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Abstract: The non-stationary nature of electroencephalography (EEG) signals and individual 

variability makes it challenging to obtain EEG signals from users by utilizing brain-computer interface 

techniques. Most of the existing transfer learning methods are based on batch learning in offline mode, 

which cannot adapt well to the changes generated by EEG signals in the online situation. To address 

this problem, a multi-source online migrating EEG classification algorithm based on source domain 

selection is proposed in this paper. By utilizing a small number of labeled samples from the target 

domain, the source domain selection method selects the source domain data similar to the target data 

from multiple source domains. After training a classifier for each source domain, the proposed method 

adjusts the weight coefficients of each classifier according to the prediction results to avoid the 

negative transfer problem. This algorithm was applied to two publicly available motor imagery EEG 

datasets, namely, BCI Competition IV Dataset IIa and BNCI Horizon 2020 Dataset 2, and it achieved 

average accuracies of 79.29 and 70.86%, respectively, which are superior to those of several multi-

source online transfer algorithms, confirming the effectiveness of the proposed algorithm.  

Keywords: online transfer learning; brain-computer interface; motor imagery; source domain 
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1. Introduction 

As the most complex and important organ in the human body, the brain plays an indispensable 

role in regulating the body’s motor functions and maintaining higher cognitive activities such as 

consciousness, language, memory, sensation and emotion. Therefore, studying the brain not only lets 

us have a better understanding of the brain, but it can also provide auxiliary methods for the treatment 

and diagnosis of brain disease. In recent years, many countries around the world have attached great 

importance to brain science research; researchers have started to study the brain and formed a unique 

brain science knowledge system. The brain-computer interface (BCI) [1,2] is a communication and 

control technology that directly translates the perceptual thinking generated by the brain into the 

corresponding action of external devices, which is of high scientific research value and is currently 

being widely applied in medical health, vehicle driving [3], daily life entertainment [4], etc. 

However, BCI systems still have problems that need to be solved urgently, such as a long user 

training time and limited online performance [5]. 

Currently, many advanced machine learning algorithms have been proposed and used in 

electroencephalography (EEG) classification, including Bayesian classifiers [6], support vector 

machines [7], linear discriminant analysis (LDA) [8], adaptive classifiers and deep learning 

classifiers [9]. In recent years, because transfer learning can take advantage of similarities between 

data, tasks or models, it has been utilized to analyze EEG signals with individual differences and those 

that are non-stationary, making it possible to apply models and the knowledge learned in the old 

domain to the new domain. In this way, not only can the classification performance of unlabeled data be 

improved by using labeled data, but the model training time can also be drastically reduced [10–12]. In 

transfer learning, a domain is defined as follows [13–14]: A domain  consists of a feature space  

and its associated marginal probability distribution ( )P X , i.e., { , ( )}P X= , where X  . A 

source domain S  and a target domain T  are different if they have different feature spaces, i.e., 

S T , and/or different marginal probability distributions, i.e., ( ) ( )S TP X P X . 

However, most of the existing transfer learning methods train classifiers by batch learning in an 

offline manner, where all source and target data are pre-given [15,16], whereas this assumption may 

not be practical in real application scenarios where collecting enough data is very time-consuming. In 

addition, data are often transferred in a stream and cannot be collected in their entirety. Therefore, 

researchers have introduced online learning into the field of transfer learning and proposed an online 

transfer learning (OTL) framework. Unlike online learning, which merely considers the dynamic 

changes of data on a data domain, OTL also considers the changes in the data distributions in the 

source domain and target domain. OTL has been used in areas such as online feature selection [17] 

and graphical retrieval [18]. It combines the advantages of dynamically updating classification models 

for online learning with the ability to effectively exploit knowledge from source domains of transfer 

learning [19], aiming to apply online learning tasks to target domains by transferring knowledge from 

the source domain. Existing OTL approaches focus on how to use knowledge from the source domain 

for online learning in the target domain. Most of them use strategies based on integrated learning, i.e., 

directly combining source and target classifiers. Zhao et al. [20] proposed a single-source domain OTL 

algorithm in homogeneous and heterogeneous spaces, and it dynamically weights the combination of 

source and target classifiers to form the final classifier. Kang et al. [21] proposed an OTL algorithm 

for multi-class classification, utilizing a new loss function and updating method to extend the OTL of 

binary classification to multi-class tasks. Based on Zhao’s work, Ge et al. [22] first proposed a multi-

source online transfer framework. Zhou et al. [23] proposed an online transfer strategy, reusing the 

features extracted from a pre-trained model, and it can achieve automatic feature extraction and 
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achieve good classification accuracy. However, the OTL algorithm can only handle single-source 

domain transfer, which can easily lead to negative transfer [13] when facing multiple source domains. 

Negative transfer may happen when the source domain data and task contribute to the reduced 

performance of learning in the target domain. 

Nevertheless, single-source transfer learning requires a high similarity between the source domain 

samples and the target domain samples during training. For example, in EEG signal classification, the 

class features of source subjects and target subjects are required to be as similar as possible. Since the 

knowledge that can be provided by a single source domain is limited, researchers tend to naturally 

think of applying transfer learning to the target domain by exploiting knowledge from multiple source 

domains. To utilize knowledge from multiple source domains, researchers have developed some 

boosting-based algorithms to adjust the weights of different domains or samples [24–26]. Eaton and 

DesJardins [24] proposed a method that uses AdaBoost to assign higher weights to source domains 

that are more similar to the target domain and adjust the weights of individual samples in each source 

domain. Yao and Doretto [25] proposed a multi-source transfer method that first integrates the 

knowledge from multiple source domains and then migrates the knowledge to the target domain; it 

achieved better performance on some benchmark datasets. Tan et al. [26] utilized different views from 

different source domains to assist the target domain task. Jiang et al. [27] proposed a general multi-

source transfer framework to preserve independent information between different tasks. However, 

these studies assume that the data have already been known when dealing with target domain data, and 

they conducted transfer only via offline batch learning. Recently, after noticing the shortcomings of 

OTL, Wu et al. [17] proposed a HomOTLMS algorithm to train a classifier in each source domain and 

classify samples by weighting the classifiers in the source and target domains. Du et al. [28] proposed 

the HomOTL-ODDM algorithm to update the mapping matrix in an online manner, thus further 

reducing the differences between domains; the experimental results showed that the transfer effect can 

be significantly improved after considering the differences in data distributions. Li et al. [29] proposed 

an online EEG classification method based on instance transfer (OECIT). It can align the EEG data 

online, and combines with HomOTL, greatly reducing computational and memory costs.  

To address the negative transfer problem in online single-source transfer and further reduce the 

individual differences between subjects, this paper presents a multi-source online transfer EEG 

classification algorithm based on source domain selection (SDS). Different from the HomOTLMS and 

HomOTL-ODDM algorithms, the proposed algorithm dynamically selects several suitable source 

domains and uses the multi-source online transfer algorithm to train a classifier in each selected source 

domain; it then combines the trained classifier with the target domain classifier for weighting, which 

not only reduces the training time but also achieves better classification results in the target domain. 

The algorithm was applied to two publicly available motor imagery EEG datasets and analyzed in 

comparison with the same type of multi-source online transfer algorithms to confirm the superiority 

of this algorithm. 

2. Materials and methods 

2.1. Euclidean alignment (EA) 

Suppose a subject has n  trials; we can have  

1

1 n
T

i i

in =

= E X X

                                         (1) 
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where E   is the Euclidean mean of all EEG trials from a subject and c t

i

X   denotes the trial 

segments of EEG signals, where c  is the number of EEG channels and t  is the number of time samples. 

Then, we perform alignment by using 

1/2

i i

−=X E X                                           (2) 

2.2. Common spatial pattern (CSP) feature extraction 

Given a spatiotemporal EEG signal 𝑋 of one 𝑁-channel, where 𝑋 is an 𝑁 × 𝑇 matrix and 𝑇 

denotes the number of samples per channel, the normalized covariance matrix of the EEG signal 

is shown below. 

( )

T

Ttrace
=

XX
C

XX
                                       (3) 

The covariance matrices 𝐶1 and 𝐶2 for each category can be calculated from the sample means. 

The projection matrix of CSP is 

T

csp =W U P
                                          (4) 

where 𝑈 is the orthogonal matrix and 𝑃 is the whitening feature matrix. 

After filtering with the projection matrix 𝑊𝑐𝑠𝑝, the feature matrix is obtained: 

0

T

csp=Z W X
                                         (5) 

The first 𝑚 rows and the last 𝑚 rows of the feature matrix are taken to construct the matrix  

𝑍 = (𝑧1 𝑧2 ⋯ 𝑧2𝑚) ∈ 𝑅𝑁×2𝑚. The feature vector 𝐹 = (𝑓1 𝑓2 ⋯ 𝑓2𝑚)
𝑇 ∈ 𝑅2𝑚×1 can be obtained 

after normalization. 

2.3. SDS 

The SDS method can select the nearest source domain to reduce computational cost and 

potentially improve classification performance. 

Supposing that there are Z different source domains, for the z-th source domain, the average 

feature vector for each source domain class 𝑚𝑧,𝑐(𝑐 = 1,2) is calculated first. After obtaining a small 

number of target domain labels, the known label information is used to calculate the average feature 

vector for each target domain class 𝑚𝑡,𝑐. Then, the distance between the two domains is expressed as 

𝑑(𝑧, 𝑡) = ∑ ‖𝑚𝑧,𝑐 −𝑚𝑡,𝑐‖
2
𝑐=1                                                         (6) 

The next step is to cluster these distances {𝑑(𝑧, 𝑡)}𝑧=1,…,𝑍 to the k means. Assuming that the 

clusters are divided into (𝐶1, 𝐶2, … , 𝐶𝑘), the objective is to minimize the squared error E, which can 
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be expressed as 

𝐸 = ∑ ∑ ‖𝑑(𝑧, 𝑡) − 𝜇𝑖‖2
2

𝑥∈𝐶𝑖
𝑘
𝑖=1                                                         (7) 

where 𝜇𝑖 is the mean vector of cluster 𝐶𝑖, which is also known as a centroid, with the following 

expression: 

𝜇𝑖 =
1

|𝐶𝑖|
∑ 𝑑(𝑧, 𝑡)𝑥∈𝐶𝑖                                                                   (8) 

Finally, the cluster with the smallest center of mass, i.e., the source domain closest to the target 

domain, is selected. In this way, OTL is performed for only 𝑍 𝑙⁄  source domains where 𝑙 is the number 

of clusters of the k-means cluster. The larger the value of 𝑙, the lower the computational cost. However, 

when 𝑙 is too large, there may not be enough source domains for classification, resulting in unstable 

classification performance. Therefore, to minimize computational cost and improve classification 

performance, 𝑙 was set to equal 2. 

2.4. Multi-source OTL 

In this section, a multi-source OTL with SDS (MSOTL-SDS) algorithm is proposed. The 

algorithm flow is shown in Figure 1. 

We set 𝑛  source domains 𝐷𝑆 = {𝐷𝑆1 , 𝐷𝑆2 , … , 𝐷𝑆𝑛}  and a certain number of labeled samples 

{((𝑥𝑡 , 𝑦𝑡)|𝑡 = 1,2,… ,𝑚)} from the target domain 𝐷𝑇. For the i-th source domain𝐷𝑆𝑖,𝑥𝑆𝑖 × 𝑦  represents 

the source domain data space, 𝑥𝑠𝑖 ∈ 𝑅𝑑𝑖 represents the feature space and 𝑦 = {−1,+1} represents the 

label space. 𝑓𝑆𝑖  represents the classifier learned on the second source domain. 𝑥 × 𝑦 denotes the target 

domain data space, the feature space is 𝑥 ∈ 𝑅𝑑 and the target domain and source domain share the same 

label space 𝑦. 

When the source domain data are extracted by domain alignment and CSP features, the source 

domains differing largely from the target domain samples are eliminated by SDS, which leaves only 𝑘 

(1 < 𝑘 < 𝑛) source domains; the classifier is trained by training each of these 𝑘 source domains 𝐷𝑆 =

{𝐷𝑆1 , 𝐷𝑆2 , … , 𝐷𝑆𝑘} and then assigning weights accordingly. In online mode, after domain alignment and 

feature extraction by online Euclidean space data alignment (OEA) and CSP, the samples (𝑥𝑡 , 𝑦𝑡) are 

sent to a classifier 𝐹𝑡(∙), which is weighted by all classifiers, for label prediction. After obtaining 

the true label, the weight of the classifier and the online target domain classifier are updated by 

the loss function. 
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Figure 1. Flowchart for the multi-source OTL algorithm based on SDS. 

Assume that the target domain classifier is given as follows: 

𝑓𝑇(𝑥) = ∑ 𝛼𝑖𝑦𝑖𝑘(𝑥𝑖 , 𝑥)
𝑡
𝑖=1                                                            (9) 

 
where 𝛼𝑖 is the coefficient of the i-th target sample. 

Set the weight vector of the source domain classifier as 𝑢𝑡 = (𝑢𝑡
1, 𝑢𝑡

2, … , 𝑢𝑡
𝑛)𝑇, construct the target 

domain weight variable 𝑣 and apply the Hedge algorithm to dynamically update the weights of the 

source and target domain classifiers as follows: 

𝑢𝑡+1
𝑖 = 𝑢𝑡

𝑖𝛽𝑍𝑡
𝑖
, 𝑍𝑡

𝑖 = 𝐼(𝑠𝑖𝑔𝑛(𝑦𝑡𝑓
𝑆𝑖(𝑥𝑡)) < 0), 𝑖 = 1,2, … , 𝑛                      (10) 

𝑣𝑡+1 = 𝑣𝑡𝛽
𝑍𝑡
𝑣
, 𝑍𝑡

𝑣 = 𝐼(𝑠𝑖𝑔𝑛(𝑦𝑡𝑓𝑡
𝑇(𝑥𝑡)) < 0), 𝑖 = 1,2, … , 𝑛                      (11) 

  

Finally, its class label is predicted by the following prediction function: 

𝑦~𝑡 = sign (∑ 𝑝𝑡
𝑖𝑓𝑆𝑖(𝑥𝑡)

𝑛
𝑖=1 + 𝑝𝑡

𝑣𝑓𝑡
𝑇(𝑥𝑡))                                              (12) 

 

where 𝑝𝑡
𝑖 and 𝑝𝑡

𝑣 correspond to the weights of the classifiers in the source domain and target domain, 

respectively, and the calculation formula is given as follows: 

𝑝𝑡
𝑖 =

𝑢𝑡
𝑖

∑ 𝑢𝑡
𝑗𝑛

𝑗=1 +𝑣𝑡
, 𝑝𝑡

𝑣 =
𝑣𝑡

∑ 𝑢𝑡
𝑗𝑛

𝑗=1 +𝑣𝑡
                                                               (13)   
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Algorithm 1 MSOTL-SDS algorithm 

Input: source domain classifier 𝑓𝑆 = (𝑓𝑆1 , 𝑓𝑆2 , … , 𝑓𝑆𝑘), initial trade-off parameter 𝐶, discount weight 𝛽 ∈ (0,1) 

Initialization: online classifier 𝑓1
𝑇 =0, weight 𝑢1 =

1

𝑛+1
, 𝑣1 =

1

𝑛+1
 

// SDS section 

for 𝑠 = 1,2,… , 𝑘 do 

The distance 𝑑(𝑠, 𝑡) from the sth source domain to the target domain is calculated by using Eq (6) 

end if 

The k-means clustering of {𝑑(𝑆, 𝑡)}𝑠=1,…,𝑘 is performed to select the source domain with a smaller center of mass 

to form 𝑆′ = 𝑆1, 𝑆2, … , 𝑆𝑛(𝑛 < 𝑘) 
// Multi-source online transfer 

for 𝑡 = 1,2, … ,𝑚 do 

Receiving test specimens. 𝑥𝑡 ∈ 𝑋 

        Calculate the classifier weights by using Eq (10) 

        The predicted label is obtained by using Eq (12) 

        Receive real tags 𝑦𝑡 = {−1,+1}  

        The weights of each classifier are updated by Eqs (10) and (11) 

        Calculate the loss function 𝑙𝑡 = [1 − 𝑦𝑡𝑓𝑡
𝑇𝑥𝑡]+ 

        if  𝑙𝑘 > 0 then 

              𝑓𝑡+1
𝑇 = 𝑓𝑡

𝑇 + 𝜏𝑡𝑦𝑡𝑥𝑡， where 𝜏𝑡 = 𝑚𝑖𝑛{𝐶, 𝑙𝑡 ‖𝑥𝑡‖
2⁄ } 

end if 

end for 

output：𝑓𝑡(𝑥) = sign (∑ 𝑝𝑡
𝑖𝑓𝑆𝑖(𝑥𝑡)

𝑛
𝑖=1 + 𝑝𝑡

𝑣𝑓𝑡
𝑇(𝑥𝑡)) 

3. Experiments and result analysis 

3.1. Data description 

Here, the algorithm was evaluated on two publicly available datasets of motor imagery EEG 

signals, where the first dataset was Dataset IIa from BCI Competition IV [30] and the second 

dataset was Dataset 2 from BNCI Horizon 2020 [31]. These two datasets have multiple subjects 

and are suitable for multi-source classification.  

1) Dataset IIa of BCI Competition IV. It comprises 22-channel EEG signals obtained from two 

different sessions of nine healthy subjects, and the sampling rate was 250 Hz. Each subject was 

instructed to perform four motor imagery tasks, including movements of the left hand, right hand, feet 

and tongue. Each task had 72 trials in one session.  

2) Dataset 2 (BNCI Horizon 2020 Dataset). It consists of EEG data from 14 healthy subjects, 

eight of whom were children. The data for each subject consists of two categories of motor imagery EEG 

of the subject’s right hand and foot, with 50 samples in each category. Each experimental signal was 

recorded by using 15 electrodes, with electrode positions following the International 10–20 system; 15 

channels of EEG signals were recorded and sampled at 512 Hz. 

3.2. Data preprocessing 

The preprocessing part is introduced first. EEG signals from 2.5 to 5.5 s were selected for 

BCI Competition IV Dataset IIa, and, for Dataset 2 from BNCI Horizon 2020, the EEG signals 

ranged from 5.5 to 8.5 s. Bandpass filtering was performed by using a 5th-order Butterworth filter 

with the frequency ranging from 8 to 30 Hz. The samples in the target domain were randomly 

arranged 20 times and the online experiment was repeated 20 times; finally, the average results of 
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the 20 repetitions were recorded.  

3.3. Comparison methods 

To verify the effectiveness, the proposed MSOTL-SDS algorithm is compared against six state-

of-the-art algorithms for EEG classification, grouped as follows: 

i) OECIT-I [29]: After aligning the sample domains of the target domain using OEA, the 

classification was performed with an OTL algorithm. 

ii) OECIT-II [29]: After aligning the sample domain of the target domain using OEA, the 

classification was performed with an OTL algorithm; a different weight update strategy was utilized 

instead of OECIT-I. 

iii) HomOTLMS [17]: Migrate multiple-source domain knowledge in the OTL process by 

constructing the final classifier in a band-weighted classifier integration approach. 

iv) HomOTL-ODDM [28]: A multi-source online transfer algorithm for the simultaneous 

reduction of marginal distribution and conditional distribution differences between domains via a 

linear feature transformation process. 

v) EA-CSP-LDA [32]: EA was used to align the data from different domains; then, the source 

domain data were used to design the filters and an LDA classifier was employed for classification. 

vi) CA-Joint distribution adaptation (JDA) [33]: The data were aligned before the JDA algorithm. 

vii) Riemannian alignment-minimum distance to the Riemannian mean (RA-MDMR) [34]: It 

is a Riemannian space method that centers the covariance matrix relative to the reference 

covariance matrix. 

4. Results and discussion 

A comparison of the online classification results for the two datasets are given in Tables 1 and 2. 

The MSOTL-SDS algorithm achieved the highest average accuracies of 79.29 and 70.86% for the two 

datasets, respectively.  

For BCI Competition IV Dataset IIa, we mainly selected 22-channel EEG data from the left and 

right hands. The classification accuracy of the MSOTL-SDS algorithm was higher than those of the 

other seven algorithms for more than half of the subjects. The HomOTLMS and HomOTL-ODDM 

algorithms had slightly lower accuracies, and HomOTL-ODDM was better than HomOTLMS. More 

importantly, except for Subject 3, the classification accuracies of the multi-source online transfer 

algorithms were higher than that of the single-source online transfer algorithm OECIT, indicating that 

the multi-source online transfer algorithm can effectively eliminate the effect of negative transfer 

when dealing with multiple source domains. The classification accuracy of the MSOTL-SDS 

algorithm was 2.4% higher than that of the best multi-source online transfer algorithm, HomOTL-

ODDM, and 3.55% higher than the single-source online learning algorithm OECIT-II. 

For Dataset 2, the MSOTL-SDS algorithm achieved the best classification accuracy on EEG data 

for subjects other than Subjects 4, 8, 10 and 11, while HomOTL-ODDM performed best on these four 

subjects, indicating that, for multi-source online classification, it is necessary to consider the 

conditional and marginal distributions of the samples. Similarly, the accuracies of the MSOTL-SDS 

algorithm were 1.85 and 3.99% higher than HomOTL-ODDM and OECIT-II, respectively. 

Datasets 1 and 2 are both multi-source categorical datasets taken from healthy subjects, and they 

both have data on multiple subjects. The difference is that Dataset IIa is from the earlier BCI 

Competition IV 2008, and it has a lower sampling rate and a higher number of EEG channels; it also 
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contains more EEG feature information. Dataset 2 is from BNCI Horizon 2020, and it has a higher 

sampling rate but reduced number of channels; it is also more difficult, so all eight algorithms, 

including the MSOTL-SDS algorithm, achieved better performance on Dataset IIa. 

Table 1. Comparison of online classification accuracy on BCI Competition IV Dataset IIa. 

Subject 1 2 3 4 5 6 7 8 9 Avg 

RA-MDMR 72.22 56.94 84.03 65.97 60.42 67.36 61.81 86.81 82.64 70.91 

CA-JDA 66.75 47.45 65.52 59.34 54.55 54.27 54.27 73.01 65.18 60.04 

EA-CSP-JDA 86.08 56.84 97.74 72.26 51.56 65.56 68.51 89.10 72.43 73.34 

OECIT-Ⅰ 88.91 56.31 97.56 73.57 58.44 67.01 71.04 92.88 75.87 75.73 

OECIT-Ⅱ 89.51 55.49 97.88 74.06 58.03 66.64 71.09 92.98 75.94 75.74 

HomOTLMS 89.25 56.36 97.84 74.22 58.90 68.17 73.92 93.69 76.51 76.54 

HomOTL-ODDM 90.91 57.31 97.54 75.57 58.84 68.01 74.04 93.88 75.87 76.89 

MSOTL-SDS 90.88 60.93 97.80 76.78 60.88 73.64 78.09 94.69 79.94 79.29 

Table 2. Comparison of online classification accuracy on Dataset 2. 

Subject OECIT-Ⅰ OECIT-Ⅱ HomOTLMS HomOTL-ODDM MSOTL-SDS 

1 54.96 55.48 56.28 59.29 62.31 

2 63.31 64.03 67.43 68.49 71.77 

3 62.74 63.21 64.33 66.53 72.24 

4 76.35 76.36 76.98 78.43 77.86 

5 55.88 55.83 56.46 57.98 60.61 

6 47.29 48.68 47.36 48.26 49.67 

7 58.46 58.59 58.33 59.44 60.79 

8 84.79 83.57 84.64 85.68 84.96 

9 81.73 82.45 82.92 83.79 85.93 

10 74.63 76.44 77.38 78.29 78.16 

11 70.96 71.08 72.68 73.46 72.76 

12 57.46 58.44 58.69 59.78 62.21 

13 74.33 73.29 74.33 75.33 78.38 

14 68.26 68.78 70.26 71.33 74.35 

Avg 66.51  66.87  67.72  69.01  70.86  

In Tables 1 and 2, it is noticeable that the MSOTL-SDS algorithm showed significant 

improvement in terms of accuracy for some subjects with poorly differentiated class features, such as 

Subjects 2, 6 and 7 in BCI Competition IV Dataset IIa and Subjects 1, 2, 3, 5, 9, 12 and 14 in Dataset 2 

from BNCI Horizon 2020; the single-source OECIT and HomOTL-ODDM for each subject achieved 

average improvements of 5.85 and 3.69%, respectively. This indicates that MSOTL-SDS can 

effectively discover subjects with high similarity to the target subjects’ characteristics by applying 

SDS when dealing with a multi-source online classification task, thus reducing individual differences 

and improving classification accuracy. Finally, as shown in Table 3, we compare the average online 

classification accuracy of some different transfer learning methods on the two datasets [35]. 
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Table 3. Average online classification accuracies of different transfer learning approaches on 

Datasets IIa and 2. 

Algorithm Dataset IIa Acc. (%) Dataset 2 Acc. (%) 

EA-RCSP-LDA [35] 73.72 64.09 

EA-RCSP-OwAR [35]  74.78 65.71 

OECIT-Ⅰ [29] 75.73 66.51 

OECIT-Ⅱ [29] 75.74 66.87 

HomOTLMS [33] 76.54 67.72 

HomOTL-ODDM [34] 76.89 69.01 

MSOTL-SDS 79.29 70.86 

Table 4 gives the computing time consumption of the five algorithms on different datasets. 

Dataset 2 is less time-consuming because it has fewer EEG signal channels than Dataset IIa. OECIT 

handles the online single-source transfer task and thus takes the least amount of time. HomOTLMS 

and HomOTL-ODDM cost more time due to the increased complexity of the algorithm. MSOTL-SDS 

uses a multi-source online transfer framework, requiring less source domain data to train the 

classifier; so, it has an advantage in terms of time consumption. The reduction of computing time 

was 4.96 and 2.34 s on BCI Competition IV Dataset IIa and Dataset 2 from BNCI Horizon 2020, 

respectively, relative to HomOTLMS. Additionally, compared with HomOTL-ODDM, MSOTL-SDS 

was 36.56 and 31.28 s faster on the two datasets, respectively. 

Table 4. Comparison of time cost using different algorithms. 

 Dataset IIa Dataset 2 

 Mean (s) Std (s) Mean (s) Std (s) 

EA-CSP-LDA 9.9918 0.9250 - - 

RA-MDRM 172.7034 27.7032 - - 

CA-JDA 68.0582 1.2880 - - 

OECIT-Ⅰ 7.9428 0.8685 4.6735 0.7435 

OECIT-Ⅱ 7.8275 0.6577 4.7823 0.6421 

HomOTLMS 40.6568 1.9549 20.8283 1.8543 

HomOTL-ODDM 72.2592 4.9532 49.7724 4.7286 

MSOTL-SDS 35.6982 1.9368 18.4931 1.9254 

Figure 2(a),(b) show the average online classification accuracy curves with the number of samples 

for Datasets IIa and 2, respectively. The poor performance of the OECIT algorithm on a multi-source 

online classification task is mainly because it views multiple source subjects as a single individual 

during its training, which can cause negative transfer problems since there exist large individual 

differences among source subjects. For both datasets, MSOTL-SDS demonstrated the best 

performance in more than half of the subject accuracy variation plots. The HomOTLMS and 

HomOTL-ODDM algorithms present similar trends in most of the subject accuracy variation curves, 

which can be explained by their similar multi-source OTL framework. 
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(a) Dataset IIa                              (b) Dataset 2 

Figure 2. Variation curves of mean online classification accuracy according to the number of 

samples for the two datasets. 

Table 5. P-values of different algorithms according to paired t-test. 

 MSOTL-SDS 

 Dataset IIa Dataset 2 

EA-CSP-LDA 0.0004 - 

RA-MDRM 0.0081 - 

CA-JDA 0.0001 - 

OECIT-Ⅰ 0.0010 0.0003 

OECIT-Ⅱ 0.0005 0.0004 

HomOTLMS 0.0034 0.0021 

HomOTL-ODDM 0.0018 0.0627 

In order to compare the differences between the proposed MSOTL-SDS algorithm and the other 

four algorithms, a paired t-test was applied to the classification accuracy of the figure, and the 

significance level was set as 𝛼 = 0.05. The test results are shown in Table 5. The results show that 

MSOTL-SDS was significantly better than other algorithms on Dataset IIa, but there was no significant 

difference between MSOTL-SDS and HomOTL-ODDM on Dataset 2. This indicates that the multi-

source online transfer algorithm is effective in eliminating the effect of negative transfer when dealing 

with multiple source domains. Moreover, for multi-source online classification, reducing the 

differences in conditional and edge distributions of samples is an effective method. 

5. Conclusions 

This methodology explores the negative transfer problem in online single-source transfer and tries 

to reduce the individual differences between subjects. We proposed a multi-source OTL method based 

on SDS, which was applied for the online classification study of motor imagery EEG signals. By 

utilizing some of the target domain sample labels in advance, the SDS method can select the source 

domain data that are similar to the target domain data while eliminating the source domain data that 
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are different from the target domain data. Then, by combining the weighting coefficients with the 

online classifier, each selected source domain is trained into a separate classifier, which is employed 

to predict sample labels. The proposed method was validated on two motor imagery EEG datasets and 

compared with other online transfer methods. The experimental results show that our MSOTL-SDS 

algorithm achieved the best performance, the best accuracy and the fastest calculation speed in the 

online scenarios. However, there are still some limitations of this study. The difference in conditional 

distribution between the source domain and the target domain was not fully considered. Hence, in 

future work, we can utilize some advanced transfer learning algorithms, such as balanced distribution 

adaptation [37] and manifold embedded distribution alignment [37], to align the conditional distribution 

between domains and improve the proposed method. 
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