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Abstract: Human evolution is carried out by two genetic systems based on DNA and another based 

on the transmission of information through the functions of the nervous system. In computational 

neuroscience, mathematical neural models are used to describe the biological function of the brain. 

Discrete-time neural models have received particular attention due to their simple analysis and low 

computational costs. From the concept of neuroscience, discrete fractional order neuron models 

incorporate the memory in a dynamic model. This paper introduces the fractional order discrete Rulkov 

neuron map. The presented model is analyzed dynamically and also in terms of synchronization ability. 

First, the Rulkov neuron map is examined in terms of phase plane, bifurcation diagram, and Lyapunov 

exponent. The biological behaviors of the Rulkov neuron map, such as silence, bursting, and chaotic 

firing, also exist in its discrete fractional-order version. The bifurcation diagrams of the proposed 

model are investigated under the effect of the neuron model's parameters and the fractional order. The 

stability regions of the system are theoretically and numerically obtained, and it is shown that 

increasing the order of the fractional order decreases the stable areas. Finally, the synchronization 

behavior of two fractional-order models is investigated. The results represent that the fractional-order 

systems cannot reach complete synchronization. 
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1. Introduction  

Computational neuroscience studies the function of the brain from different molecular, cellular 

and behavioral levels [1]. The mathematical neuronal models are used to evaluate the qualitative 

function of neurons [2,3]. A wide variety of neural activities, such as different firing patterns, can be 

represented by neuronal models [4–8]. Neuronal models are generally divided into continuous time 

and discrete time. Continuous time neuronal models are described by the ordinary differential equations 

(ODE) such as Hodgkin-Huxley [9], Fitzhugh-Nagumo [10,11], and Hindmarsh-Rose [12,13]. For 

example, Njitack and colleagues examined the effect of a memristive autapse on the dynamics of a 

two-dimensional Hindmarsh–Rose neuron [14]. In another work, the effect of a two-dimensional 

FitzHugh–Nagumo, along with a 3D Hindmarsh–Rose neuronal model, was evaluated by coupling a 

multistability memristive synapse [15]. Models of continuous time neurons have been extensively 

studied dynamically, while less attention has been paid to the map-based discrete time models [16]. 

The distinctive features of discrete-time neuron maps are their high potential for complex behavior 

modeling, memory savings, and simplifying large neural network calculations [17,18]. Therefore, 

many scientists have tried to introduce discrete-time neuron maps [19]. For example, with the Euler 

discretization of the Hodgkin-Huxley neuronal model, the Izhikevich neuronal model was introduced 

[20]. The Nagumo-Sato discrete neuronal model was proposed in 1972 [21], and in 1990 a modified 

version of this model was introduced[22]. A one-dimensional map-based neuronal model of self-

interaction was proposed in 1997 by Pasemann [23]. In 2001, Rulkov proposed a simple two-

dimensional turbulent neuron model, one of the first phenomenological models to show a variety of 

basic neural behaviors (bursts of spikes, spikes, silence) [24]. Mathematical modeling of bursts and 

some spikes is impossible in the context of two-dimensional continuous-time systems, but Rulkov's 

two-dimensional model can demonstrate these behaviors [25]. 

The dynamic behaviors of the coupled Rulkov neuron map have been studied in recent 

research [26–28]. Sun et al. investigated the complete synchronization of Rulkov chaotic neural 

networks using master stability function analysis [29]. Franović investigated the effects of synaptic 

time delay on Rulkov map neurons with chemical coupling [30]. Rakshit et al. examined the 

stabilization, neural synchronization, and dynamics of two coupled Rulkov neurons with electrical and 

chemical synaptic interactions [31]. Wagemakers et al. introduced an electronic implementation of the 

Rulkov neuron map [32]. Li et al. proposed a discrete memristive neuron model based on the Rulkov 

model, which can better describe the actual firing activity of biological neurons due to biophysical 

memory [33]. Cheng et al. studied the synchronization dynamics of two heterogeneous chaotic 

Rulkov neurons with electrical synapses [34]. It is notable that the target for synchronization 

stability means energy balance between neurons and the neurons reach energy balance after 

complete synchronization [35,36]. 

Discrete fractional calculus has been used in the dynamic analysis of map-based systems. The 

fractional-order derivatives are relatively more accurate than actual order derivatives because they are 

an effective tool for describing the effect of memory on processing [37]. Memory effects in fractional 

order indicate that all previous models are involved in determining the system modes [38]. Over the 
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past several years, researchers have focused on incorporating the fractions in various applications of 

neural networks, physics, biology, etc. [39–43]. The discrete fraction order equation is also a powerful 

tool in modeling chaotic systems [44–46]. For example, Guo-Cheng et al. reported the delayed logistic 

equation using the discrete fractional calculus approach and the corresponding discrete perturbation [47]. 

Elsonbaty et al. proposed a susceptible-infected-treatment-recovered-susceptible (SITRS) fractional 

discrete model to simulate the coronavirus (COVID-19) epidemic [48]. Kassim et al. developed a 

secure image transfer scheme based on synchronizing turbulent time-discrete fractional systems [49]. 

Fractional derivative properties can be expressed in the biological sense as follows [50]: 

1. The fractional-order derivative represents the inheritance characteristics more accurately 

compared to integer-order models. 

2. FO neuron models correctly represent biological properties in the presence of noise, which 

full-order models fail to do. 

3. Dynamic firing activities of multiple time scales for a single neuron can be treated with FO 

derivatives. 

4. Firing frequency responses are better in fractional designs than in integer models. 

5. Dynamic excitatory properties reveal several neurocomputational properties that can be 

achieved in FO systems, which enrich functional neural mechanisms. 

In general, human evolution is done by two genetic systems based on DNA and another based on 

the transmission of information through the functions of the nervous system. Mechanisms underlying 

neuron-based inheritance include hippocampal neurogenesis and memory and learning processes that 

generate new neural complexes and alter brain structure and function [51]. From the concept of 

neuroscience, the discrete fractional order models the neuron's hereditary behaviors as memory in the 

dynamic model. Given the above, this paper aims to assist researchers in computational neuroscience 

by introducing a discrete fraction order derivative to the Rulkov neuronal model. The dynamics of the 

fractional order map is analyzed completely and, in the end, its synchronization is examined. 

Synchronization of neurons has become an interesting topic in recent years [26,52,53] due to its critical 

applications in the neural processes [54,55]. This paper includes the following sections: Section 2 

introduces the Rulkov neuron map, demonstrating the system's dynamic and biological behaviors. 

Section 3 presents a discrete fractional order Rulkov neuron map and dynamically evaluates the effect 

of fractional order and model parameters. In section 4, the fixed points are calculated, and their stability 

is examined. Section 5 investigates the synchronization of two fractional-order Rulkov neurons in 

different fractional orders, and finally, Section 6 gives conclusions. 

2. Mathematical Rulkov neuron map 

In this section, Rulkov neuron map is introduced as a discrete system. Rulkov neuron map is a 

discrete biological neuronal model proposed by Nikolai F. Rulkov in 2001 [24,25]. This model, in 

which 𝑛 indicates the discrete time, is defined as follows: 

𝑥𝑛+1 =
𝛼

1+𝑥𝑛
2 + 𝑦𝑛,         (2.1) 

𝑦𝑛+1 = 𝑦𝑛 − 𝜇(𝑥𝑛 − 𝜎),         (2.2) 

where the variable 𝑥𝑛  is the membrane potential of neurons, and the variable 𝑦𝑛  in the model is a 
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system-slowing variable due to the minimal value of 𝜇 (0 <  𝜇 << 1). Unlike the variable 𝑥𝑛 , the 

variable 𝑦𝑛 has no clear biological meaning [30]. The parameter 𝜎 is an external dc current to neurons, 

and the parameter 𝛼 is a nonlinear map parameter. The value of 𝜇 is always considered 0.001. By 

changing the parameters 𝜎 and 𝛼 of the system, different behaviors such as silence (𝜎 = −2 , 𝛼 =

6.22), bursting (𝜎 = −1 , 𝛼 = 4.1) and chaotic firing (𝜎 = −1 , 𝛼 = 5.7) can be seen which are shown 

in Figure 1 for random initial conditions. Phase diagram for burst mode and chaotic firing mode are 

shown in parts (d) and (e) of Figure 1. 

 

Figure 1. By changing the parameters σ and α, different behaviors of the system such as 

(a) silence (𝜎 = −2 , 𝛼 = 6.22), (b) bursting (𝜎 =  −1, 𝛼 =  4.1), and (c) chaotic firing 

(𝜎 = −1 , 𝛼 = 5.7) are observed with random initial condition. Phase diagram of (d) 

bursting and (e) chaotic firing for Rulkov neuron map using the random initial conditions 

between −1 and 1. 

In continuation, the dynamic analysis of the Rulkov neuron map is performed through bifurcation 

diagrams and the maximum Lyapunov exponents (MLE) calculations. The positive MLE proves the 

existence of chaotic behavior. The bifurcation diagram is plotted by changing the parameter 𝛼 in the 

range of 4 to 20 with random initial conditions in the range of [−1, 1] for the variable 𝑥𝑛 in part (a) 

and for the variable 𝑦𝑛 in part (b) of Figure 2. Also, the MLE of the model for parameter 𝛼 is shown 

in part (c) of Figure 2 (𝜎 = −0.1 , 𝜇 = 0.001). It can be seen that with the change of 𝛼 in the interval 

[4, 4.725], the neuron’s firing is period one (MLE is zero) and then enters chaos in 𝛼 = 4.725 until 

𝛼 = 8.576. At 𝛼 = 8.576, the firing changes to periodic and again by period doubling enters another 

chaotic region in 𝛼 = 14.688, and finally exits from chaos in 𝛼 = 19.280. There is also a periodic 
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window in the interval [16.213, 16.327]. The bifurcation diagram for variables 𝑥𝑛 and 𝑦𝑛 with respect 

to variation of parameter 𝜎 in the range of [−2.5, 0] are shown in parts (d) and (e) of Figure 2 (𝛼 =

4.1, and 𝜇 = 0.001). The corresponding MLE is drawn in part (f) of Figure 2. By changing σ, the 

dynamic behavior is periodic for the interval [−2.5, −1.632], [−1.632,−0.145], and then switches to 

chaotic. The bifurcation diagrams by changing parameter 𝜇 in the interval [0, 1] for 𝛼 = 4.1, and 𝜎 =

−0.1 are shown in parts (g) and (h) of Figure 2 for variables 𝑥𝑛 and 𝑦𝑛. By changing the μ parameter, 

the chaotic behavior is seen in the intervals [0, 0.087] and [0.377, 0.805]. 

 

Figure 2. Left panel: The bifurcation diagram by changing the parameter 𝛼 in the range 

[4, 20] for (a) the variable 𝑥𝑛, and (b) the variable 𝑦𝑛, and its corresponding maximum 

Lyapunov exponent (MLE) diagram (c) in 𝜎 = −0.1 , 𝜇 = 0.001 . Middle panel: The 

bifurcation diagram by changing the parameter 𝜎 in the range [−2.5, 0] for (d) the variable 

𝑥𝑛, and (e) the variable 𝑦𝑛, and its corresponding maximum Lyapunov exponent (MLE) 

diagram (f) in 𝛼 = 4.1, 𝜇 = 0.001. Right panel: The bifurcation diagram by changing the 

parameter 𝜇 in the range [0, 1] for (g) the variable 𝑥𝑛 , and (h) the variable 𝑦𝑛 , and its 

corresponding maximum Lyapunov exponent (MLE) diagram (i) in 𝛼 = 4.1, 𝜎 = −0.1. 

3. Fractional-order discrete Rulkov neuron map 

In this section, Rulkov neuron map is reformulated as a fractional-order discrete system using the 

Caputo left difference operator. Discrete fraction order maps have recently been recognized as a new 

powerful tool in modeling and describing the dynamics of complex nonlinear discrete systems [56,57]. 

Different numerical methods have been developed to solve discrete fraction order maps [58,59]. In this 

paper, we examine the following Rulkov neuron map with discrete fraction order: 

∆𝑎
𝑞
𝑥(𝑡) =

𝛼

1+𝑥(𝑡+𝑞−1)2
+ 𝑦(𝑡 + 𝑞 − 1),       (3.1) 

∆𝑎
𝑞𝑦(𝑡) = 𝑦(𝑡 + 𝑞 − 1) − 𝜇(𝑥(𝑡 + 𝑞 − 1) − 𝜎),      (3.2) 
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𝑡 ∈ 𝑁𝑎+1−𝑞, 𝑥(0) = 𝑐1, 𝑦(0) = 𝑐2 , 0 < 𝑞,        

  

where ∆𝑎
𝑞
 is a function of the Caputo delta difference on the left, 𝑁𝑎 = [𝑎, 𝑎 + 1, 𝑎 + 2,… ] represents 

the time scale isolated (𝑎 ∈ 𝑅 and constant). To obtain the fractional order form of the Rulkov neuron 

map, we first define the necessary definitions from the discrete fractional calculus and generalize the 

results to the Rulkov neuron map.  

Definition 1. When 𝑢:𝑁𝑎 → 𝑅, 𝑞 > 0 and 𝑞 ∉ 𝑁, the sum of the fraction of order 𝑞 is defined as 

follows: 

∆𝑎
−𝑞𝑢(𝑡) ≔

1

𝛤(𝑞)
∑𝑡−𝑞𝑠=𝑎 (𝑡 − 𝑠 − 1)(𝑞−1)𝑢(𝑠), 𝑡 ∈ 𝑁𝑎+𝑞,      (3.3) 

where 𝑎 is the starting point, and 𝑡(𝑞) is the falling function, which is defined as follows: 

𝑡(𝑞) =
𝛤(𝑡+1)

𝛤(𝑡−𝑞+1)
= 𝑡(𝑡 − 1)… (𝑡 − 𝑞 + 1),       (3.4) 

where 𝛤(𝑡) is Gamma function, defined as follows [60]: 

𝛤(𝑡) = ∫
∞

0
𝑥𝑞−1𝑒−𝑥𝑑𝑥           (3.5) 

Definition 2. For 𝑞 > 0, 𝑞 ∈ 𝑁𝑎 and 𝑢(𝑡) defined on 𝑁𝑎, the difference in the Caputo delta fraction 

can be expressed as follows [58]: 

∆𝑎
𝑞𝑢(𝑡) ∶= ∆𝑎

−(𝑚−𝑞)∆𝑚𝑢(𝑡) =
1

𝛤(𝑚−𝑞)
∑𝑡−(𝑚−𝑞)𝑠=𝑎 (𝑡 − 𝑠 − 1)(𝑚−𝑞−1)∆𝑚𝑢(𝑠),   (3.6) 

where 𝑚 = [𝑞] + 1 and 𝑚 = [𝑞] + 1 . 

Theorem 1. For the delta fraction difference equation 

∆𝑎
𝑞𝑢(𝑡) = 𝑓(𝑡 + 𝑞 − 1, 𝑢(𝑡 + 𝑞 − 1)),    ∆𝑘𝑢(𝑎) = 𝑢𝑘 ,    𝑚 = [𝑞] + 1, 𝑘 = 0,… ,𝑚 − 1,   (3.7) 

the equivalent discrete integral equation can be obtained as follows: 

𝑢(𝑡) = 𝑢0(𝑡) +
1

𝛤(𝑞)
∑𝑡−𝑞𝑠=𝑎+𝑚−𝑞 (𝑡 − 𝑠 − 1)(𝑞−1)𝑓(𝑠 + 𝑞 − 1, 𝑢(𝑠 + 𝑞 − 1)),  𝑡 ∈ 𝑁𝑎+𝑚,   (3.8) 

where the initial iteration 𝑢0(𝑡) is expressed as follows: 

𝑢0(𝑡) = ∑
𝑚−1
𝑘=0

(𝑡−𝑎)(𝑘)

𝑘!
∆𝑘𝑢(𝑎).         (3.9) 

Detailed descriptions of the above results are given in reference [61]. 

Rulkov's neural map of discrete fraction order (Eq. 3.1, and Eq. 3.2) can be written as the following 

classical map: 

∆𝑥(𝑛) =
𝛼

1+𝑥(𝑛)2
+ 𝑦(𝑛),   𝑥(0) = 𝑐1,      (3.10) 

∆𝑦(𝑛) = 𝑦(𝑛) − 𝜇(𝑥(𝑛) − 𝜎), 𝑦(0) = 𝑐2.      (3.11) 

According to Theorem 1, we can write the discrete fractional for Rulkov’s model in the following 
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form: 

𝑥(𝑡) = 𝑥(0) +
1

𝛤(𝑞)
∑𝑡−𝑞𝑠=1−𝑞 (𝑡 − 𝑠 − 1)(𝑞−1) (

𝛼

1+(𝑥(𝑠+𝑞−1))
2 + 𝑦(𝑥(𝑠 + 𝑞 − 1))), (3.12) 

𝑦(𝑡) = 𝑦(0) +
1

𝛤(𝑞)
∑𝑡−𝑞𝑠=1−𝑞 (𝑡 − 𝑠 − 1)(𝑞−1)(𝑦(𝑠 + 𝑞 − 1) − 𝜇(𝑥(𝑠 + 𝑞 − 1) − 𝜎)). (3.13) 

In conclusion, the numerical formula of the 𝑛-dependent discrete Rulkov fractional neuronal 

model is defined as follows: 

𝑥(𝑛) = 𝑥(0) +
1

𝛤(𝑞)
∑𝑛𝑖=1

𝛤(𝑛−𝑖+𝑞)

𝛤(𝑛−𝑖+1)
(

𝛼

1+𝑥𝑖−1
2 + 𝑦𝑖−1),      (3.14) 

𝑦(𝑛) = 𝑦(0) +
1

𝛤(𝑞)
∑𝑛𝑖=1

𝛤(𝑛−𝑖+𝑞)

𝛤(𝑛−𝑖+1)
(𝑦𝑖−1 − 𝜇(𝑥𝑖−1 − 𝜎)).     (3.15) 

The difference between the maps of the integers of Eq. 2.1, and Eq. 2.2 and the fractional order of 

Eq. 3.14, and Eq. 3.15 is a discrete core function and 𝑥(𝑛) and 𝑦(𝑛) refer to the past information 

𝑥(0), … , 𝑥(𝑛 − 1) and 𝑦(0),… , 𝑦(𝑛 − 1). As a result, the current state depends on all past forms, 

which express the memory effects. We define the proposed model in Eq. 3.14, and Eq. 3.15 as the 

fractional-order of discrete Rulkov neuron map (FORNM). Also, in Eq. 3.14, and Eq. 3.15, the 

following equation is used: 

𝛤(𝑛−𝑖+𝑞)

𝛤(𝑛−𝑖+1)
= 𝑒𝑙𝑛𝑙𝑛 𝛤(𝑛−𝑖+𝑞)−𝛤(𝑛−𝑖+1) .        (3.16) 

By changing the parameters 𝛼, 𝜎, and 𝜇 of the FORNM system, different behaviors such as silence 

(𝛼 = 3.15, 𝜎 = −2, 𝜇 = 0.2, 𝑞 = 0.001), bursts of spikes (𝛼 = 3.5, 𝜎 = −2, 𝜇 = 0.2, 𝑞 = 0.001), and 

chaotic firing (𝛼 = 6, 𝜎 = −1, 𝜇 = 0.3, 𝑞 = 0.001) can be seen which are shown in Figure 3. When 

the membrane potential reaches a threshold, the neuron fires and generates a signal that travels to other 

neurons, which in turn increases or decreases their potential in response to the signal. The neuron 

model that fires when the threshold is crossed is called a spiking neuron. Neuron spiking occurs when 

up-down oscillations accompany this spike train [62,63]. According to the stated definition, bursts of 

spikes occurs in part (b) of Figure 3, and this spiking behavior has been previously identical in [24,31]. 

The phase diagram for the bursts of spikes mode is shown in part (d) and for the chaotic firing in part I. 

In the following, the dynamical analysis of the FORNM is done by plotting the bifurcation 

diagrams versus the fractional order (q) and the system parameters at different intervals. 
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Figure 3. Time series of (a) silence (𝛼 = 3.1, 𝜎 = −2, 𝜇 = 0.2, 𝑞 = 0.001) with initial 

condition [0.1, 0.1] , (b) bursts of spikes (𝛼 = 3.5 , 𝜎 = −2 , 𝜇 = 0.2 , 𝑞 = 0.001) with 

initial condition [0.4, 0.4] and (c) chaotic firing (𝛼 = 6, 𝜎 = −1, 𝜇 = 0.3, 𝑞 = 0.001) with 

initial condition [0.2, 0.2], along with the phase diagram for the (d) bursts of spikes and I 

chaotic firing mode are shown. 

3.1. Effect of the FORNM parameters 

The dynamic behavior of the FORNM is firstly investigated by changing the parameters of the 

Rulkov neuron map. It was shown that there are chaotic, periodic, and fixed-point dynamics in the 

system for different values of parameters 𝛼, 𝜎, and 𝜇. Figure 4 shows the bifurcation diagrams wherein 

the left, middle, and right columns, the fractional order is set to 𝑞 = 0.001, 𝑞 = 0.01, and 𝑞 = 0.02, 

respectively. The bifurcation parameter in parts (a-c) is 𝛼 in the interval [0, 12] for 𝜎 = −1 and 𝜇 =

0.3, and in parts (d-f) is 𝜎 in the interval [−5, 0] for 𝛼 = 4 and 𝜇 = 0.3, and in parts (g-i) is 𝜇 in the 

Interval [0.15, 0.5] for 𝛼 = 4  and 𝜎 = −1 . The initial conditions are selected randomly. It can be 

observed that the dynamics are strongly dependent on 𝑞 . Generally, it can be concluded that by 

increasing 𝑞, the chaotic behavior is observed for higher bifurcation parameters, and the region of 

chaotic behavior is shrunken. 
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Figure 4. The bifurcation diagrams by changing the model parameters for the variables 𝑥𝑛 

and 𝑦𝑛. Upper panel: by varying 𝛼 in the interval [0, 12] for (a) 𝑞 = 0.001, (b) 𝑞 = 0.01, 

and (c) 𝑞 = 0.02 (𝜎 = −1, 𝜇 = 0.3). Middle panel: by varying 𝜎 in the interval [−5, 0] for 

(d) 𝑞 = 0.001, (e) 𝑞 = 0.01, and (f) 𝑞 = 0.02 (𝛼 = 4, 𝜇 = 0.3). Lower panel: by varying 

𝜇 in the interval [0.15, 0.5] for (g) 𝑞 = 0.001, (h) 𝑞 = 0.01, and (i) 𝑞 = 0.02 (𝛼 = 4, 𝜎 =

−1). The initial conditions are random. 

3.2. Effect of the fractional-order 

Another important factor in FORNM is the fractional order parameter, which can affect the overall 

dynamics. Figure 5 presents the bifurcation diagrams of the model according to the fractional order for 
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different parameter values. The bifurcation diagram for 𝛼 = 1.9, 𝜎 = −1, 𝜇 = 0.3 in part (a) of Figure 

5 shows chaotic behavior for the range [0, 0.0102] and periodic behavior for the range [0.0102, 0.1]. 

In part (b), in which 𝛼 = 4.9, 𝜎 = −1, 𝜇 = 0.3 the chaos is seen in the range of [0, 0.0180]. The 

bifurcation diagram in terms of q for 𝜎 = −2, 𝛼 = 4, and 𝜇 = 0.3 is shown in part (c) that has chaotic 

behavior for the interval [0, 0.00389], while for 𝜎 = −0.833 in part (d), the chaotic behavior happens 

in [0, 0.01928]. The bifurcation diagram for 𝜇 = 0.33, 𝛼 = 4, and 𝜎 = −1 is shown in part (e) of 

Figure 5. In this case, the chaotic behavior is in the range [0, 0.01809]. In part (f) where 𝜇 = 0.45, two 

chaotic regions in [0, 0.2928] and [0.1860, 0.2] are observed. As shown in Figure 5, increasing the 

parameters’ values increases the chaotic region. 

 

Figure 5. The bifurcation diagrams by changing the parameter 𝑞 for the variable 𝑥𝑛 and 

𝑦𝑛 with random initial conditions. (a) 𝛼 = 1.9, 𝜎 = −1, 𝜇 = 0.3, (b) 𝛼 = 4.9, 𝜎 = −1, 𝜇 =

0.3, (c) 𝛼 = 4, 𝜎 = −2, 𝜇 = 0.3, (d) 𝛼 = 4, 𝜎 = −0.833, 𝜇 = 0.3, (e) 𝛼 = 4, 𝜎 = −1, 𝜇 =

0.33, and (f) 𝛼 = 4, 𝜎 = −1, 𝜇 = 0.45. 

4. Fixed points and stability analysis of FORNM 

In this section, we calculate the equilibrium points of the proposed FORNM of Eq. 3.14, and Eq. 

3.15 and evaluate them in terms of stability. The equilibrium points are calculated by: 

𝛼

1+𝑥(𝑛)2
+ 𝑦(𝑛) = 0,           (4.1) 
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𝑦(𝑛) − 𝜇(𝑥(𝑛) − 𝜎) = 0,          (4.2) 

i.e. 

𝑦(𝑛) = −
𝛼

1+𝑥(𝑛)2
,          (4.3) 

𝑦(𝑛) = 𝜇(𝑥(𝑛) − 𝜎).          (4.4) 

Putting two equations together: 

−
𝛼

1+𝑥(𝑛)2
= 𝜇(𝑥(𝑛) − 𝜎),         (4.5) 

i.e. 

𝜇(𝑥(𝑛)−𝜎)(1+ 𝑥(𝑛)2)+ 𝛼 = 0,        (4.6) 

i.e. 

𝑥(𝑛)3 − 𝜎𝑥(𝑛)2 + 𝑥(𝑛) − 𝜎 +
𝛼

𝜇
= 0.       (4.7) 

According to the method of solving the equation of degree 3 [64], by solving Eq. 4.7, we obtain 

𝑎 = −𝜎, 𝑏 = 1, 𝑐 = −𝜎 +
𝛼

𝜇
, so 𝑝 = 1 −

𝜎2

3
, and 𝑞 =

𝛼

𝜇
−
2𝜎

3
−
2𝜎3

27
. The eigenvalues of Eq. 4.7 are 

equal to ∆=
(
2𝜎3

27
+
2𝜎

3
−
𝛼

𝜇
)
2

4
−
(
𝜎2

3
−1)

3

27
, so the equilibrium points of the model in terms of ∆ states are equal 

to: 

● If ∆ > 0, 

𝑥 =
𝜎

3
+ (

𝜎

3
−

𝛼

2𝜇
+
√(

2𝜎3

27
+
2𝜎

3
−
𝛼

𝜇
)
2

4
−
(
𝜎2

3
−1)

3

27
+
𝜎3

27
)

1

3

+ (
𝜎

3
−

𝛼

2𝜇
−
√(

2𝜎3

27
+
2𝜎

3
−
𝛼

𝜇
)
2

4
−
(
𝜎2

3
−1)

3

27
+
𝜎3

27
)

1

3

,  (4.8) 

i.e. 

𝑦 = 𝜇

(

 
 
(
𝜎

3
−

𝛼

2𝜇
+
√(

2𝜎3

27
+
2𝜎

3
−
𝛼

𝜇
)
2

4
−
(
𝜎2

3
−1)

3

27
+
𝜎3

27
)

1

3

−
2𝜎

3
+ (

𝜎

3
−

𝛼

2𝜇
−
√(

2𝜎3

27
+
2𝜎

3
−
𝛼

𝜇
)
2

4
−
(
𝜎2

3
−1)

3

27
+
𝜎3

27
)

1

3

)

 
 

,   (4.9) 

● If ∆ = 0, 

𝑥1 =
𝜎

3
− 2(

𝛼

2𝜇
−
𝜎

3
−
𝜎3

27
)

1

3
,         (4.10) 

𝑥2 = 𝑥3 =
𝜎

3
+ (

𝛼

2𝜇
−
𝜎

3
−
𝜎3

27
)

1

3
,        (4.11) 

i.e. 
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𝑦1 = −𝜇 (
2𝜎

3
+ (

𝛼

2𝜇
−
𝜎

3
−
𝜎3

27
)

1

3
),        (4.12) 

𝑦2 = 𝑥3 = −𝜇 (
2𝜎

3
− (

𝛼

2𝜇
−
𝜎

3
−
𝜎3

27
)

1

3
),       (4.13) 

● If ∆< 0, 

𝑥1 =
𝜎

3
−

2√3𝑠𝑖𝑛𝑠𝑖𝑛 

(

 
 
 
 
 
 
 
 

(

 
 
 
 3√3(

2𝜎3

27
+
2𝜎
3
−
𝛼
𝜇
)

2(
𝜎2

3
−1)

3
2

)

 
 
 
 

 

3

)

 
 
 
 
 
 
 
 

√(
𝜎2

3
−1) 

3
,       (4.14) 

𝑥2 =
𝜎

3
−

2√3𝑠𝑖𝑛𝑠𝑖𝑛 

(

 
 
 
 
 
 
 
 

𝜋

3
−
(

 
 
 
 3√3(

2𝜎3

27
+
2𝜎
3
−
𝛼
𝜇
)

2(
𝜎2

3
−1)

3
2

)

 
 
 
 

 

3

)

 
 
 
 
 
 
 
 

√(
𝜎2

3
−1) 

3
,      (4.15) 

𝑥3 =
𝜎

3
−

2√3𝑠𝑖𝑛𝑠𝑖𝑛 

(

 
 
 
 
 
 
 
 

𝜋

6
−
(

 
 
 
 3√3(

2𝜎3

27
+
2𝜎
3
−
𝛼
𝜇
)

2(
𝜎2

3
−1)

3
2

)

 
 
 
 

 

3

)

 
 
 
 
 
 
 
 

√(
𝜎2

3
−1) 

3
,      (4.16) 

i.e. 

𝑦1 = −𝜇

(

 
 
 
 
 
 
 
 
 
 
 
 

2𝜎

3
+

2√3𝑠𝑖𝑛𝑠𝑖𝑛 

(

 
 
 
 
 
 
 
 

(

 
 
 
 3√3(

2𝜎3

27
+
2𝜎
3
−
𝛼
𝜇
)

2(
𝜎2

3
−1)

3
2

)

 
 
 
 

 

3

)

 
 
 
 
 
 
 
 

√(
𝜎2

3
−1) 

3

)

 
 
 
 
 
 
 
 
 
 
 
 

,             (4.17) 
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𝑦2 = −𝜇

(

 
 
 
 
 
 
 
 
 
 
 
 

2𝜎

3
+

2√3𝑠𝑖𝑛𝑠𝑖𝑛 

(

 
 
 
 
 
 
 
 

𝜋

3
−
(

 
 
 
 3√3(

2𝜎3

27
+
2𝜎
3
−
𝛼
𝜇
)

2(
𝜎2

3
−1)

3
2

)

 
 
 
 

 

3

)

 
 
 
 
 
 
 
 

√(
𝜎2

3
−1) 

3

)

 
 
 
 
 
 
 
 
 
 
 
 

,     (4.18) 

𝑦3 = −𝜇

(

 
 
 
 
 
 
 
 
 
 
 
 

2𝜎

3
+

2√3𝑠𝑖𝑛𝑠𝑖𝑛 

(

 
 
 
 
 
 
 
 

𝜋

6
−
(

 
 
 
 3√3(

2𝜎3

27
+
2𝜎
3
−
𝛼
𝜇
)

2(
𝜎2

3
−1)

3
2

)

 
 
 
 

 

3

)

 
 
 
 
 
 
 
 

√(
𝜎2

3
−1) 

3

)

 
 
 
 
 
 
 
 
 
 
 
 

.     (4.19) 

Thus, the equilibrium points of the system are calculated, and we use the following theorem to 

examine the stability conditions of the equilibrium points of the fractional order system. 

Theorem 2. The zero equilibrium point of the system: 

∆𝑎
𝑞𝐹(𝑡) = 𝑀𝐹(𝑡 + 𝑞 − 1),          (4.20) 

is asymptotically stable when the eigenvalues 𝜆𝑖, 𝑖 = 1, 2, … , 𝑛 of the matrix 𝑀 have the following two 

conditions [65]: 

|𝐴𝑟𝑔(𝜆𝑖)| >
𝑞𝜋

2
,           (4.21) 

|𝜆𝑖| < (2 𝑐𝑜𝑠 𝑐𝑜𝑠 [
|𝐴𝑟𝑔(𝜆𝑖)|−𝜋

2−𝑞
] )
𝑞
.         (4.22) 

Therefore, we calculate the Jacobian matrix of Eq. 3.1, and Eq. 3.2, which is as follows: 

𝐽 = [
2𝛼𝑥(𝑛)

(𝑥(𝑛)2+1)2
 1 − 𝜇 1 ].          (4.23) 

The eigenvalues of the Jacobin matrix are calculated for equilibrium points at different parameters, 

and the conditions of Theorem 2 are obtained numerically for the eigenvalues. The parameters that 
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satisfy the Theorem 2 requirements make Eq. 3.1, and Eq. 3.2 always stable. 

4.1. Stability regions of the FORNM 

The stability regions of the equilibrium points of the FORNM model have been investigated by 

varying the parameters in the model. The fractional order in the FORNM model is examined in the 

first step. Stability regions of the FORNM model are shown in Figure 6 in the three-dimensional space 

of 𝛼−𝜎− 𝜇 parameters and the two-dimensional space of parameters 𝛼−𝜎, 𝛼 −𝜇, and 𝜎−𝜇. The 

fractional order in parts (a-c) are 𝑞 = 0.001, 𝑞 = 0.01, 𝑞 = 0.025 respectively. It is shown that the 

stable regions decrease by increasing the value of fractional order. 

 

Figure 6. The stability regions of the FORNM model with (a) 𝑞 = 0.001, (b) 𝑞 = 0.01, 

and (c) 𝑞 = 0.025. (I) In the 𝛼−𝜎− 𝜇 parameter space, (II) in the 𝛼−𝜎 parameter space, 

(III) in the 𝛼−𝜇 parameter space, and (IV) in the 𝜎−𝜇 parameter space. 

In the second step, the effects of 𝑞 − 𝜎 − 𝜇 parameters with 𝛼 = 15 constant in part (a), the effects 

of 𝛼− 𝑞− 𝜇 parameters with 𝜎 = −5 constant in part (b), and the effects of 𝛼− 𝜎− 𝑞 parameters with 

constant 𝜇 = 0.3 in part (c) on the stability of the FORNM model are investigated and shown in Figure 

7. In part (a) of Figure 7, the stability of the system is lost as the value of 𝜎 increases toward zero, and 

the stability of the system is lost as 𝜇 increases toward one. In part (b) of Figure 7, the stability of the 
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system increases with the increase of 𝛼  value, and the stability of the system decreases with the 

increase of 𝜇. In part (c) of Figure 7, by increasing the value of 𝛼 and 𝜎, stability is created in the 

system. 

 

Figure 7. The stability regions of the FORNM model with (a) 𝛼 = 15, (b) 𝜎 = −5, and 

(c) 𝜇 = 0.3 in 2D and 3D parameter planes. 

5. Synchronization of FORNM 

Another important aspect of the dynamical analysis is the synchronization in a chaotic state. Two 

coupled fractional-order Rulkov neuron maps can be formulated as follows: 

𝑥1(𝑛) = 𝑥1(0) +
1

𝛤(𝑞)
∑𝑛𝑖=1

𝛤(𝑛−𝑖+𝑞)

𝛤(𝑛−𝑖+1)
(

𝛼

1+𝑥1(𝑖−1)2
+ 𝑦1(𝑖 − 1)) + 𝑑𝑥(𝑥2(𝑛) − 𝑥1(𝑛)),  (4.24) 

𝑦1(𝑛) = 𝑦1(0) +
1

𝛤(𝑞)
∑𝑛𝑖=1

𝛤(𝑛−𝑖+𝑞)

𝛤(𝑛−𝑖+1)
(𝑦1(𝑖 − 1) − 𝜇(𝑥1(𝑖 − 1) − 𝜎)) + 𝑑𝑦(𝑦2(𝑛) − 𝑦1(𝑛)), (4.25) 

𝑥2(𝑛) = 𝑥2(0) +
1

𝛤(𝑞)
∑𝑛𝑖=1

𝛤(𝑛−𝑖+𝑞)

𝛤(𝑛−𝑖+1)
(

𝛼

1+𝑥2(𝑖−1)2
+ 𝑦2(𝑖 − 1)) + 𝑑𝑥(𝑥1(𝑛) − 𝑥2(𝑛)), (4.26) 
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𝑦2(𝑛) = 𝑦2(0) +
1

𝛤(𝑞)
∑𝑛𝑖=1

𝛤(𝑛−𝑖+𝑞)

𝛤(𝑛−𝑖+1)
(𝑦2(𝑖 − 1) − 𝜇(𝑥2(𝑖 − 1) − 𝜎)) + 𝑑𝑦(𝑦1(𝑛) − 𝑦2(𝑛)),(4.27) 

where subscript 1 corresponds to neuron one and subscript two corresponds to neuron 2, 𝑑𝑥 is the 

coupling strength of variable 𝑥(𝑛), and 𝑑𝑦 is the coupling strength of variable 𝑦(𝑛). For both neuron 

models, the initial conditions are randomly chosen between -1 and 1. To determine the synchronization 

level of two neurons, the average error is calculated in the form of the following equation: 

𝐸𝑟𝑟𝑜𝑟 = √
1

𝑁
∑𝑁𝑗=1 (𝑥1(𝑛) − 𝑥2(𝑛))

2
+ (𝑦1(𝑛) − 𝑦2(𝑛))

2
,    (4.28) 

where 𝑁 represents the number of time series data samples. We investigate the effects of fractional 

order changes on the synchronization of neurons. Figure 8 shows the synchronization error by 

changing the coupling strengths 𝑑𝑥 and 𝑑𝑦 in different fractional orders. It has been proven that two 

integer-order Rulkov maps cannot reach synchronization when connected by electrical synapses [66]. 

Here, it can be seen that the synchronization cannot occur in the fractional-order neurons too. It should 

be noted that the systems become unstable for coupling coefficients higher than 1. Unsynchronized 

neuron maps based on previous papers show that increased activity in certain areas is accompanied by 

decreased activity in other areas [67], and this pattern exists during rest and sleep [68].  

 

Figure 8. The synchronization error of two coupled fractional Rulkov neurons in terms 

of 𝑑𝑥 and 𝑑𝑦 for (a) 𝑞 = 0.001, (b) 𝑞 = 0.005, and (c) 𝑞 = 0.01. The parameters of the 

model are 𝛼 = 6, 𝜎 = −1, and 𝜇 = 0.3. 

6. Conclusion 

This paper proposed the discrete fractional order Rulkov neuron map in Caputo's concept. The 

dynamic analysis of the fractional model was performed, and its synchronization was evaluated. 

Adding discrete fraction calculus to the Rulkov neuron map can consider the effect of memory on 

neural model dynamics. Memory effects refer to the fact that system states are determined in fractional 

order by all previous states. At first, the Rulkov neuron map was examined in terms of phase plane, 

bifurcation diagram, and Lyapunov exponent. It was shown that the biological behaviors of the Rulkov 

neuron map, such as silence, bursting, and chaotic firing, also exist in the discrete fractional order 

Rulkov neuron map. Hence, the Rulkov neuron map of discrete fractional order shows the same 

behaviors as the Rulkov map of integer order. However, changing the fractional order can result in 
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bifurcation. In the next step, the stability regions of the system from a theoretical and numerical point 

of view were examined and it was shown that increasing the order of the fraction decreases the stability 

in the FORNM system. In the last stage, the synchronization behavior of two FORNM systems was 

investigated. The results showed that the fractional-order systems do not achieve synchronization with 

an increase in the coupling coefficient, which is similar to the integer-order systems. Table 1 shows 

the reason for the superiority of the result of Rulkov fractional neuron map to the previous works. 

Table 1. Comparison of the proposed model with previous works. 

Ref Year Model Description 

[69] 2021 

Nagumo–

Sato 

discrete 

neuron map 

A fractional-order version of the one-dimensional neuron map is proposed. The dynamic 

behavior of the model has been analyzed by drawing bifurcation diagrams and the 

Lyapunov power diagram. The appearance of the spiral wave in the two-dimensional 

network for the fractional order version has been investigated in terms of the effect of 

various parameters such as the amplitude and frequency of stimuli, the coupling strength, 

and the fractional order parameter. 

[70] 2021 

Rulkov 

Neuron 

Map 

A theoretical investigation is done on a fractional order version of the Rulkov neural 

model, which is only the time series analysis of the proposed model, and its dynamic 

behavior is not evaluated. 

[71] 2022 

Rulkov 

Neuron 

Map 

In this research, the model has been implemented by applying discrete memristor on 

two-dimensional Rulkov neuron map. The dynamic behaviors of the discrete memristor-

based neuron have been analyzed by experiments including phase diagram, bifurcation, 

and spectral entropy complexity algorithm. In this system, the intended memory, which 

is the inheritance of information transmission, is not considered. 

[72] 2020 

Rulkov 

Neuron 

Map 

A theoretical investigation for the asymptotic stability and instability of two-dimensional 

independent linearly incommensurate systems of fractional order Caputo difference 

equations has been carried out. In this article, only the time series analysis of the 

proposed model is done and its dynamic behavior is not evaluated. 

- - 
Proposed 

Model  

In this research, the fractional order discrete Rulkov neuron map is analyzed in terms of 

dynamic behavior and synchronization. Biological behaviors of the Rulkov neuron map, 

such as silence, bursting, and chaotic firing, are also present in its discrete fractional 

order version. The bifurcation diagrams of the proposed model are investigated under the 

influence of neuronal model parameters and fractional order. The stability regions of the 

system are obtained theoretically and numerically, and it is shown that increasing the 

order of the fractional order causes the reduction of the stable regions. In general, the 

hereditary behavior of the neural model is proposed using discrete fractional order. 

 

For future work, discrete fractional order derivatives can be implemented on DNA-based genetic 

systems to investigate hereditary factors, so that human evolution can be described from these systems. 

For the next research topic, different types of discrete fractional order derivatives can be evaluated on 

the Rulkov neuron map. Due to the fact that the Rulkov discrete neuron map has no synchronization 

power, different controllers can be used to check synchronization.  
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