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Abstract: We study a logarithmic Keller-Segel system proposed by Rodrı́guez for crime modeling as
follows: ut = ∆u − χ∇ · (u∇ ln v) − κuv + h1,

vt = ∆v − v + u + h2,

in a bounded and smooth spatial domain Ω ⊂ Rn with n ≥ 3, with the parameters χ > 0 and κ > 0, and
with the nonnegative functions h1 and h2. For the case that κ = 0, h1 ≡ 0 and h2 ≡ 0, recent results
showed that the corresponding initial-boundary value problem admits a global generalized solution
provided that χ < χ0 with some χ0 > 0.

In the present work, our first result shows that for the case of κ > 0 such problem possesses global
generalized solutions provided that χ < χ1 with some χ1 > χ0, which seems to confirm that the mixed-
type damping −κuv has a regularization effect on solutions. Besides the existence result for generalized
solutions, a statement on the large-time behavior of such solutions is derived as well.
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1. Introduction and main results

Let u(x, t) denote the density of criminals, and let v(x, t) represent the abstract so-called attractiveness
value. A class of logarithmic Keller-Segel models of the following formut = ∆u − χ∇ · (u∇ ln v) − κuv + h1, x ∈ Ω, t > 0,

vt = ∆v − v + u + h2, x ∈ Ω, t > 0,
(1.1)

with the parameters χ > 0 and κ > 0, was introduced in [1] to model the propagation of criminal
activities, where Ω ⊂ Rn are bounded and smooth spatial domains. In the model (1.1), the given
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functions h1(x, t) and h2(x, t) describe the density of additional criminals and the source of attractiveness,
respectively.

When +u in the second equation in (1.1) is replaced by +uv, it arrives at the original Short et al.
crime model [2, 3], which is rewritten asut = ∆u − χ∇ · (u∇ ln v) − κuv + h1, x ∈ Ω, t > 0,

vt = ∆v − v + uv + h2, x ∈ Ω, t > 0,
(1.2)

with the particular value χ = 2. Note that results on related stationary problems, as in [4–12], strongly
support that the model (1.2) is adequate to describe the formation of crime hotspots encountered in
reality. As for the corresponding initial-boundary value problems, the understanding of them are
incomplete. The local-in-time classical solution established in [13] is global provided that either
n = 1 [14, 15] or n ≥ 2 and χ < 2

n [16, 17] or both the initial data and the given functions h1 and
h2 are appropriately small [18, 19]. For larger ranges of χ, global existence results, without imposing
smallness on the initial data and on the given functions, are only available for either certain types
of weak solutions or certain modified versions which contain additional regularizing ingredients: the
globally radial renormalized solution was obtained for n = 2 and any χ > 0 [20], which was extended
to n = 3 with restriction that χ ∈ (0,

√
3) [21]; the global weak solution was established in [22] for

n = 2 and χ > 0 by nonlinear diffusion enhancement (i.e., ∆u is replaced by ∆um with m > 3
2); the

global generalized solution was structured in [23] for n = 2 and χ > 0 by incorporating the logistic
source (i.e., au − bu2), which was extended to the case without incorporating the logistic source in [24].
Moreover, to suppress the formation of crime hotspots, the effects of law enforcement agents can be
incorporated into (1.2) [3, 11, 25–27], and we also refer to [28–31] for the existence and stability of the
related steady states.

Note that, whenever κ = 0, h1 ≡ 0 and h2 ≡ 0, the model (1.1) becomes the celebrated logarithmic
Keller-Segel model [32]: ut = ∆u − χ∇ · (u∇ ln v) , x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0,
(1.3)

in which u and v respectively represent the density of chemotactic cells and the chemoattractant
concentration. To motivate our study, we also recall some results on (1.3). As to the global solvability
of (1.3), various thresholds of χ have been introduced. Namely, the initial-boundary value problem
possesses a global bounded classical solution for suitably regular initial data (u0, v0), provided that

either χ <
√

2
n [33, 34], or n = 2 and χ < χ̂ with some χ̂ ∈ (1, 2) [35], or χ ≤ 4

n [18]. Beyond this,
the restrictions on χ have been relaxed within suitably generalized solution frameworks, for instance,

χ <
√

n+2
3n−4 in the weak sense [34], χ < n

n−2 in radially symmetric setting [36], χ < χ0 with χ0 = ∞ for
n = 2 and

χ0 =


√

8, n = 3,
n

n − 2
, n ≥ 4,

(1.4)

in the integrable sense [37], and χ > 0 in the measure-valued sense [38]. In the case that ut in the
first equation in (1.3) is replaced by εut with appropriately small ε, there exists an unbounded solution
for large initial data, provided that χ > n

n−2 with n ≥ 3 [39]. As to the asymptotic stability of constant
steady states, for a variant of (1.3) in more general non-normalized parameter settings it was established
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in [40] under the smallness of the domain size |Ω|, and later on, this restriction was removed out in [41] by
assuming χ ≤ 1

2 and the convexity of Ω. In addition, when the second equation in (1.3) is replaced by
vt = ∆v − uv, the corresponding model is known as the logarithmic Keller-Segel model with signal
absorption, which has also been studied in a series of papers, see for instance [42–49].

Concerning the mathematical analysis, the model (1.1) is expected to have better solution properties
than that of the models (1.2) and (1.3). However, to the best of our knowledge, the analysis results
on model (1.1) are very sparse: Rodrı́guez in [1] presented that the corresponding initial-boundary
value problem admits a global classical solution for the case that κ = 1, χ = 1 and n = 2, which was
extended to the case that χ ≤ 4

n , κ ≥ 0 and n ≥ 2 in [18]; very recently, we showed in [50] that such
problem possesses globally generalized solutions in the two-dimensional setting for any χ > 0, and
investigated the eventual smoothness of these generalized solutions. Compared these to aforementioned
results related to (1.3), an appealing problem naturally appears: Does the mixed-type damping term
−κuv possess some regularization effect that contributes to enlarging the range of the parameter χ within
which the higher-dimensional initial-boundary value problem of (1.1) admits global solvability at least
within some generalized framework?

To reveal it, the purpose of the present work is to explore the regularization effect of the quadratic
absorption term −κuv with κ > 0 in the following initial-boundary value problem related to (1.1):


ut = ∆u − χ∇ · (u∇ ln v) − κuv + h1, x ∈ Ω, t > 0,
vt = ∆v − v + u + h2, x ∈ Ω, t > 0,
∇u · ν = ∇v · ν = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.5)

with the parameters χ > 0 and κ > 0, where Ω ⊂ Rn(n ≥ 3) are bounded and smooth domains, and ν
denotes the exterior normal vector to the boundary ∂Ω.

To specify the setup for our analysis, we assume throughout the sequel that the initial data (u0, v0)
fulfill that 

u0 ∈ C0(Ω) with u0 ≥ 0 and u0 . 0,

v0 ∈ W1,∞(Ω) with inf
x∈Ω

v0 > 0,
(1.6)

and the given functions h1 and h2 satisfy that

0 ≤ hi ∈ C
1(Ω × [0,∞)) ∩ L∞(Ω × (0,∞)), i = 1, 2. (1.7)

The first attempt is to show that the initial-boundary value problem (1.5) admits some global
generalized solutions for general initial data and arbitrary χ < χ1 with some χ1 > χ0, where χ0 is given
in (1.4). For any given (u0, v0, h1, h2) obeying (1.6) and (1.7), the global generalized solution of the
problem (1.5) can be defined as follows:

Definition 1.1. A pair (u, v) is called a global generalized solution to the initial-boundary value
problem (1.5) if for any T > 0,
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(1) it holds that for some r > 1, p ∈ (0, 1) and q ∈ (0, 1)

u ∈ Lr(Ω × (0,T )), ∇ ln(1 + u) ∈ L2(Ω × (0,T )),
uv ∈ L1(Ω × (0,T )), up+1vq−1 ∈ L1(Ω × (0,T )),
v ∈ L∞(0,T ; L2(Ω)) ∩ L2(0,T ; H1(Ω)), ∇ ln v ∈ L2(Ω × (0,T ))
u(x, t) ≥ 0, v(x, t) > 0, a.e. in Ω × [0,T ],∫
Ω

u(·, t)dx + κ
∫ t

0

∫
Ω

uvdxds ≤
∫
Ω

u0dx +
∫ t

0

∫
Ω

h1dxds, a.e. in [0,T ];

(1.8)

(2) it holds that for each nonnegative φ(x, t) ∈ C∞0 (Ω × [0,T ))∫ T

0

∫
Ω

(
− ln(u + 1)φt + ∇ ln(1 + u) · ∇φ − φ|∇ ln(1 + u)|2 − χ

u
1 + u

∇φ · ∇ ln v

+ χ
uφ

1 + u
∇ ln(1 + u) · ∇ ln v +

κuv
1 + u

φ −
h1

1 + u
φ
)
dxdt ≥

∫
Ω

ln(u0 + 1)φ|t=0dx; (1.9)

(3) it holds that for any φ(x, t) ∈ L∞(Ω× (0,T ))∩L2(0,T ; H1(Ω)) having compact support in Ω× [0,T )
with φt ∈ L2(Ω × (0,T ))∫ T

0

∫
Ω

(
− vφt + ∇v · ∇φ + vφ − uφ − h2φ

)
dxdt =

∫
Ω

v0φ|t=0dx. (1.10)

We would like to remark that such concept of generalized solutions resembles those for the
(logarithmic) Keller-Segel system with signal absorption used in [49, 51], but is different from that
proposed in [37] by Lankeit and Winkler for the model (1.3). The first result on the global existence of
such generalized solutions can be stated as follows.

Theorem 1.2. Let (1.6) and (1.7) hold, and let χ > 0 fulfill that

χ < χ1 :=


2
√

3, n = 3,

2

√
1 +

4
n
, n ≥ 4.

(1.11)

Then the initial-boundary value problem (1.5) possesses at least one global generalized solution (u, v)
in the sense of Definition 1.1.

Remark 1.1. Simple computation shows that χ1 defined in (1.11) is larger than χ0 provided by (1.4).
This reveals in some sense that −κuv with κ > 0 indeed has some regularization effect on solutions.

With the global existence statement at hand, it is natural to focus on the large-time behavior of
generalized solutions. To achieve it, we need the following additional assumptions on h1 and h2:

inf
t>0

∫
Ω

h2(x, t)dx > 0, (1.12)∫ t+1

t

∫
Ω

h1(·, t)dxds→ 0, as t → ∞, (1.13)∫ t+1

t

∫
Ω

|h2(·, t) − h2,∞(·)|2dxds→ 0, as t → ∞, (1.14)

with some 0 . h2,∞ ∈ C
1(Ω). The corresponding result can be stated as follows.
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Theorem 1.3. Let Ω be convex and the extra assumptions (1.12)–(1.14) hold. Then, for the global
generalized solution of the initial-boundary value problem (1.5) from Theorem 1.2, there exists a null
set N ⊂ (0,∞) such that

∥u(·, t)∥L1 + ∥v(·, t) − v∞(·)∥L2 → 0, as (0,∞) \ N ∋ t → ∞, (1.15)

where v∞ denotes the solution of the boundary value problem0 = ∆v∞ − v∞ + h2,∞, x ∈ Ω,

∇v∞ · ν = 0, x ∈ ∂Ω.
(1.16)

Let’s state of the art and strategy of our proofs:
The main objective of this paper is to present that −κuv with κ > 0 has a regularization effect on

the solution of the problem (1.5) in the n-dimensional settings with n ≥ 3. Precisely, we prove that the
initial-boundary value problem (1.5) possesses a global generalized solution for any χ < χ1 (given in (1.11)),
where χ1 is greater than χ0 (given in (1.4)). Note that the condition that χ < χ0 is required in [37] to
guarantee the global existence of generalized solutions to the initial-boundary value problem of (1.3).
Usually, to get the generalized solvability, one should seek an appropriate generalized framework, and
thereby obtain the global existence of generalized solutions by an appropriate approximation procedure.
Here, our novelty of analysis consists of further developing the generalized framework given in [49] by
Winkler for the logarithmic Keller-Segel system with signal absorption, and using the coupled quantity
up
εv

q
ε with some p, q ∈ (0, 1) introduced in [37] by Lankeit and Winkler for the model (1.3) to derive the

uniform in ε bound of ∫ T

0

∫
Ω

up+1
ε vq−1

ε dxdt, T > 0,

see Lemma 3.1, in which, in contrast with [37], we must deal with the additional term

2pκ
∫ T

0

∫
Ω

up
εv

q+1
ε dxdt.

To this end, we need some additional assumption on p to obtain some now uniform in ε estimates
by using the benefit of −κuεvε, see Lemma 2.2. After this, by taking advantage of Lemma 2.2 again,
we address ourselvers to the uniform in ε bound of ∥uε∥Lr(Ω×(0,T )) with some r > 1, see Lemma 3.3. We
would like to remark that, in contrast with [37], the additional condition that q < 4

n will be required
in our situation when n ≥ 5, which results in that [37, Lemma 5.1] is no longer in force. Here, our
novelty of analysis contains establishing some fragile estimates, by which we can get the core of our
requirement (1.11) on χ. Based on the above processes, we can employ the result that uε → u a.e. in
Ω × (0,T ) and the Vitali convergence theorem to get the strong convergence of {uε} in L1(Ω × (0,T )),
see Lemma 3.5. Moreover, by establishing a series of uniform a-priori estimates as desired, we can get
the global existence of generalized solutions to the initial-boundary value problem (1.5) via passing to
limit, and subsequently complete the proof of Theorem 1.2 in Section 3.

The second objective of this paper is to show the large-time behavior of such generalized solutions,
under the additional assumptions on h1 and h2. Here, our novelty of analysis consists of tracking the
time evolution of the combinational functional of the form

Eε(t) :=
∫
Ω

|vε − v∞|2 + µuεdx, t > 0,

Mathematical Biosciences and Engineering Volume 20, Issue 3, 4532–4559.



4537

with some µ > 0, where v∞ is a classical solution of the boundary value problem (1.16). A fragile
calculation yields that∫

Ω

|vε − v∞|2(·, t) + uε(·, t)dx→ 0 as t → ∞ uniformly in ε,

see Lemma 4.5 for details. This, together with the Fubini-Tonelli theorem and Fatou’s lemma, ensures
the desired results in Theorem 1.3, see Section 4 for details.

2. Global approximate solutions and basic estimates

To structure the generalized solution of the initial-boundary value problem (1.5) by an approximation
procedure, for any ε ∈ (0, 1) we shall consider the following approximate problem

uεt = ∆uε − χ∇ ·
(

uε
1 + εuε

∇ ln vε

)
− κuεvε + h1, x ∈ Ω, t > 0,

vεt = ∆vε − vε + uε + h2, x ∈ Ω, t > 0,
∂uε
∂ν
=
∂vε
∂ν
= 0, x ∈ ∂Ω, t > 0,

uε(x, 0) = u0(x), vε(x, 0) = v0(x), x ∈ Ω,

(2.1)

and then first obtain the following.

Lemma 2.1. Assume that the assumptions (1.6) and (1.7) hold. For each ε ∈ (0, 1) and any χ > 0, there
exists a unique pair (uε, vε) of positive functions with the properties that for any T > 0

uε ∈ C0(Ω × [0,T ]
)
∩ C2,1(Ω × (0,T )

)
,

vε ∈
⋂
r>n

C0(0,T ; W1,r(Ω)
)
∩ C2,1(Ω × (0,T )

),
such that (uε, vε) solves the approximate problem (2.1) classically in Ω× [0,T ). Moreover, the following
two statements are true:

vε(·, t) ≥ e−t inf
x∈Ω

v0(x), t > 0, (2.2)

and

∥uε(·, t)∥L1 +

∫ t

0

∫
Ω

uεvε(·, s)dxds ≤ C(1 + t), t > 0, (2.3)

for some C > 0, independent of ε.

Proof. An application of the well-known strategy, as in [34, 52], implies that there exist time
Tmax,ε ∈ (0,∞] and a unique pair (uε, vε) of positive functions with the properties that

uε ∈ C0(Ω × [0,Tmax,ε)
)
∩ C2,1(Ω × (0,Tmax,ε)

)
,

vε ∈
⋂
r>n

C0([0,Tmax,ε); W1,r(Ω)
)
∩ C2,1(Ω × (0,Tmax,ε)

)
,
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such that (uε, vε) solves the approximate problem (1.5) classically in Ω × [0,Tmax,ε). Moreover, if
Tmax,ε < ∞, then for any q > n

lim sup
t→Tmax,ε

(
∥uε(·, t)∥L∞ + ∥∇vε(·, t)∥Lq + ∥v−1

ε (·, t)∥L∞
)
= ∞. (2.4)

To show that Tmax,ε = ∞, let us start with the pointwise lower bound for the solution component vε
and the bound of ∥uε∥L1 . Indeed, according to the variation-of-constants formula for vε

vε(·, t) = et(∆−1)v0 +

∫ t

0
e(t−s)(∆−1)uε(·, s)ds +

∫ t

0
e(t−s)(∆−1)h2(·, s)ds, (2.5)

the comparison principle for the Neumann problem associated with the heat equation and the facts that
h2 ≥ 0 and uε > 0, we have

vε(·, t) ≥ et(∆−1)v0 ≥ e−t inf
x∈Ω

v0(x), t ∈ (0,Tmax,ε). (2.6)

To get the bound of ∥uε∥L1 , we integrate the first equation in (2.1) over Ω to obtain

d
dt

∫
Ω

uεdx + κ
∫
Ω

uεvεdx =
∫
Ω

h1dx, (2.7)

which, integrating over [0, t], implies that

∥uε(·, t)∥L1 + κ

∫ t

0

∫
Ω

uεvεdxds ≤ ∥u0∥L1 + ∥h1∥L∞(Ω×(0,∞))t, t ∈ (0,Tmax,ε). (2.8)

We now estimate ∥uε∥L∞ . Indeed, according to the variation-of-constants formula for uε, we can infer
from the maximum principle and the nonnegativity of κuεvε that

uε(·, t) ≤ et(∆−1)u0 +

∫ t

0
e(t−s)(∆−1)

{
−χ∇ ·

(
uε

1 + εuε
∇ ln vε

)
+ uε + h1

}
ds

≤ ∥et(∆−1)u0∥L∞ +

∫ t

0

∥∥∥∥∥∥e(t−s)(∆−1)
{
−χ∇ ·

(
uε

1 + εuε
∇ ln vε

)
+ uε + h1

}∥∥∥∥∥∥
L∞

ds,

which, combining with the properties of the Neumann heat semigroup (see [53, 54]), (2.6) and the
nonnegativity of uε, leads to that for any r > n

∥uε(·, t)∥L∞

≤∥u0∥L∞ +Cεet
∫ t

0

(
1 + (t − s)−

1
2−

n
2r + (t − s)−

n
2r
)

e−(t−s) (∥∇vε∥Lr + ∥uε + h1∥Lr ) ds. (2.9)

By means of the interpolation inequality and (2.8), we obtain

∥uε∥Lr ≤ ∥uε∥
1
r

L1∥uε∥
1− 1

r
L∞ ≤ C(1 + t

1
r )∥uε∥

1− 1
r

L∞ , t ∈ (0,Tmax,ε). (2.10)

In addition, the application of the properties of the Neumann heat semigroup to (2.5) entails that for any
r > n

∥∇vε(·, t)∥Lr ≤∥∇et(∆−1)v0∥Lr +

∫ t

0

∥∥∥∇e(t−s)(∆−1) (uε + h2)
∥∥∥

Lr ds
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≤C∥∇v0∥Lr +C
∫ t

0

(
1 + (t − s)−

1
2
)

e−(t−s) ∥uε + h2∥Lr ds.

Using (2.10) and letting K(T ) := supt∈(0,T ) ∥uε(·, t)∥L∞ for any T ∈ (0,Tmax,ε), we arrive at

sup
t∈(0,T )

∥∇vε(·, t)∥Lr ≤ C +C(1 + T
1
r )K1− 1

r (T ). (2.11)

Substituting this and (2.10) into (2.9), we conclude that

K(T ) ≤ C +CεeT
(
1 + (1 + T

1
r )K1− 1

r (T )
)
.

Since 0 < 1 − 1
r < 1, an application of Young’s inequality implies that K(T ) ≤ Cε(T ). Hence for any

T ∈ (0,Tmax,ε) we infer that
∥uε(·, t)∥L∞ ≤ Cε(T ), t ∈ (0,T ) .

This, together with (2.6) and (2.11), establishes a contradiction to (2.4) and thereby ensures that actually
we must have Tmax,ε = ∞.

Moreover, using (2.6) and (2.8) with Tmax,ε = ∞, the assertions (2.2) and (2.3) hold as desired.

The estimate (2.3) turns out to be sufficient for the derivation of the bound of ∥vε∥L2 .

Lemma 2.2. Let r ∈ [1, n
n−2). Assume that (uε, vε) is taken from Lemma 2.1. Then there exists

C = C(r) > 0, with the property that

∥vε(·, t)∥Lr ≤ C(1 + t), t > 0 and ε ∈ (0, 1). (2.12)

Moreover, there is C > 0 such that∫
Ω

v2
ε(·, t)dx ≤ C(1 + t), t > 0 and ε ∈ (0, 1), (2.13)

and ∫ t

0
∥∇vε(·, s)∥2L2ds ≤ C(1 + t), t > 0 and ε ∈ (0, 1). (2.14)

Proof. Recalling (2.5) and invoking the properties of the Neumann heat semigroup (see [53, 54]), for
any r ∈ [1, n

n−2 ) and t > 0 we have

∥vε(·, t)∥Lr ≤ C1∥v0∥Lr +C1

∫ t

0

(
1 + (t − s)−

n
2 (1− 1

r )
)

e−(t−s) (∥uε(·, s)∥L1 + ∥h2(·, s)∥L1) ds,

which, using (1.7) and (2.3), leads to (2.12) as desired.
Next, we test the second equation in (2.1) by vε and use the integration by part to get

1
2

d
dt

∫
Ω

v2
εdx +

∫
Ω

|∇vε|2dx +
∫
Ω

v2
εdx =

∫
Ω

uεvεdx +
∫
Ω

h2vεdx, t > 0.
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By means of (1.7), the applications of Young’s inequality and Hölder’s inequality yield∫
Ω

h2vεdx ≤
1
2
∥vε∥2L2 +

1
2
∥h2∥

2
L2 ≤

1
2
∥vε∥2L2 +C3.

Invoking this we arrive at

d
dt

∫
Ω

v2
εdx + 2

∫
Ω

|∇vε|2dx +
∫
Ω

v2
εdx ≤ 2

∫
Ω

uεvεdx + 2C3, t > 0. (2.15)

Integrating (2.15) over [0, t] we obtain that∫
Ω

v2
ε(·, t)dx + 2

∫ t

0

∫
Ω

|∇vε|2dxds +
∫ t

0

∫
Ω

v2
εdxds ≤

∫
Ω

v2
0dx + 2

∫ t

0

∫
Ω

uεvεdxds + 2C3t,

which, combined with (2.3), ensures (2.13) and (2.14).

In comparison to Lemma 2.2, deriving the bound for
∫ t

0

∫
Ω
|∇uε|2dxds seems to be more delicate, due

to the presence of the taxis-type term in the first equation in (2.1). Motivated by [49, 51], we resort to
estimating ∇ ln(uε + 1) instead.

Lemma 2.3. Let (uε, vε) be given in Lemma 2.1. There exists C > 0, with the property that∫ t

0
∥∇ ln(uε(·, s) + 1)∥2L2ds ≤ C(1 + t)et, t > 0 and ε ∈ (0, 1). (2.16)

Proof. Multiplying the first equation in (2.1) by 1
1+uε

and using the integration by parts, we see that

d
dt

∫
Ω

ln(1 + uε)dx =
∫
Ω

1
1 + uε

{
∆uε − χ∇ ·

(
uε

1 + εuε
∇ ln vε

)
− κuεvε + h1

}
=

∫
Ω

|∇uε|2

(uε + 1)2 dx − χ
∫
Ω

uε
(uε + 1)2 (1 + εuε)

∇uε · ∇ ln vεdx

−

∫
Ω

κuεvε
1 + uε

dx +
∫
Ω

h1

1 + uε
dx, t > 0.

Invoking this, an application of Young’s inequality yields that

1
2

∫
Ω

|∇uε|2

(uε + 1)2 dx ≤
d
dt

∫
Ω

ln(1 + uε)dx +
χ2

2

∫
Ω

u2
ε

(uε + 1)2 (εuε + 1)2 |∇ ln vε|2 dx

+

∫
Ω

κuεvε
1 + uε

dx −
∫
Ω

h1

1 + uε
dx

≤
d
dt

∫
Ω

ln(1 + uε)dx +
χ2

2

∫
Ω

|∇ ln vε|2 dx + κ
∫
Ω

vεdx, t > 0,

which, using (2.2) and integrating in time, leads to

1
2

∫ t

0

∫
Ω

|∇uε|2

(uε + 1)2 dxds ≤
∫
Ω

ln(1 + uε(·, t))dx +Cet
∫ t

0

∫
Ω

|∇vε|2 dxds + κ
∫ t

0

∫
Ω

vεdxds, t > 0.
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This, together with (2.12) and (2.14), ensures there exists C > 0 such that

1
2

∫ t

0

∫
Ω

|∇uε|2

(uε + 1)2 dxds ≤
∫
Ω

ln(1 + uε(·, t))dx +C(1 + t)et, t > 0.

Since ζ ≥ ln(1 + ζ) ≥ 0 for any ζ ≥ 0, we obtain that

1
2

∫ t

0

∫
Ω

|∇uε|2

(uε + 1)2 dxds ≤
∫
Ω

uε(·, t)dx +C(1 + t)et, t > 0,

which, in view of (2.3), entails (2.16).

3. Global generalized solutions

To obtain the desired integrability for u in Definition 1.1, a crucial step in our analysis will consist of
deriving the uniform spatio-temporal integrability of uε. To this end, we further develop the framework
presented in [37, Lemma 5.1] to get some essential a-priori estimates for (2.1).

Lemma 3.1. Let n ≥ 3, p ∈ (0, 1) satisfying p < 1
χ2 and p < 4

n , and q ∈ (q−(p), q+(p)) with

q±(p) :=
1 − p

2

(
1 ±

√
1 − pχ2

)
. (3.1)

Assume that (uε, vε) is given in Lemma 2.1. Then, there exists C > 0, with the property that for any t > 0
and ε ∈ (0, 1)∫ t

0

∫
Ω

up
εv

q−2
ε |∇vε|2dxds +

∫ t

0

∫
Ω

up−2
ε vq

ε|∇uε|2dxds +
∫ t

0

∫
Ω

up+1
ε vq−1

ε dxds ≤ C(1 + t)4. (3.2)

Proof. Using the facts that uε > 0 and vε > 0, we have

d
dt

∫
Ω

up
εv

q
εdx =p

∫
Ω

up−1
ε vq

ε∂tuεdx + q
∫
Ω

up
εv

q−1
ε ∂tvεdx

=p
∫
Ω

up−1
ε vq

ε

{
∆uε − χ∇ ·

(
uε

1 + εuε
∇ ln vε

)
− κuεvε + h1

}
dx

+ q
∫
Ω

up
εv

q−1
ε (∆vε − vε + uε + h2) dx, t > 0,

which, using the integration by parts, leads to

d
dt

∫
Ω

up
εv

q
εdx =p(1 − p)

∫
Ω

up−2
ε vq

ε|∇uε|2dx −
∫
Ω

(
2pq +

p(1 − p)χ
1 + εuε

)
up−1
ε vq−1

ε ∇uε · ∇vεdx

+

∫
Ω

(
pqχ

1 + εuε
+ q(1 − q)

)
up
εv

q−2
ε |∇vε|2dx − pκ

∫
Ω

up
εv

q+1
ε dx

+ p
∫
Ω

up−1
ε vq

εh1dx − q
∫
Ω

up
εv

q
εdx + q

∫
Ω

up+1
ε vq−1

ε dx + q
∫
Ω

up
εv

q−1
ε h2dx, t > 0.
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Thanks to the nonnegativity of h1, h2, uε and vε, we arrive at

d
dt

∫
Ω

up
εv

q
εdx ≥p(1 − p)

∫
Ω

up−2
ε vq

ε|∇uε|2dx −
∫
Ω

(
2pq +

p(1 − p)χ
1 + εuε

)
up−1
ε vq−1∇uε · ∇vεdx

+

∫
Ω

(
pqχ

1 + εuε
+ q(1 − q)

)
up
εv

q−2
ε |∇vε|2dx + q

∫
Ω

up+1
ε vq−1

ε dx

− pκ
∫
Ω

up
εv

q+1
ε dx − q

∫
Ω

up
εv

q
εdx

=:P1 + P2 + P3 + P4 + P5 + P6, t > 0.

A straightforward rearrangement in the first three integrands on the right entails

P1 + P2 + P3 = p(1 − p)
∫
Ω

∣∣∣∣∣∣∣u p
2−1
ε v

q
2
ε∇uε −

2q + (1−p)χ
1+εuε

2(1 − p)
u

p
2
ε v

q
2−1
ε ∇vε

∣∣∣∣∣∣∣
2

dx

+

∫
Ω

q
(

pχ
1 + εuε

+ 1 − q
)
−

p
(
2q + (1−p)χ

1+εuε

)2

4(1 − p)

 up
εv

q−2
ε |∇vε|2dx

=

∫
Ω

q
(

pχ
1 + εuε

+ 1 − q
) ∣∣∣∣∣∣∣∣u

p
2
ε v

q
2−1
ε ∇vε −

p
(
2q + (1−p)χ

1+εuε

)
2q

(
pχ

1+εuε
+ 1 − q

)v
p
2−1v

q
2
ε∇uε

∣∣∣∣∣∣∣∣ dx

+

∫
Ω

p(1 − p) −
p2

(
2q + (1−p)χ

1+εuε

)2

4q
(

pχ
1+εuε

+ 1 − q
)
 up−2
ε vq

ε|∇uε|2dx.

Invoking this, we obtain

2
d
dt

∫
Ω

up
εv

q
εdx + 2pκ

∫
Ω

up
εv

q+1
ε dx + 2q

∫
Ω

up
εv

q
εdx

≥

∫
Ω

c1(x, t)up
εv

q−2
ε |∇vε|2dx +

∫
Ω

c2(x, t)up−2
ε vq

ε|∇uε|2dx + 2q
∫
Ω

up+1
ε vq−1

ε dx,

where

c1(x, t) := q
(

pχ
1 + εuε

+ 1 − q
)
−

p
(
2q + (1−p)χ

1+εuε

)2

4(1 − p)
,

c2(x, t) := p(1 − p) −
p2

(
2q + (1−p)χ

1+εuε

)2

4q
(

pχ
1+εuε

+ 1 − q
) .

We also note that the assumption (3.1) on q warrants that q < 1 − p and

4(1 − p)q − 4q2 − p(1 − p)2χ2 = −4(q − q+(p))(q − q−(p)) > 0,

which, due to p ∈ (0, 1), ensures

4(1 − p)c1(x, t) = 4q(1 − p) − 4q2 −
p(1 − p)2χ2

(1 + εuε)2
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≥ 4(1 − p)q − 4q2 − p(1 − p)2χ2 > 0.

Similarly, we have

4q (pχ + 1 − q) p−1c2(x, t) ≥4q
(

pχ
1 + εuε

+ 1 − q
)

p−1c2(x, t)

≥4(1 − p)q − 4q2 − p(1 − p)2χ2 > 0.

Collecting these, there exist two positive constants ĉ1 and ĉ2, denoted by

ĉ1 := q(pχ + 1 − q) −
p(2q + (1 − p)χ)2

4(1 − p)
, ĉ2 := p(1 − p) −

p2(2q + (1 − p)χ)2

4q(pχ + 1 − q)
,

such that

2
d
dt

∫
Ω

up
εv

q
εdx + 2pκ

∫
Ω

up
εv

q+1
ε dx + 2q

∫
Ω

up
εv

q
εdx

≥ ĉ1

∫
Ω

up
εv

q−2
ε |∇vε|2dx + ĉ2

∫
Ω

up−2
ε vq

ε|∇uε|2dx + 2q
∫
Ω

up+1
ε vq−1

ε dx.

Hence, an integration in time shows

ĉ1

∫ t

0

∫
Ω

up
εv

q−2
ε |∇vε|2dxds + ĉ2

∫ t

0

∫
Ω

up−2
ε vq

ε|∇uε|2dxds + 2q
∫ t

0

∫
Ω

up+1
ε vq−1

ε dxds

≤ 2
∫
Ω

up
εv

q
ε(x, t)dx + 2pκ

∫ t

0

∫
Ω

up
εv

q+1
ε dxds + 2q

∫ t

0

∫
Ω

up
εv

q
εdxds. (3.3)

Using Hölder’s inequality and the fact that q < 1 − p again, we have∫
Ω

up
εv

q
εdx ≤ ∥up

ε∥L
1
p
∥vq
ε∥L

1
1−p
= ∥uε∥

p
L1∥vε∥

q

L
q

1−p
≤ C∥uε∥

p
L1∥vε∥

q
L2 ,

which, together with (2.3) and (2.13), implies that there exists C > 0, independent of ε, such that

2
∫
Ω

up
εv

q
ε(x, t)dx + 2q

∫ t

0

∫
Ω

up
εv

q
εdxds ≤ C(1 + t)p+ q

2+1 ≤ C(1 + t)2, t > 0. (3.4)

Similarly, an application of Hölder’s inequality and Young’s inequality yields that

2pκ
∫ t

0

∫
Ω

up
εv

q+1
ε dxds ≤2pκ

∫ t

0

(∫
Ω

up+1
ε vq−1

ε dx
) p

p+1
(∫
Ω

v2p+q+1
ε dx

) 1
p+1

ds

≤q
∫ t

0

∫
Ω

up+1
ε vq−1

ε dxds +C
∫ t

0

∫
Ω

v2p+q+1
ε dxds.

(3.5)

Since q < 1 − p and 0 < p < 1, we have 2p + q + 1 < 2 + p < 3. In the case that n = 3, thanks to
n

n−2 = 3, it follows from (2.12) that there exists C > 0 such that∫ t

0

∫
Ω

v2p+q+1
ε dxds ≤ C

∫ t

0
(1 + s)2p+q+1ds ≤ C(1 + t)4, t > 0. (3.6)
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In the case that n ≥ 4, if 2p + q + 1 ≤ 2, according to Young’s inequality and (2.13) there exists C > 0
such that ∫ t

0

∫
Ω

v2p+q+1
ε dxds ≤

∫ t

0

∫
Ω

v2
ε + 1dxds ≤ C(1 + t)2, t > 0. (3.7)

In addition, if 2 < 2p + q + 1 ≤ 2n
n−2 , then we can infer from the Gagliardo-Nirenberg inequality that

∥vε∥L2p+q+1 ≤ C
(
∥vε∥1−θL2 ∥∇vε∥θL2 + ∥vε∥L2

)
, θ :=

n(2p + q − 1)
2(2p + q + 1)

,

which, combined with (2.13), leads to

∥vε(·, t)∥
2p+q+1
L2p+q+1 ≤ C(1 + t)2p+q+1

(
∥∇vε(·, t)∥

n
2 (2p+q−1)
L2 + 1

)
, t > 0.

Recalling the fact that 2 < 2p + q + 1, we have 0 < n
2 (2p + q − 1) < n

2 p < 2 due to p + q < 1 and p < 4
n ,

and thereby infer from Young’s inequality and (2.14) that∫ t

0

∫
Ω

v2p+q+1
ε dxds ≤ C(1 + t)p+ q

2+
1
2

∫ t

0

(
∥∇vε(·, s)∥2L2 + 1

)
ds ≤ C(1 + t)3, t > 0. (3.8)

Collecting (3.6)–(3.8), it follows from (3.5) that, whenever n ≥ 3,

2pκ
∫ t

0

∫
Ω

up
εv

q+1
ε dxds ≤ q

∫ t

0

∫
Ω

up+1
ε vq−1

ε dxds +C(1 + t)4, t > 0. (3.9)

Substituting (3.4) and (3.9) into (3.3), we have (3.2) as desired, due to the facts that ĉ1, ĉ2 > 0 and
q < 1.

Indeed, using Lemma 3.1, we can get the bound of uε in some reflexive Lr spaces. To achieve it, we
need to identify the minimal possible choice of an integrability exponent arising in (3.19) below, which
will form the core of our requirement (1.11) on χ.

Lemma 3.2. Let χ > 0, and for p ∈
(
0,min{1, 4

n ,
1
χ2 }

)
let q±(p) be defined in (3.1). If n ∈ {3, 4}, then

inf
p∈(0,1),p< 1

χ2

q∈(q−(p),q+(p))

1 − q
p
=


1 if χ ≤ 1,
χ if χ ∈ (1, 2),
1 + χ

2

4 if χ ≥ 2,

(3.10)

and if n ≥ 5, then

inf
p∈(0,min{ 4n ,

1
χ2
})

q∈(q−(p),q+(p))

1 − q
p
=


n
8 +

1
2 −

(
n
8 −

1
2

) √
1 − 4

nχ
2 if χ ≤ 2n

n+4 ,

χ if χ ∈
(

2n
n+4 , 2

)
,

1 + χ
2

4 if χ ≥ 2.

(3.11)
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Proof. If n ∈ {3, 4}, then p ∈ (0,min{1, 1
χ2 }). In this case, the assertion (3.11) directly follows from [37,

Lemma 5.1].
If n ≥ 5, then we have p ∈ (0,min{ 4n ,

1
χ2 }). A straightforward calculation shows that

I(χ) := inf
p∈(0,min{ 4n ,

1
χ2
})

q∈(q−(p),q+(p))

1 − q
p
= inf

p∈(0,min{ 4n ,
1
χ2
})

1 + p − (1 − p)
√

1 − pχ2

2p
,

and that I(χ) ≥ 1 for any χ > 0. Setting ξ :=
√

1 − pχ2, we get that

ξ ∈


(√

1 − 4
nχ

2, 1
)
, if χ ≤

√
n

2 ,

(0, 1) if χ >
√

n
2 .

(3.12)

Note that p = 1−ξ2

χ2 , simple computation shows that

1 + p − (1 − p)
√

1 − pχ2

2p
=

1
2

(
χ2

1 + ξ
+ 1 + ξ

)
=: g(ξ).

Accordingly, we have

I(χ) =

inf
ξ∈

[√
1− 4

nχ
2,1

] g(ξ), if χ ≤
√

n
2 ,

infξ∈[0,1] g(ξ), if χ >
√

n
2 .

(3.13)

As

g′(ξ) :=
1
2

(
−
χ2

(1 + ξ)2 + 1
)
,

which implies that g(ξ) is strictly monotonely decreasing in the interval [0, χ−1] and strictly monotonely
increasing in the intrerval [χ − 1,+∞), correspondingly, we have

I(χ) =



g(χ − 1), if χ ∈
(
1 +

√
1 − 4

nχ
2, 2

]
∩

(
0,
√

n
2

]
,

g(
√

1 − 4
nχ

2), if χ ∈
(
0, 1 +

√
1 − 4

nχ
2
]
∩

(
0,
√

n
2

]
,

g(1), if χ ∈ (2,
√

n
2 ], n > 16,

g(χ − 1), if χ ∈ [1, 2] ∩ (
√

n
2 ,+∞)

g(1), if χ ∈ (2,+∞) ∩ (
√

n
2 ,+∞).

(3.14)

Direct calculation shows that

χ ∈

1 + √
1 −

4
n
χ2, 2

 ∩ (
0,
√

n
2

]
⇔ χ ∈

(
2n

n + 4
,min{2,

√
n

2
}

]
,

and

χ ∈
(
0, 1 +

√
1 −

4
n
χ2

]
∩ (0,

√
n

2

]
⇔ χ ∈ (0,

2n
n + 4

],
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moreover,

(2,+∞) ∩ (
√

n
2
,+∞) = (2,+∞) if n ≤ 16

and

(2,
√

n
2

] ∪
(
(2,+∞) ∩ (

√
n

2
,+∞)

)
= (2,+∞) if n > 16,

as well as (
2n

n + 4
,min{2,

√
n

2
}

]
∪

(
[1, 2] ∩ (

√
n

2
,+∞)

)
= (

2n
n + 4

, 2].

Thus, it follows from (3.14) that

I(χ) =


g(

√
1 − 4

nχ
2), if χ ∈ (0, 2n

n+4 ],

g(χ − 1), if χ ∈ ( 2n
n+4 , 2],

g(1), if χ ∈ (2,+∞)

(3.15)

Note that

g

√1 −
4
n
χ2

 = 1
2

1 + n
4
+

(
1 −

n
4

) √
1 −

4
n
χ2

 ,
g(χ − 1) = χ,

and

g(1) = 1 +
1
4
χ2,

these together with (3.15) gives us the desired (3.11).

Now under the assumptions on χ in Theorem 1.2, the interpolation argument, invoking Lemma 3.2,
indeed bears fruit of the desired flavour.

Lemma 3.3. Let p and q be taken from Lemma 3.1, and χ satisfy (1.11). Then, for (uε, vε) given in
Lemma 2.1, there exist r > 1 and C > 0, with the property that∫ t

0

∫
Ω

ur
ε(·, s)dxds ≤ C(1 + t)4, t > 0 and ε ∈ (0, 1). (3.16)

Proof. According to (3.10), we infer that if n = 3, then we have, as long as χ < 2
√

3,

inf
p∈(0,1),p< 1

χ2

q∈(q−(p),q+(p))

1 − q
p
< 4,

with q−(p) and q+(p) given by Lemma 3.1, which ensures that we can find p ∈ (0,min{1, 1
χ2 } and

q ∈ (q−(p), q+(p)) such that
(1 − q)

p
< 4. (3.17)
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Similarly, we can deduce from (3.10) and (3.11) that

inf
p∈(0,min{ 4n ,

1
χ2
})

q∈(q−(p),q+(p))

1 − q
p
< 2 +

4
n
,

for any n ≥ 4, as long as χ < 2
√

1 + 4
n , which also guarantees that we can choose p ∈ (0,min{ 4n ,

1
χ2 } and

q ∈ (q−(p), q+(p)) such that
(1 − q)

p
< 2 +

4
n
. (3.18)

Fix p and q in (3.17) and (3.18) respectively, utilizing a continuity argument we can further pick
r ∈ (1, 1 + p) sufficiently close to 1 such that

β :=
(1 − q)r
p + 1 − r


< 4, n = 3,

< 2 +
4
n
, n ≥ 4.

For such r, an application of Young’s inequality yields that∫ t

0

∫
Ω

ur
εdxds ≤

∫ t

0

∫
Ω

up+1
ε vq−1

ε dxds +
∫ t

0

∫
Ω

v
(1−q)r
1+p−r
ε dxds, t > 0,

which, united (3.2), ensures that∫ t

0

∫
Ω

ur
εdxds ≤ C(1 + t)4 +

∫ t

0

∫
Ω

vβεdxds, t > 0, (3.19)

with β = (1−q)r
1+p−r and C > 0 independent of ϵ.

In the case n = 3, if β < n
n−2 , i.e, β < 3, then it follows from (2.12) that∫ t

0

∫
Ω

vβεdxds ≤ C(1 + t)β+1 ≤ C(1 + t)4, t > 0,

thus we have from (3.19) that ∫ t

0

∫
Ω

ur
εdxds ≤ C(1 + t)4, t > 0,

namely, (3.16) is valid. Meanwhile, if β ∈ [3, 4), then γ := 3β−6
2 ∈ [3

2 , 3) and 6(β−γ)
6−γ = 2, the Gagliardo-

Nirenberg inequality implies that

∥vε∥
β

Lβ ≤ C
(
∥vε∥

β−2
Lγ ∥∇vε∥2L2 + ∥vε∥

β

L2

)
, t > 0,

which, together with (2.12)–(2.14), gives us∫ t

0

∫
Ω

vβεdxds ≤C
∫ t

0
(1 + s)β−2∥∇vε(·, s)∥2L2 + (1 + s)

β
2 ds
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≤C
{
(1 + t)β−1 + (1 + t)

β
2+1

}
, t > 0.

This, combined with (3.19), also entails (3.16) due to β < 4.
In the case n ≥ 4, if β ≤ 2, then the Young inequality and (2.13) entail that∫ t

0

∫
Ω

vβεdxds ≤
∫ t

0

∫
Ω

v2
ε + 1dxds ≤ C(1 + t)2, t > 0.

This, together with (3.19), also guarantees the validity of (3.16). If β ∈ (2, 2 + 4
n), then n(β−2)

2 < 2.
Applications of the Gagliardo-Nirenberg inequality and the Young inequality imply that

∥vε∥
β

Lβ ≤C
(
∥vε∥

β−
n(β−2)

2
L2 ∥∇vε∥

n(β−2)
2

L2 + ∥vε∥
β

L2

)
≤C

(
∥vε∥

β−
n(β−2)

2
L2 ∥∇vε∥2L2 + ∥vε∥

β

L2 + 1
)
, t > 0.

In this case, we can infer from (2.13) and (2.14) that∫ t

0

∫
Ω

vβεdxds ≤ C(1 + t)
β
2+1, t > 0,

which, combined (3.19), implies that (3.16) is also valid due to β < 2 + 4
n .

As a final preparation for our limit procedure, we establish some regularity features of the time
derivatives in (2.1).

Lemma 3.4. Let (uε, vε) be established in Lemma 2.1. For any T > 0, there exists C(T ) > 0, with the
property that for r > n ∫ T

0
∥vεs(·, s)∥2(W1,r)⋆ ds ≤ C(T ) for any ε ∈ (0, 1), (3.20)∫ T

0
∥∂s ln (uε(·, s) + 1)∥(W1,r)⋆ ds ≤ C(T ) for any ε ∈ (0, 1). (3.21)

Proof. On the basis of the second equation in (2.1), we obtain from the integration by parts and Hölder’s
inequality that for any φ ∈ C∞(Ω) and t > 0

|⟨vεt, φ⟩| ≤ ∥∇vε∥L2∥∇φ∥L2 + ∥vε∥L2∥φ∥L2 + ∥uε∥L1∥φ∥L∞ + ∥h2∥L∞∥φ∥L1 ,

which, combined with the Sobolev embedding theorem, entails that for any r > n there exists C > 0
independent of ε such that for any t > 0

|⟨vεt, φ⟩| ≤ C (∥vε∥H1 + ∥uε∥L1 + ∥h2∥L∞) ∥φ∥W1,r .

This, in view of (2.3), (2.13), (2.14) and (1.7), in turn ensures (3.20).
Next, multiplying the first equation in (2.1) by φ

uε+1 for any φ ∈ C∞(Ω) we have for any t > 0∫
Ω

∂t ln(1 + uε)φdx =
∫
Ω

|∇uε|2 φ
(uε + 1)2 dx − χ

∫
Ω

uε(∇uε · ∇ ln vε)φ
(uε + 1)2 (1 + εuε)

dx −
∫
Ω

∇uε · ∇φ
1 + uε

dx
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+ χ

∫
Ω

uε∇ ln vε · ∇φ
(1 + uε)(1 + εuε)

dx − κ
∫
Ω

uεvεφ
1 + uε

dx +
∫
Ω

h1φ

1 + uε
dx,

which, by using Hölder’s inequality, Young’s inequality and Sobolev’s inequality, entails that for any
r > n there exists C > 0 such that for any t > 0

|⟨∂t ln(1 + uε), φ⟩| ≤∥φ∥L∞
∫
Ω

|∇uε|2

(uε + 1)2 dx + χ
(∫
Ω

|∇uε|2

(uε + 1)2 dx
) 1

2

∥∇ ln vε∥L2∥φ∥L∞

+

(∫
Ω

|∇uε|2

(uε + 1)2 dx
) 1

2

∥∇φ∥L2 + χ∥∇ ln vε∥L2∥∇φ∥L2

+ κ∥vε∥L2∥φ∥L2 + ∥h1∥L∞∥φ∥L1

≤C∥φ∥W1,r

(∫
Ω

|∇uε|2

(uε + 1)2 dx + ∥∇ ln vε∥2L2 + ∥vε∥L2 + ∥h1∥L∞ + 1
)
.

After an integration in time, we infer from (1.7), (2.13), (2.14), (2.16) and (2.2) that (3.21) holds as
desired.

On the basis of the standard compactness arguments, we can find a candidate (u, v) for a generalized
solution.

Lemma 3.5. Let (uε, vε) be taken from Lemma 2.1. Then, for any T > 0 there exist functions u ≥ 0
and v > 0 defined on Ω × (0,T ) and a sequence {ε j}

∞
j=1 ⊂ (0, 1) such that ε j → 0 as j → ∞, with the

properties that as ε = ε j → 0,

ln(1 + uε)→ ln(1 + u) in L2(Ω × (0,T )
)
, (3.22)

ln(1 + uε)⇀ ln(1 + u) in L2(0,T ; H1(Ω)
)
, (3.23)

uε → u a.e. in Ω × (0,T ), (3.24)
uε → u in L1(Ω × (0,T )

)
, (3.25)

uε ⇀ u in Lr(Ω × (0,T )
)
, (3.26)

vε → v in L2(0,T ; Lq(Ω)
)
, (3.27)

v−1
ε → v−1 in L2(0,T ; Lq(Ω)

)
, (3.28)

ln vε → ln v in L2(0,T ; Lq(Ω)
)
, (3.29)

vε
∗
⇀ v in L∞

(
0,T ; L2(Ω)

)
, (3.30)

vε ⇀ v in L2(0,T ; H1(Ω)
)
, (3.31)

where q < 2n
n−2 .

Proof. Since 1
2 ln2(1 + ζ) ≤ ζ for any ζ ≥ 0, we infer from the bounds (2.16) and (2.3) that∫ t

0
∥ ln(1 + uε)∥2H1ds ≤C

∫ t

0

(
∥uε(·, s)∥L1 + ∥∇ ln(1 + uε)(·, s)∥2L2

)
ds

≤C(T ), t ∈ (0,T ).
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Based on this, the bound (3.21), combined with the Aubin-Lions compactness theorem [55], implies
that there exist a subsequence of {ε j}

∞
j=1 (still expressed as {ε j}

∞
j=1) and a function w ∈ L2(0,T ; H1(Ω)),

fulfilling that as ε = ε j → 0,

ln (uε + 1)→ w, ∇ ln (uε + 1)⇀ ∇w in L2(Ω × (0,T ),

and thereby

ln (uε + 1)→ w and uε → ew − 1 a.e. in Ω × (0,T ).

Hence, denoting u = ew − 1 and using the bound (2.3) again, we obtain the assertions (3.22)–(3.24).
Due to (3.24), according to the uniform integrability property implied by Lemma 3.3 we may apply the
Vitali convergence theorem to get that in fact (3.25) also holds. Meanwhile, using (3.24) and invoking
Lemma 3.3, we arrive at (3.26).

According to the bounds (2.13), (2.14) and (3.20), and the Sobolev embedding theorem, a standard
subsequence extraction procedure resorting to the Aubin-Lions compactness theorem (see [55]) entails
model (3.27) immediately. Due to (2.2), we have∥∥∥v−1

ε (·, t)
∥∥∥

L2 ≤ C(T ), t ∈ (0,T ),

and also infer from (2.14) that∫ t

0

∥∥∥∇v−1
ε (·, s)

∥∥∥2

L2 ds ≤ C(T ), t ∈ (0,T ).

Since (v−1
ε )t = −v−2

ε (∆vε − vε + uε + h2), similar to (3.20), using (2.2) again we get∫ T

0

∥∥∥v−1
εs (·, s)

∥∥∥2

(W1,r)⋆ ds ≤ C(T ), r > n.

Hence, invoking the Aubin-Lions compactness theorem ([55]), there exists a subsequence of {ε j}
∞
j=1

(still expressed as {ε j}
∞
j=1) such that (3.28) holds as desired, as ε = ε j → 0. Similarly, (3.29) also holds.

On the other hand, using the bounds (2.13) and (2.14) again yields the last two assertions in lemma.

Up to now, our knowledge on approximation of (u, v) by (uε, vε) is enough to pass to the limit
ε = ε j → 0 in the weak formulation of the second equation in the approximate problem (2.1), which
also show that v is indeed a weak solution of the respective sub-problem of (1.5) in the sense of
Definition 1.1.

Lemma 3.6. Let u and v be given in Lemma 3.5. For any T > 0, the identity (1.10) in Definition 1.1
is valid for any φ(x, t) ∈ L∞(Ω × (0,T )) ∩ L2(0,T ; H1(Ω)) having compact support in Ω × [0,T ) with
φt ∈ L2(Ω × (0,T )).

Proof. For each φ from the class indicated in (1.10), it follows from (3.25) and the Lebesgue dominated
convergence theorem that there exists a subsequence of {ε j}

∞
j=1 (still expressed as {ε j}

∞
j=1) such that for

any T > 0, as ε = ε j → 0, ∫ T

0

∫
Ω

uεφdxds→
∫ T

0

∫
Ω

uφdxds.
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Hence, we can take the limit ε = ε j → 0 on the second equation in (2.1) in the weak sense by
employing Lemma 3.5. Moreover, the functions u and v obtained in Lemma 3.5 satisfy the identity
(1.10) in Definition 1.1.

To take the limit also in the first equation in the approximate problem (2.1) in an appropriate manner,
we shall obtain the strongly convergence of ∇ ln vε in L2(Ω × (0,T )) for any T > 0.

Lemma 3.7. Let (uε, vε) be described in Lemma 2.1, and let u and v be established in Lemma 3.5. Then
there exists a subsequence of {ε j}

∞
j=1 (still expressed as {ε j}

∞
j=1) such that for any T > 0, as ε = ε j → 0,

∇ ln vε → ∇ ln v in L2(Ω × (0,T )
)
. (3.32)

Proof. We can adopt a strategy similar to [49, Lemma 2.10] to get (3.32) as desired.

Invoking Lemma 3.7, we can present the validity of (1.9) in Definition 1.1.

Lemma 3.8. Let u and v be given in Lemma 3.5. For any T > 0, the inequality (1.9) in Definition 1.1 is
valid for each nonnegative φ(x, t) ∈ C∞0 (Ω × [0,T )).

Proof. Testing the first equation in (2.1) by φ

1+uε
with 0 ≤ φ ∈ C∞0 (Ω × [0,T )), we have∫ T

0

∫
Ω

|∇ ln (uε + 1)|2 φdxdt

= −

∫ T

0

∫
Ω

ln (uε + 1)φtdxdt −
∫
Ω

ln (u0 + 1)φ(·, 0)dx +
∫ T

0

∫
Ω

∇ ln (uε + 1) · ∇φdxdt

+ χ

∫ T

0

∫
Ω

uε
(uε + 1)(1 + εuε)

(∇ ln (uε + 1) · ∇ ln vε)φdxdt

− χ

∫ T

0

∫
Ω

uε
(uε + 1)(1 + εuε)

∇ ln vε · ∇φdxdt

+ κ

∫ T

0

∫
Ω

uεvε
1 + uε

φdxdt −
∫ T

0

∫
Ω

h1

1 + uε
φdxdt.

We conclude from (3.23) that as ε = ε j → 0,∫ T

0

∫
Ω

ln (uε + 1)φtdxdt →
∫ T

0

∫
Ω

ln(u + 1)φtdxdt,∫ T

0

∫
Ω

∇ ln (uε + 1) · ∇φdxdt →
∫ T

0

∫
Ω

∇ ln(u + 1) · ∇φdxdt.

Since uε
(uε+1)(1+εuε)

→ u
u+1 a.e. in Ω × (0,T ) as ε = ε j → 0, we infer from (3.32) and [51, Lemma A.4]

that, as ε = ε j → 0,

uε
(uε + 1)(1 + εuε)

∇ ln vε →
u

u + 1
∇ ln v in L2(Ω × (0,T )),

which, combined with (3.23), further implies that, as ε = ε j → 0,∫ T

0

∫
Ω

uε
(uε + 1)(1 + εuε)

(∇ ln (uε + 1) · ∇ ln vε)φdxdt
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→

∫ T

0

∫
Ω

u
u + 1

(∇ ln (u + 1) · ∇ ln v)φdxdt

and ∫ T

0

∫
Ω

uε
(uε + 1)(1 + εuε)

∇ ln vε · ∇φdxdt →
∫ T

0

∫
Ω

u
u + 1

∇ ln v · ∇φdxdt.

Similarly, we obtain that ε = ε j → 0,

κ

∫ T

0

∫
Ω

uεvε
1 + uε

φdxdt → κ
∫ T

0

∫
Ω

uv
1 + u

φdxdt.

By using the Lebesgue dominated convergence theorem, we have∫ T

0

∫
Ω

h1

1 + uε
φdxdt →

∫ T

0

∫
Ω

h1

1 + u
φdxdt.

Invoking (3.23), an application of the weak lower semicontinuity of the norm implies∫ T

0

∫
Ω

|∇ ln(u + 1)|2φdxdt ≤ lim inf
ε=ε j↘0

∫ T

0

∫
Ω

|∇ ln (uε + 1)|2 φdxdt.

Hence, collecting these, (1.9) holds as desired.

We are now in the position to prove Theorem 1.2.

Proof of Theorem 1.2. In fact, we only need to combine Lemma 3.6 with Lemma 3.8.

4. Large-time behavior

In this section, we will investigate the large-time behavior of the generalized solution (u, v) determined
in Theorem 1.2, under the additional assumptions (1.12)–(1.14). To achieve this, we begin with the
following pointwise lower bound for the solution component vε, which will play a key role in the sequel.

Lemma 4.1. Let (uε, vε) come from Lemma 2.1, and let (1.12) be in force. Under the additional
assumption that Ω is convex, then there exists c1 > 0, independent of t and ε, fulfilling that

vε(x, t) ≥ c1, x ∈ Ω, t > 0. (4.1)

Proof. It immediately follows from [50, Corollary 3.1].

Let us state a straightforward consequence of Lemma 4.1.

Lemma 4.2. Let all the assumptions in Lemma 4.1 be fulfilled. Then there exists a positive constant c2,
with the property that∫

Ω

(uε + v2
ε)(·, t)dx +

∫ t+1

t

∫
Ω

(uεvε + |∇vε|2)(·, s)dxds ≤ c2, t > 0 and ε ∈ (0, 1). (4.2)
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Proof. Invoking (2.7) and (4.1), we arrive at

d
dt

∫
Ω

uεdx +
1
2
κ

∫
Ω

uεvεdx +
1
2
κc1

∫
Ω

uεdx ≤
∫
Ω

h1dx ≤ ∥h1∥L∞(Ω×(0,∞))|Ω|, t > 0, (4.3)

where c1 is given in (4.1). By taking λ := 6
κ
, this, combined with (2.15), leads to

d
dt

∫
Ω

λuε + v2
εdx +

∫
Ω

3c1uε + v2
εdx +

∫
Ω

uεvε + 2|∇vε|2dx ≤ C1, t > 0. (4.4)

Setting y(t) :=
∫
Ω
λuε + v2

εdx, we get

y′(t) +min{3c1λ
−1, 1}y(t) ≤ C1, t > 0,

which, employing a standard ODE argument, warrants that∫
Ω

(λuε + v2
ε)(·, t)dx ≤ C2, t > 0. (4.5)

Using this and integrating (4.4) over [t, t + 1], it follows that for any t > 0∫
Ω

(λuε + v2
ε)(·, t + 1)dx +

∫ t+1

t

∫
Ω

(uεvε + 2|∇vε|2)(·, s)dxds ≤
∫
Ω

(λuε + v2
ε)(·, t)dx +C1,

which, combined with (4.5), evidently ensures (4.2).

To prove the long-time behavior in Theorem 1.3, we shall consider the Helmholtz problem (1.16).

Lemma 4.3. For given 0 . h2,∞ ∈ C
1(Ω), the problem (1.16) possesses a unique classical solution v∞

with the property that v∞ ∈ C2+θ(Ω) for some θ ∈ (0, 1).

Proof. The assertion directly follows from [56].

We are also concerned with the decay in a linear differential inequality (see [50, Lemma 2.5]).

Lemma 4.4. For ε ∈ (0, 1), let yε ∈ C1([0,∞)) be non-negative functions. If yε(0) is dependent of ε, and
there exist a > 0 and the nonnegative function g(t) ∈ C([0,∞)) ∩ L∞([0,∞)) which satisfies

lim
t→∞

∫ t+1

t
g(s)ds = 0

such that
y′ε(t) + ayε(t) ≤ g(t) for all t > 0 and ε ∈ (0, 1),

then
yε(t)→ 0 as t → ∞ uniformly in ε.

As a consequence, under the additional assumptions (1.13)–(1.14), a stronger result than Lemma 4.2
can be shown as follows.
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Lemma 4.5. Let all the assumptions in Lemma 4.2 hold, and let (1.13)–(1.14) be in force. Then we
have ∫

Ω

|vε − v∞|2(·, t) + uε(·, t)dx→ 0 as t → ∞ uniformly in ε, (4.6)∫ t+1

t

∫
Ω

|∇(vε − v∞)|2(·, s)dxds→ 0 as t → ∞ uniformly in ε, (4.7)

where v∞ is a unique classical solution of (1.16).

Proof. Set v̂ε := vε − v∞ for convenience. Lemmas 2.1 and 4.3 imply that for fixed uε from Lemma 2.1,
the initial-boundary value problem

v̂εt = ∆v̂ε − v̂ε + uε + h2 − h2,∞, x ∈ Ω, t > 0,
∇v̂ε · ν = 0, x ∈ ∂Ω, t > 0,
v̂ε(x, 0) = v0(x) − v∞(x), x ∈ Ω,

(4.8)

admits a unique classical solution v̂ε. We multiply the first equation in (4.8) by v̂ε to get

1
2

d
dt

∫
Ω

v̂ε
2dx +

∫
Ω

|∇v̂ε|2dx +
∫
Ω

v̂ε
2dx ≤

∫
Ω

uεvε −
∫
Ω

uεv∞dx +
∫
Ω

v̂ε(h2 − h2,∞)dx,

and thereby obtain from Young’s inequality that

d
dt

∫
Ω

v̂ε
2dx + 2

∫
Ω

|∇v̂ε|2dx +
∫
Ω

v̂ε
2dx ≤ 2

∫
Ω

uεvε + 2∥v∞∥L∞
∫
Ω

uεdx +
∫
Ω

(h2 − h2,∞)2dx.

By taking λ ≥ max
{

4
κ
, 4∥v∞∥L∞+2

c1κ

}
, this, combined with (4.3), ensures

d
dt

∫
Ω

v̂ε
2
+ λuεdx + 2

∫
Ω

|∇v̂ε|2dx +
∫
Ω

v̂ε
2
+ uεdx ≤

∫
Ω

(h2 − h2,∞)2dx + λ
∫
Ω

h1dx.

Setting g(t) :=
∫
Ω

(h2 − h2,∞)2dx + λ
∫
Ω

h1dx and yε(t) :=
∫
Ω

v̂ε
2
+ µuεdx, we have

y′ε(t) +min{λ−1, 1}yε(t) + 2
∫
Ω

|∇v̂ε|2dx ≤ g(t). (4.9)

By means of (1.13)–(1.14) and Lemma 4.4, the desired (4.6) holds. We now integrate (4.9) over [t, t+1]
to get

2
∫ t+1

t

∫
Ω

|∇v̂ε|2dxds ≤
∫ t+1

t
g(s)ds + yε(t).

This, in view of (1.13), (1.14) and (4.6) again, ensures that (4.7) holds.

Our second result on the large-time behavior of generalized solutions featured in Theorem 1.3 is in
fact a by-product of our previous analysis.

Proof of Theorem 1.3. In fact, Lemma 3.5, combining with the Fubini-Tonelli theorem, provides
(ε j) j∈N ⊂ (0, 1) and a null set N ⊂ (0,∞) such that ε j → 0 as j→ ∞ and

uε(·, t)→ u(·, t) and vε(·, t)→ (·, t) a.e. in Ω for all t ∈ (0,∞) \ N ,

as ε = ε j → 0. Based on this, Lemma 4.5, together with Fatou’s lemma, presents the desired large-time
behavior of the generalized solution in Theorem 1.3.

Mathematical Biosciences and Engineering Volume 20, Issue 3, 4532–4559.



4555

Acknowledgments

The authors are sincerely grateful to the anonymous reviewers for the detailed comments and
valuable suggestions which really helped us to make the paper more readable and meaningful. The
research of ZW is supported by the National Natural Science Foundation of China (No. 11701304)
and Natural Science Foundation of Ningbo Municipality (No. 2019A610041, No. 2021J143). Wang
also gratefully acknowledges the support of KC Wong Education Foundation. The research of LX is
partially supported by the Chongqing Science and Technology Commission Project (No. sctc2020jcyj-
msxmX0560, No. csts2020jcyj-jqX0022), and the Science Technology Research Program of Chongqing
Municipal Education Commission (No. KJZD-M202000502, No. CXQT21014).

Conflict of interest

The authors declare there is no conflict of interest.

References

1. N. Rodrı́guez, On the global well-posedness theory for a class of PDE models for criminal activity,
Phys. D Nonlinear Phenom., 260 (2013), 191–200. https://doi.org/10.1016/j.physd.2012.08.003

2. M. Short, M. D’Orsogna, V. Pasour, G. Tita, P. Brantingham, A. Bertozzi, et al., A
statistical model of criminal behavior, Math. Mod. Meth. Appl. Sci., 18 (2008), 1249–1267.
https://doi.org/10.1142/S0218202508003029

3. M. Short, A. Bertozzi, P. Brantingham, G. Tita, Dissipation and displacement of hotspots
in reaction-diffusion model of crime, Proc. Natl. Acad. Sci. USA, 107 (2010), 3961–3965.
https://doi.org/0.1073/pnas.0910921107

4. H. Berestycki, J. Wei, M. Winter, Existence of symmetric and asymmetric spikes for a crime hotspot
model, SIAM J. Math. Anal., 46 (2014), 691–719. https://doi.org/10.1137/130922744
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