Through the analysis of simulation data and experimental data, the proposed fault 

diagnosis model has high accuracy. 

2. IGWO method 

2.1. GWO Method 

Marjiali et al. proposed a new swarm intelligence algorithm based on the tightly organized 

system and hunting behavior of grey wolves, which includes three parts: tracking prey, surrounding 

prey, attacking prey, and other optimization processes, summarized as follows [26–28]: 

1) Rank stratification of wolf pack: 

 

Figure 1. Hierarchy of grey wolf individuals. 

Grey wolves mainly live in groups, and the group follows the social hierarchy, as shown in 

Figure 1. It can be seen from the figure that the α Wolf is the leader of the social group and is mainly 

responsible for making decisions about activities such as predation, while the rest of the wolves obey 

the command of the α Wolf. Level 2: β Wolf, obeying and assisting α Wolf, can dominate all the 
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wolves except for α Wolf. Level 3: δ Wolf, obeying the arrangement of α and β Wolf at the same time, 

can dominate the rest of the remaining wolf pack, and rank ω is the lowest level. The overall predation 

behavior of grey wolves is led by α wolves, and the task of other wolves is to besiege the prey. 

2) Surrounding prey: 

 Grey wolves surround their prey as they hunt. The mathematical model of encircling prey is as 

follows: 

( ) ( )pD C X t X t                                     (1) 

where X(t) represents the position of grey wolves, and Xp represents the position vector of prey: 

( 1) pX t X A D                                      (2) 

where A and C represent coefficient vectors, and the calculation formula is as follows: 

12 ( 1)A a r                                      (3)  

22C r t                                       (4) 

where t represents the current number of iterations, and a = 2 (1-t/Tmax) represents that the variable 

decreases linearly from 2 to 0, r1, r2 ∈[0,1] during the iteration process. 

3) Hunting prey: 

Grey wolves can identify prey and surround it. The search process is α Wolf commands and 

leads, β and δ sometimes, they will take part in hunting. Hypothesis α, β and δ The wolf can have a 

deeper understanding of the potential location of prey, and accordingly, during the algorithm iteration 

process, save the best location of the three wolves in the current population, and mark them as α, β 

and δ. Then, according to the position of the three parameters ϖ Wolf individuals are updated, and 

the mathematical model is as follows: 

1 1 1 1

2 2 2 2

3 3 3 3

( 1) ( ) ( ) ( )

( 1) ( ) ( ) ( )

( 1) ( ) ( ) ( )

X t X t A C X t A X t
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 

 

 

      

      

      

                              (5) 

1 2 3( 1) ( 1) ( 1)
( 1)

3

X t X t X t
X t

    
                                   (6) 

where X represents the position of the grey wolves. When 1A  , the grey wolves will try to disperse 

in each area to search for prey. When 1A  , the wolves will search for prey in a predetermined area. 

2.2. IGWO method 

The GWO algorithm has been successfully applied in the fields of job shop scheduling, power 

system analysis, economic forecasting, etc. However, like other algorithms, the GWO is prone to fall 

into the local optimum and has a slow convergence speed [28]. Therefore, in order to improve the 
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global convergence and convergence speed, this paper uses the Particle Swarm Optimization (PSO) 

algorithm to improve the grey wolf algorithm, namely IGWO [27]. The main reason for choosing the 

PSO algorithm is that the search process is simple and easy to implement, and the convergence speed 

and search speed are fast. The specific formula is as follows: 

1 2 ,( 1) ( ) ( (t) ( )) b ( (t) ( ))
ii i gbest i i gbest iv t X t b rand P X t rand P X t       ，               (7) 

          ( 1) ( ) ( 1)i iX t X t v t                                      (8) (8) 

where, b1 and b2 are learning factors, Pgbest,t and t are the best positions experienced by the i-th grey 

wolf individual, ω is the inertial weight, and the inertial weight formula is as follows: 

max min max= ( ) /t T                                    (9)  

Where, max  is the maximum weight value, min  is the minimum weight value, and Tmax is the 

maximum number of iterations. 

2.3. IGWO algorithm 

In order to verify the effectiveness of the algorithm, eight common standard test functions are 

used in this paper to verify the IGWO, GOA, PSO, MFO, GWO and SCA algorithms [26,29]. The 

test function expressions are shown in Table 1. In order to verify the effectiveness of the proposed 

algorithm, the average value, the lowest value, the best fitness value, the standard deviation, the 

precision rate and the optimization success rate are used as evaluation indexes to calculate. 

Table 1. Test functions. 

Functions Range Dim fmin 
2
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This paper tests each function in the table 20 times, including 30 algorithm populations and 500 

iterations. The final calculation results for IGWO and GOA, PSO, MFO, GWO and SCA, are shown 

in Table 2. 

Table 2. Test functions F1−F8. 

Functions Index IGWO GWO PSO   MFO  GOA  SCA 

F1 

Best 7.28 × 10-11 5.06 × 104 3.25 × 10-5 1.850 7.1251 0.8100 

Worst 3.24 × 10-7 6.77 × 104 3.71 × 10-4 99.453 135.78 10.110 

Ave. 1.14 × 10-7 6.15 × 104 1.42 × 10-4 23.23 41.65 6.1320 

STD 1.43 × 10-7 6.47 × 103 1.44 × 10-4 42.650 53.00 3.8269 

SR% 100 0 100 0 0 0 

F2 

Best 6.14 × 10-10 3.140 × 106 0.0093 20.08 7.464 0.0053 

Worst 5.93 × 10-8 5.960 × 1012 0.0300 70.00 26.02 0.0300 

Ave. 1.98 × 10-8 2.950 × 1012 0.0156 48.03 15.24 0.0156 

STD 2.75 × 10-8 2.756 × 1012 0.0093 21.64 7.354 0.0093 

SR% 100 0 0 0 0 0 

F3 

Best 2.61 × 10-5 8.16 × 104 39.61 8.67 × 103 1.94 × 103 2.38 × 103 

Worst 5.21 × 10-4 1.21 × 105 133.52 2.62 × 104 4.78 × 103 1.98 × 104 

Ave. 1.92 × 10-4 1.00 × 105 79.503 1.80 × 104 2.86 × 103 8.10 × 103 

STD 2.85 × 10-4 1.90 × 104 35.098 7.14 × 103 1.15 × 103 7.44 × 103 

SR% 100 0 0 0 0 0 

F4 

Best 2.44 × 10-15 489.57 3.39 × 10-6 0.64 1.004 0.970 

Worst 1.15 × 10-11 660.11 0.0074 90.98 1.121 1.141 

Ave. 2.61 × 10-12 598.50 0.0045 18.88 1.080 1.077 

STD 5.05 × 10-12 66.991 0.0041 40.30 0.047 0.065 

SR% 100 0 100 0 0 0 

F5 

Best 0.0081 76.313 0.103 0.170 0.024 0.030 

Worst 0.0752 133.39 0.236 27.00 0.099 0.790 

Ave. 0.0310 116.04 0.144 6.091 0.046 0.234 

STD 0.0309 23.214 0.053 11.746 0.030 0.316 

SR% 0 0 0 0 0 0 

F6 

Best 3.22 × 10-10 19.959 0.0062 3.503 3.890 9.463 

Worst 5.88 × 10-8 19.962 1.1564 19.96 5.597 20.27 

Ave. 2.17 × 10-8 19.960 0.2511 15.90 4.585 16.64 

STD 3.22 × 10-8 9.83 × 10-4 0.5063 7.028 0.757 4.974 

SR% 100 0 0 0 0 0 

F7 

Best 2.44 × 10-15 489.57 3.39 × 10-6 0.64 1.004 0.970 

Worst 1.15 × 10-11 660.11 0.0074 90.98 1.121 1.141 

Ave. 2.61 × 10-12 598.50 0.0045 18.88 1.080 1.077 

STD 5.05 × 10-12 66.991 0.0041 40.30 0.047 0.065 

SR% 100 0 100 0 0 0 

F8 

Best 2.14 × 10-5 3.56 × 108 4.35 × 10-4 1.228 6.561 1.575 

Worst 0.0069 6.69 × 108 0.103 12.18 16.54 1.36 × 104 

Ave. 0.0031 5.27 × 108 0.041 7.024 10.89 2.74 × 103 

STD 0.0034 1.20 × 108 0.056 4.062 3.989 6.12 × 103 

SR% 100 0 100 0 0 0 

Ave. SR% 75% 0 37.5% 0 0 0 

Fiderman Average 1.0000 6.0000 2.1875 4.5000   3.6250 3.6875 

Fiderman STD 1.125 5.500 2.3125 4.7500 3.2500 4.0625 

Wilcoxon — 7.93 × 10-7 7.93 × 10-7 7.94 × 10-7 8.73 × 10-7 7.94 × 10-7 

It can be seen from the total statistical values of SRs in Table 2 that the number of IGWOs is 6, 

the average value is 75%, the number of PSOs is 3, the average value of PSOs is 37.5%, and the 

value of the other 4 SRs is 0, indicating that the optimization ability of the method presented in this 
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paper is the best of the six methods. According to the table, the standard deviation and mean value of 

IGWO are the smallest of the eight algorithms. Friedman test was performed on the means and 

standard deviations of all the algorithms, and the results are ranked as follows: IGWO < PSO < GOA 

< SCA < MFO < GWO. The Wilcoxon test shows that the progressive significance of IWOA and the 

five optimization algorithms in the same dimension is less than 0.05, which proves that there is a 

significant difference between IWOA and the five different algorithms mentioned above. The above 

verification shows that IGWO has excellent optimization accuracy and stability. 

 

  

    
 

 

Figure 2. Test function simulation results. 

Figure 2 records the convergence results of IGWO, GWO, PSO, MFO, GOA and SCA in each 

test function. It can be seen from the eight figures that the method in this paper has a faster 

convergence speed compared with the other seven methods. As can be seen from the F1–F3 and F6–
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F8 iteration graphs, the IGWO algorithm significantly outperforms the other algorithms in 

convergence speed and reaches the optimal value at the end of the iteration. With the increase of the 

number of iterations, the convergence rate of IGWO is the fastest in all algorithms except F4 and F5, 

which further indicates that the improvement of GWO algorithm by PSO is effective. 

3. Imbalanced data fault diagnosis model based on IGWO-WELM 

3.1. WELM algorithm 

Weighted Extreme Learning Machine (WELM) was proposed by Zong et al. [30] in 2013. This 

method retains the advantages of ELM, such as easy implementation and wide classification of 

mapping functions, and can be directly used to deal with data imbalance problems. 

The WELM correlation principle is implemented based on the cost-sensitive idea. Each sample xi 

is weighted by introducing a weighting matrix, and the diagonal matrix W of Ns × Ns is formed by 

weighting, and the elements on the diagonal are the weight values of corresponding samples. If xi 

belongs to the majority class, a smaller weight is assigned; conversely, if xi is a minority class, a 

larger weight is assigned. After the weight ω is introduced, the optimization problem of WELM can 

be obtained according to the solution idea of extreme learning machine in the last section, and the 

mathematical problem can be modeled. The expression of WELM is as follows [31]: 

22

1

1 1
Minimize:

2 2

sN

ii
CW 


                            (10) 

The constraint expression is as follows: 

     ( ) , 1, 2, , , 1, 2, ,i j i i i sh a x b q i L j N                            (11) 

The corresponding Lagrangian form is: 

 
s

WELM

22

1
1

1 1
( , , ) ( )

2 2

s

i

N
N

i i ii
i

M CW H q       




                            (12) 

According to KKT theory, the Lagrange penalty factor λ is assumed to be constant. Let the partial 

derivative of WELM with respect to Φ, λ, and ξ be 0, and the specific equation is as follows [30]: 

T( , , )
=0 =

( , , )
=0 =

( , , )
=0 0

i

i

i i

i

M
H

M
CW

M
H q
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

  
 



  
 













   



 (13) 

 

 

   The corresponding Φ expression is shown in the following equation: 
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(14) 

where I represents the identity matrix and L represents the number of hidden layers in the network. 

For binary classification problems, the decision function of WELM classifier is ( ) sign ( )f x h x  , and 

the specific expression is as follows: 

 

(15) 

3.2. IGWO-WELM imbalance diagnostic model 

Although the WELM algorithm is widely used for data imbalance, WELM, as a variant of ELM 

derived from the weighting idea, has similar problems to ELM. The randomly selected hidden layer 

bias and input weight may lead to model ill-conditioning problems, resulting in an unsatisfactory 

diagnosis. To solve the above problems and further improve the fault diagnosis accuracy of WELM, 

this paper uses IGWO to optimize the input weight and implicit bias of WELM and establishes an 

OLTC data imbalance fault diagnosis model based on IGWO-WELM (Weighted Extreme Learning 

Machine Based on Improved Grey Wolf Algorithm). 

(a) Design of fitness function 

To evaluate and select the next generation of grey wolf individuals, appropriate evaluation 

criteria must be selected as the fitness function of IGWO. The commonly used performance 

evaluation index of conventional machine learning algorithms is Accuracy (ACC). However, when 

ACC is used as an evaluation index to evaluate the performance of imbalanced data classification 

algorithms, the algorithm results will be biased toward most categories, resulting in high 

classification accuracy and the possibility of a high false-negative rate. Therefore, ACC is not 

suitable as a classification index for imbalanced data, and an evaluation index that can take into 

account both majority and minority classification results is needed. 

Table 3. The confusion matrix table. 

Predicted labels 
The actual label 

Positive category Negative category 

Positive category TP FP 

Negative category FN TN 

For binary classification problems, the minority class is usually defined as a positive category, 

and the majority class is defined as a negative category. In order to evaluate the classification results, 

the sample set is assumed to be composed of P anode and N cathode samples, and TP, FN, TN and 
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FP are defined respectively, where TP represents the number of correctly classified samples in the 

positive category, FN represents the number of incorrectly classified samples in the positive category, 

TN represents the number of correctly classified samples in the negative category, and FP represents 

the number of misclassified samples in the negative category, according to this confusion matrix, as 

shown in Table 3 [32,33]. 

Two indexes are obtained according to Table 3, namely Recall and G-mean, which evaluate the 

classification results of positive categories. A larger Recall value means that most positive category 

samples are detected, and G-mean is a good index for overall evaluation. The calculation formulas 

for Recall and G-mean are as follows [32,33]: 

TP
Recall

TP FN



                                     (16) 

-
TP TN

G mean
TP FN TN FP

 
 

                              (17) 

According to Eq (16), the fitness function expression of IGWO-WELM is as follows: 

1

1
-

c

i

fitness G mean
c 

                                 (18) 

Where, c represents the number of categories and fitness represents the fitness function. 

3.3. IGWO-WELM imbalance diagnostic model 

The main steps of the IGWO-WELM algorithm are as follows: 

Start

Initialize population parameters through grey wolf 

algorithm

If iterations is reached？

Initialize the location Xi of grey wolf individuals

Calculate the fitness value and set the first three 

optimal fitness values as α、β、δ， Its 

corresponding position is X α、 X β、 X δ

Use equation (5) to calculate the grey wolf 

individual's α、β、δ Updated settings X1, X2, X3 

under the guidance of wolves

According to Formula (8)~(10), update the 

movement speed vi and position Xi of grey wolf 

individuals

N

Y

Get the optimal parameters

The optimal parameters are input into WELM 

to obtain the final classification results

End

Update the values of A and C

 

Figure 3. Imbalanced data fault diagnosis model based on IGWO-WELM. 
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1) Set the initial parameters A, C and a of the algorithm, the maximum number of iterations Tmax, 

and select the appropriate number of wolves N; 

2) According to the order from large to small, the fitness is calculated by Eq (18). The individuals 

corresponding to the first three fitness values are α, β, δ, and the corresponding positions of each grey 

wolf are Xα, Xβ, and Xδ, respectively. 

3) Calculate A and C according to Eqs (3) and (4); 

4) According to Eq (6), the update positions of individual gray wolves under the guidance of α, β and δ 

wolves are calculated as X1, X2 and X3, respectively; 

5) According to Eqs (7)−(9), the moving speed vi and moving position Xi of grey wolf individuals are 

updated with the idea of particle swarm optimization; 

6) Judge whether t reaches Tmax, and if so, obtain the optimal input weight and hidden layer offset; 

Otherwise, return to step 2; 

The WELM model is tested on the test set with the optimal weight and hidden layer bias, and the 

final classification results are obtained. The specific process of the diagnosis model is shown in Figure 3. 

4. Analysis of fault diagnosis results 

4.1. Analysis of experimental results of imbalanced datasets based on KEEL 

To observe the generalization ability of IGWO-WELM, eight datasets in the KEEL database are 

used to verify the proposed method, which contain binary and multi-classification datasets, and all of 

them have data imbalance problems. The specific parameters of the data are shown in Table 4. In order to 

illustrate the generalization ability, the proportion of data imbalance in the table increases gradually from 

top to bottom. 

In order to comprehensively analyze the IGWO-WELM method, GWO-WELM [34], 

GOA-WELM [34], GA-WELM [34], WOA-WELM [34], PSO-WELM [24], WELM, and Support 

Vector Machine (SVM) are used as the over sampling algorithms of the base classifier (SMOTE-SVM, 

SSVM), and Kernel Extreme Learning Machine (KELM) [32] are used as the over sampling algorithms 

of the base classifier (SMOTE-KELM, SKELM) [35]. The improved oversampling algorithm - 

Borderline SMOTE for random forest (RF) (Borderline SMOTE- Random F the sampling size of each 

algorithm N = 10, the maximum number of iterations Tmax = 30, the kernel parameter g of SVM is 1, 

and the penalty factor c is 2. The specific parameters of each algorithm are shown in Table 5. 

Table 4. The characteristics of KEEL datasets. 

Dataset  Abbreviation Scale Dim Imbalance ratio 

wine win 178 13 1.5 

contraceptive con 1473 9 1.89 

newth-yroid2 ny2 215 5 5.14 

dermatology der 366 34 5.55 

segment0 seg 2308 19 6.02 

zoo3 zo3 101 16 19.2 

lymphography ly 148 18 40.5 

shuttle shu 2175 9 853 
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Table 5. Parameter comparison table. 

Algorithm Parameters 

PSO wmax = 0.9, w min = 0.2, C1 = 2, C2 = 2 

GOA Cmax = 1, Cmin = 0.00004 

MFO t ∈ [-1,1]. b = 1 

SVM Nuclear parameter g1 = 1, Penalty factor c3 = 2 

KELM Nuclear parameter g2 = 1, Penalty factor c4 = 2 

RF The number of decision trees s1 = 10, the maximum number of features c5 = 42 

80% of each category in the eight data sets is randomly selected as the training set and 20% as 

the test set. In order to avoid the randomness brought by the algorithm, each algorithm repeats the 

calculation 30 times to obtain the G-mean value and average it. It should be noted that SKELM, 

SSVM, and BSRF are used for training. First, the training set is oversampled, and different types of 

data samples in the training set are balanced. Then KELM, SVM and RF are trained to establish a 

classification model for the balanced training set. Finally, the test samples are input into the 

established classification model to verify the performance of the oversampling algorithm. 

To verify the optimization performance of IGWO, the IGWO algorithm, GWO, GOA, WELM, 

MFO and GA algorithms are used to verify the optimization performance of WELM. The iteration 

diagram is shown in Figure 4. It can be seen from the figure that with the increase of iteration times, the 

advantages of IGWO are gradually highlighted, and it is optimal in all eight data sets. 

Table 6. Classification results of the different algorithms. 

Method 
G-mean (%)  

win con ny2 der seg zo3 ly Shu 

IGWO-WELM 100 68.43 99.19 99.56 85.28 86.70 74.37 98.78 

GWO-WELM 100 52.47 83.65 87.34 46.01 75.57 67.43 78.69 

WOA-WELM 94.66 52.51 77.98 66.34 48.57 66.53 62.50 65.67 

GOA-WELM 73.48 34.75 47.07 47.17 43.08 50.16 57.12 34.06 

GA-WELM 97.72 51.65 76.74 79.60 49.01 72.51 62.61 91.02 

PSO-WELM 100 58.87 98.46 98.18 66.81 81.73 72.22 97.01 

WELM 89.88 53.25 64.76 53.67 27.93 55.88 56.71 78.59 

SSVM 86.57 53.48 91.52 90.25 75.54 71.85 56.95 89.26 

SKELM 87.35 63.54 92.59 89.65 77.62 78.56 72.45 91.56 

BSRF 92.51 70.26 95.23 93.56 81.56 82.35 73.52 92.15 

Table 6 shows the imbalanced classification results the different algorithms. It can be seen from the 

results that the evaluation indicators of the remaining 8 KEEL datasets of IGWO-WELM have the best 

results, except that the evaluation indicators of the contractual dataset are less than those of BSRF. To 

sum up, IGWO-WELM is better than the other nine methods in imbalanced data classification. 

In order to evaluate the impact of imbalanced data on the proposed model, models with an 

imbalanced ratio of training data of 2:1, 3:1, 4:1, 5:1, 6:1, and 7:1 were used to verify IGWO-WELM. 

When designing the training data of imbalanced data, 48 samples are randomly selected from the 

normal state feature set composed used as in ref [2], and 24 samples are randomly selected from 

other fault sample feature sets to form the 2:1 imbalanced monitoring data and conduct training. 

Similarly, 24 samples are randomly selected from the feature set, 24 samples are randomly selected 

from other fault sample feature sets, and all the remaining samples form a test set. Calculate 30 times 
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under each proportion, and calculate the average value as the final test result. 
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Figure 4. Imbalanced data fault diagnosis model based on IGWO-WELM. (a) Iteration 

of different algorithms for wine data. (b) Iteration of different algorithms for 

contraceptive data. (c) Iteration of different algorithms for newth-yroid2 data. (d) 

Iteration of different algorithms for dermatology data. (e) Iteration of different algorithms 

for segment data. (f) Iteration of different algorithms for zoo data. (g) Iteration of 

different algorithms for lymphography data. (h) Iteration of different algorithms for 

shuttle data. 
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Table 7. Classification results of the different algorithms. 

Method 
G-mean (%) 

2:1 3:1 4:1 5:1 6:1 7:1 Mean 

IGWO-WELM 97.57 94.56 93.23 92.01 91.25 89.59 93.05 

GWO-WELM 91.80 89.56 87.12 86.25 85.23 84.37 87.38 

WOA-WELM 73.82 72.15 70.51 68.15 65.12 57.61 67.75 

GOA-WELM 87.52 85.23 83.56 82.12 75.65 72.89 81.16 

GA-WELM 92.43 90.12 88.23 85.12 82.65 79.25 86.30 

PSO-WELM 93.15 91.25 89.32 85.64 83.82 82.74 87.65 

WELM 60.08 58.23 56.45 52.37 53.42 46.29 55.47 

SSVM 87.52 84.23 82.15 78.61 74.23 72.56 79.88 

SKELM 89.76 87.56 85.65 81.72 79.52 76.89 83.52 

BSRF 92.61 89.23 88.56 84.75 82.32 80.56 86.34 

Furthermore, the proportion of fault samples mistaken as normal samples in the total number of 

fault samples is calculated for statistics, which is defined as the false alarm rate, as shown in Table 8. 

Table 8. False alarm rate of the different algorithms. 

Method 
False alarm rate under different imbalanced proportions (%) 

2:1 3:1 4:1 5:1 6:1 7:1 Mean 

IGWO-WELM 9.292 9.580 10.23 11.21 12.42 13.13 12.43 

GWO-WELM 17.25 17.86 18.54 19.23 20.42 21.23 19.01 

WOA-WELM 28.50 31.64 32.45 33.56 34.52 35.62 32.72 

GOA-WELM 18.64 20.15 21.28 22.62 23.45 25.35 21.92 

GA-WELM 24.63 25.45 26.68 27.52 28.23 29.52 27.17 

IPSO-WELM 12.16 13.05 13.45 15.42 16.58 19.21 14.98 

WELM 18.70 19.50 19.86 20.21 21.23 22.34 20.31 

SSVM 17.56 19.25 20.68 21.56 23.26 24.85 21.19 

SKELM 13.25  15.51 17.62 18.65 19.52 21.68 17.70 

BSRF 9.895 11.62 12.75 15.53 16.65 18.54 14.16 

As shown in Table 7, the overall performance of the IGWO-WELM algorithm in OLTC 

imbalance data diagnosis is better than that of the other nine methods. As the imbalance of the 

imbalance data gradually deepens, the advantages of the IGWO-WELM algorithm become 

increasingly obvious. The G-mean values of IGWO-WELM under different proportions are higher 

than those of the other nine methods, and the average values are higher than PSO-WELM, 

GA-WELM, GOA-WELM, WOA-WELM, GWO-WELM, WELM, SSVM, SKELM and BSRF at 

11.89, 25.3, 5.67, 37.58, 13.17, 9.53 and 9.41% respectively. Secondly, the BSRF is better, which 

shows that the over-sampling algorithm is feasible to change the training set method, but it is still not 

as effective as IGWO-WELM. The worst method is WELM. This is due to the influence of hidden 

layer bias and input weight on the model, which makes the diagnosis accuracy low. This shows the 

importance of WELM parameter optimization. Table 7 further shows that the optimization effect of 

WOA-WELM is the worst among the six optimization methods, followed by GOA-WELM, which is 

caused by the performance defect of the algorithm itself.  
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(d)                           (e)                          (f) 
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(i)                           (j)   

Figure 5. Classification results of different algorithms. (a) PSO algorithm classification 

results. (b) GA algorithm classification results. (c) GOA algorithm classification results. 

(d) WOA algorithm classification results. (e) GWO algorithm classification results. (f) 

IGWO algorithm classification results. (g) WELM algorithm classification results. (h) 

SSVM algorithm classification results. (i) SKELM algorithm classification results. (j) 

BSRF algorithm classification results. 
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From Table 8, we can see that IGWO-WELM has the lowest false alarm rate among all the methods 

and can maintain the false alarm rate at a low level, significantly lower than the other nine algorithms. 

It can be further seen from the table that WOA-WELM has the highest false alarm rate among the 10 

methods, followed by GA-WELM and GOA-WELM. For further explanation, it can be seen from 

Figure 5 that IGWO-WELM has the best effect among all classification methods, followed by 

PSO-WELM, GA-WELM, GGO-WELM, SSVM, SKELM and BSRF, and the worst are 

WOA-WELM and WELM. WELM is not optimized, resulting in poor results. To sum up, it can be 

further shown that the WOA WELM algorithm is not suitable for OLTC unbalanced data fault diagnosis. 

5. Conclusions 

Aiming at the problems of classification bias and model invalidation when traditional machine 

learning algorithms deal with OLTC imbalanced data distribution, this paper proposes a fault 

diagnosis method for OLTC imbalanced distribution based on IGWO-WELM. The main conclusions 

are as follows: 

1) The particle algorithm is used to improve GWO, and the IGWO algorithm is proposed. This 

algorithm can overcome the problem that the GWO algorithm can easily fall into the local optimum 

and has slow convergence. 

2) IGWO-WELM algorithm is proposed by using IGWO's good global search and fast 

convergence ability to optimize the input weight and implicit offset of WELM, and G-mean is used 

as the fitness function of IGWO-WELM. 

3) By comparing other classical methods of imbalanced data fault diagnosis with the method in 

this paper through the KEEL datasets and OLTC dataset, the method in this paper shows improvement 

of least 5%, which has certain theoretical research and practical engineering significance. 
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