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Abstract: Uterine corpus endometrial cancer (UCEC) is the sixth most common female cancer 

worldwide, with an increasing incidence. Improving the prognosis of patients living with UCEC is a 

top priority. Endoplasmic reticulum (ER) stress has been reported to be involved in tumor malignant 

behaviors and therapy resistance, but its prognostic value in UCEC has been rarely investigated. The 

present study aimed to construct an ER stress-related gene signature for risk stratification and prognosis 

prediction in UCEC. The clinical and RNA sequencing data of 523 UCEC patients were extracted from 

TCGA database and were randomly assigned into a test group (n = 260) and training group (n = 263). An 

ER stress-related gene signature was established by LASSO and multivariate Cox regression in the 

training group and validated by Kaplan-Meier survival analysis, Receiver Operating Characteristic 

(ROC) curves and nomograms in the test group. Tumor immune microenvironment was analyzed by 

CIBERSORT algorithm and single-sample gene set enrichment analysis. R packages and the 

Connectivity Map database were used to screen the sensitive drugs. Four ERGs (ATP2C2, CIRBP, 

CRELD2 and DRD2) were selected to build the risk model. The high-risk group had significantly 

reduced overall survival (OS) (P < 0.05). The risk model had better prognostic accuracy than clinical 

factors. Tumor-infiltrating immune cells analysis depicted that CD8+ T cells and regulatory T cells 
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were more abundant in the low-risk group, which may be related to better OS, while activated dendritic 

cells were active in the high-risk group and associated with unfavorable OS. Several kinds of drugs 

sensitive to the high-risk group were screened out. The present study constructed an ER stress-related 

gene signature, which has the potential to predict the prognosis of UCEC patients and have 

implications for UCEC treatment. 

Keywords: uterine corpus endometrial cancer; endoplasmic reticulum stress; gene signature; 

prognosis; immunotherapy 

 

1. Introduction  

According to a global cancer report, uterine corpus cancer ranks as the sixth most common cancer 

in women, with approximately 417,000 new cases (2.2% of all sites) and 97,000 deaths (1.0% of all 

sites) in 2020 worldwide [1]. Among all American female cancer survivors, uterine corpus cancer is 

the second most prevalent after breast cancer [2]. More than 90% of uterine corpus cancer originated 

from the endometrium, namely, uterine corpus endometrial cancer (UCEC) [2]. Due to early detection 

and improved treatment, the 5-year overall survival rate of uterine corpus cancer is about 81% [2], but 

the mortality rate of UCEC remains the highest among women with low socioeconomic status [3]. 

Considering the growing morbidity and large number of surviving UCEC patients, it is imperative to 

explore biomarkers to predict prognosis and guide treatment. 

The endoplasmic reticulum (ER) is an organelle involved in multiple cellular processes, including 

protein synthesis, folding and transport, lipid biosynthesis and calcium balance [4]. However, in the 

tumor microenvironment, many harsh factors can disrupt the protein-handling capacity of ER and 

cause excessive accumulation of misfolded/unfolded protein, such as nutrient starvation, oxidative 

stress, intracellular calcium imbalance and high metabolic demand, thereby leading to a state of “ER 

stress” [5]. Subsequently, unfolded protein response (UPR) is activated in an attempt to restore ER 

homeostasis, ultimately causing cellular reprogramming and adaptation, autophagy or even cell 

death [6]. A body of studies has indicated that sustained and robust ER stress responses contribute to 

cancer cell survival, metastasis, angiogenesis and therapy resistance [7–9]. In addition, ER stress 

responses can play an immunoregulatory role [10]. ER stress-related genes (ERGs), a series of genes 

involved in the ER stress signaling, have been reported to correlate with various tumors’ development, 

such as breast, glioma, liver and prostate cancer [11–14]. However, the roles and therapeutic value of 

ERGs in UCEC have not been extensively investigated. It was reported that the UPR target glucose-

regulated protein 78 took part in the endometrial cancer cell growth, invasion and chemotherapy 

resistance and was correlated with advanced stage and poor prognosis [15,16]. Therefore, ERGs may 

be valuable prognostic factors and potential therapeutic avenues for UCEC. 

As a patient’s prognosis exerts a great influence on personal and clinical decisions, accurate 

prognostic models have gained great attention in recent years [17,18]. The present study aimed to 

construct a risk model based on ERGs to forecast clinical outcomes and provide guidance for UCEC 

treatment. By bioinformatic analysis, we constructed a prognostic gene signature containing 4 ERGs, 

which exhibited excellent prognostic capacity. In addition, based on the model, we analyzed the 

immune infiltration and drug sensitivity in order to improve the prognosis of UCEC patients. 
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2. Materials and methods 

2.1. Data preparation 

RNA sequencing of transcriptome profiling data (HTSeq-FPKM) and corresponding clinical 

information for UCEC were obtained from TCGA database (https://portal.gdc.cancer.gov/repository), 

containing 554 malignancy samples and 32 normal samples. We obtained the clinical data of 548 

UCEC cases, including survival time, survival status, age, gender, grade and stage. After eliminating 

the samples with survival time < 30 days and unknown survival time or status, 523 UCEC patients 

were ultimately retained in our study. What’s more, 1371 ERGs were extracted from GeneCards 

(https://www.genecards.org/) with relevance score > 5. The “limma” R package and Wilcoxon test 

were used to identify differentially expressed ERGs (DEERGs) between UCEC tumor and normal 

samples, with the significance thresholds set as │Log2 fold change (FC)│ > 1 and false discovery rate 

(FDR) < 0.05 [19]. Finally, 351 DEERGs were obtained for further analysis (Table S1). To identify the 

potential biological functions of hub DEERGs, we did Gene Ontology (GO) term and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis by “GOplot,” “enrichplot” 

and “ggplot2” R packages (https://bioconductor.org/packages/release/bioc/html/enrichplot.html) [20, 21]. 

GO terms contain biological process (BP), cellular components (CC) and molecular functions (MF) 

analysis. The results were visualized with “clusterProfiler” and “org.Hs.eg.db” R packages 

(https://www.bioconductor.org/packages/release/data/annotation/html/org.Hs.eg.db.html) [22]. 

2.2. Risk model construction 

351 DEERGs’ transcriptome data and 523 UCEC clinical data were integrated by the “limma” R 

package, and they were then randomly assigned into test and training groups, with 260 and 263 samples, 

respectively. The training group was used to establish the risk signature, while the test group and entire 

group were used to verify its effectiveness. First, by univariate Cox regression, we obtained 7 candidate 

prognostic ERGs in the training group with the significant P value < 0.001. Next, these ERGs were 

subjected to least absolute shrinkage and selection operator (LASSO) regression to exclude overfitting 

genes and select more robust biomarkers [23,24]. As a result, 4 ERGs were selected and identified as 

the prognostic biomarkers of UCEC (P < 0.05). Finally, multivariate Cox regression was performed to 

establish a risk score system. The risk score was calculated as follows: risk score =  =

n

1i Coefi × Expi, 

where the Coef represents the coefficient calculated by multivariate Cox regression, and the Exp 

represents the expression level of 4 hub ERGs. 

2.3. Survival analysis 

The test group was further classified into high risk and low risk subgroups based on the median 

risk score of the training group. There were totally 256 samples of the high-risk group and 267 samples 

of the low-risk group in our study. Overall survival (OS) of UCEC patients between the high and low 

risk groups was compared by Kaplan-Meier survival analysis and log-rank test using “survival” and 

“survminer” R packages (https://CRAN.R-project.org/package = survival, 

https://rpkgs.datanovia.com/survminer/index.html). In addition to OS analysis, we grouped all patients 

https://portal.gdc.cancer.gov/repository
https://cran.r-project.org/package%20=%20survival
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according to their clinical characteristics (age ≤ 60 or > 60, grade I-II or III, stage I-II or III-IV) and 

compared their survival between high and low risk groups, respectively. We also analyzed the 

association of the 4 hub ERGs with OS. 

2.4. Prognostic accuracy validation of the risk model 

Receiver Operating Characteristic (ROC) curves were plotted to indicate the value of the 

constructed risk model in predicting survival at 1, 3 and 5 years using “timeROC” R package [25]. The 

predictive efficacy of the risk model and clinical variables (age, grade and stage) was compared using 

the area under the ROC curve (AUC). To determine whether the risk signature was an independent 

prognostic predictor, we employed univariate and multivariate regression analyses with the risk score 

and clinical factors. Principal component analysis (PCA) and t-distributed stochastic neighbor 

embedding (t-SNE), linear and non-linear dimensionality reduction methods, respectively, were 

performed by “Rtsne” (https://github.com/jkrijthe/Rtsne) and “ggplot2” R packages to detect the 

transcriptomic heterogeneity, thereby further confirming the feasibility of the risk model [21,26]. 

2.5. Nomogram and calibration 

Nomograms are popular prognostic tools which can integrate multiple clinical and biological 

prognostic factors to generate an individualized probability of a certain clinical event [27]. Nomograms 

based on the risk, age, grade and stage were developed to predict the 1-, 3- and 5-year survival 

probabilities of UCEC patients using “survival,” “rms” and “regplot” R packages 

(https://hbiostat.org/R/rms, https://cran.r-project.org/web/packages/regplot/index.html). The 

calibration plot demonstrated the consistency between the nomogram predicted OS and observed OS 

at 1, 3 and 5 years. The concordance index (C-index) curve was plotted to estimate the predictive 

consistence among risk score, grade and stage using “dplyr,” “survival,” “rms” and “pec” R packages 

(https://dplyr.tidyverse.org) [28].  

2.6. Gene set enrichment analysis 

Gene Set Enrichment Analysis (GSEA) Version 4.2.1 is freely available software that analyzes 

genes with common biological characteristics, such as function, chromosomal location or 

regulation [29]. By estimating enrichment score (ES), assessing significance, adjusting for multiple 

hypothesis testing and ultimately calculating an FDR q value, it can identify the distribution of gene 

sets in phenotypic distinction on the gene expression level. We conducted GESA to distinguish 

significantly enriched KEGG and GO pathways between high and low risk groups. If the ES > 0, the 

functional pathway was significantly enriched in the high-risk group; otherwise, it was active in the 

low-risk group. We took the top 10 KEGG pathways with the largest absolute value of normalized 

enrichment score (NES) and plotted a multi GSEA enrichment map via the “plyr,” “ggplot2,” “grid” 

and “gridExtra” R packages (https://github.com/pmur002/gridgraphics) [30]. 

2.7 Tumor immune microenvironment analysis 

To analyze the tumor microenvironment of all UCEC samples, we calculated the stromal score, 

immune score and ESTIMATE score to evaluate the tumor purity using the “estimate” R package [31]. 

https://dplyr.tidyverse.org/
https://github/
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The higher the tumor microenvironment score is, the lower the tumor purity. In addition, we visualized 

and compared 22 tumor-infiltrating immune cells (TIICs) between high and low risk groups among all 

UCEC samples via the CIBERSORT algorithm [32]. By “limma,” “survival” and “survminer” R 

packages, we merged survival data and CIBERSORT results of all UCEC patients, and we then 

compared the survival probability of different TIICs between high and low risk groups. Survival curves 

were plotted for TIICs with P < 0.05. To further indicate the differences of immune status between 

high and low risk groups, single-sample gene set enrichment analysis (ssGSEA) was performed to 

compare the infiltrating scores of 13 immune functions and 16 immune cells via the “GSVA,” “limma” 

and “GSEABase” R packages (https://bioconductor.org/packages/GSEABase/) [19,33]. 

2.8 Drug sensitivity analysis 

The R package “pRRophetic” was used to predict the drug sensitivity by estimating the half-

maximal inhibitory concentration (IC50), thereby filtering out potential anti-UCEC drugs [34]. The 

drug sensitivity differences were compared between high and low risk groups with the significance P 

value < 0.001. The correlations between the risk score and drug sensitivity were evaluated by 

Spearman’s correlation analysis. Connectivity Map (CMap) (https://clue.io) is a database which 

collects gene expression profiles of human cells exposed to various small molecules. It connects genes, 

drugs and diseases by comparing drug-specific gene expression profiles with a disease-specific gene 

signature via nonparametric rank-based Kolmogorov-Smirnov test [35]. We uploaded the query files 

of the differentially expressed genes between high and low risk groups in an effort to identify candidate 

drugs for UCEC. 

2.9 Statistical analysis 

Strawberry Perl (Version 5.32.1 for Windows 64-bit) was used to prepare the data. All statistical 

analyses were performed using R software (version 4.2.1 for Windows 64-bit). The “limma” R package 

and Wilcoxon test were used to identify differently expressed genes between tumor and normal tissues. 

Wilcoxon test was also employed to compare 22 TIICs’ proportions between two risk groups. 

Spearman’s correlation analysis was applied to evaluate the association between risk score and drug 

sensitivity. P < 0.05 was considered statistically significant unless otherwise specified. 

3. Results 

3.1. Identification of differently expressed ERGs 

The flow diagram is exhibited in Figure 1. 351 DEERGs were identified among 554 UCEC 

samples and 35 normal samples with│Log2 FC│ > 1 and FDR < 0.05. Of them, 202 were upregulated 

with log2FC > 1, and 149 were downregulated with log2FC < -1 (Figure 2A). The expression of the 

top 50 DEERGs is shown in the heat map (Figure 2B). The GO term enrichment analysis showed that 

the 351 DEERGs mainly took part in the biological processes of cellular divalent inorganic cation 

homeostasis, calcium ion homeostasis and transport and divalent metal ion transport, whose cellular 

component was mainly endoplasmic reticulum lumen, and the molecular functions were mainly 

passive transmembrane transporter activity and channel activity (Figure 2C). KEGG pathway analysis 

showed these DEERGs were significantly associated with the pathways of neurodegeneration and 
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multiple disease (Figure 2D).  

 

Figure 1. Flowchart of the study. UCEC: Uterine corpus endometrial cancer, FC: fold 

change, FDR: false discovery rate, LASSO: least absolute shrinkage and selection operator, 

GSEA: gene set enrichment analysis. 
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Figure 2. Identification of differently expressed endoplasmic reticulum stress related 

genes (DEERGs) between UCEC and normal samples. (A) Volcano plot of DEERGs. 202 

were upregulated and 149 were downregulated in UCEC samples compared with normal 

samples. (B) The heatmap of the top 50 DEERGs. (C) GO term enrichment analysis of 

DEERGs in biological process (GO-BP), cellular component (GO-CC) and molecular 

function (GO-MF). (D) KEGG pathway analysis of DEERGs. 

3.2. Construction of ER stress-related gene signature in UCEC 

The 351 DEERGs were subjected to univariate Cox regression analysis in the training group, 

and 7 of them were shown to be significantly associated with OS of UCEC patients with P < 0.001 

(Figure 3A). Then, the 7 genes were introduced into LASSO Cox regression analysis to identify the 

most predictive gene. Consequently, 4 genes were obtained to build the prognostic model: namely, 

ATPase secretory pathway Ca2+ transporting 2 (ATP2C2), cold inducible RNA binding protein 
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(CIRBP), cysteine rich with EGF like domains 2 (CRELD2) and dopamine receptor D2 (DRD2) 

(Figure 3B,C). Multivariate Cox regression analysis of the 4 genes was performed to create the risk 

signature (Table 1). Ultimately, the risk score = (0.7845*expression value of DRD2) + (-

0.6562*expression value of CIRBP) + (-0.4710 *expression value of CRELD2) + (-0.4241*expression 

value of ATP2C2). Among the 4 genes, DRD2 was a risk factor for UCEC patients’ prognosis with 

hazard ratio (HR) > 1, while the remaining 3 genes were protective factors. We further explored the 

association between the expression levels of the 4 genes with survival in all UCEC cases. The survival 

curves illustrated that high expression of DRD2 was correlated with poor OS, but high expression of 

CIRBP, CRELD2 and ATP2C2 contributed to favorable OS (Figure 3D–G), which was consistent with 

the multivariate Cox regression analysis. 

Table 1. Multivariate Cox regression analysis of the 4 hub genes in the training group of UCEC. 

ID Coefficient HR HR.95L HR.95H P value 

DRD2 0.7845 2.1912 1.2044 3.9864 0.0102 

CIRBP -0.6562 0.5188 0.3163 0.8512 0.0094 

CRELD2 -0.4710 0.6244 0.4004 0.9736 0.0377 

ATP2C2 -0.4241 0.6544 0.4418 0.9691 0.0343 

HR: hazard ratio, HR.95L: lower 95% confidence interval of HR, HR.95H: higher 95% confidence interval of 

HR. 

Table 2. Gene set enrichment analysis of differentially expressed genes between high and 

low risk groups in gene ontology. 

Group Name Size ES NES FDR  

High-risk group GOBP-nerve development 81 0.588 2.232 0.099 

 GOBP-positive regulation of synapse assembly 62 0.652 2.202 0.077 

 GOMF-voltage gated sodium channel activity 25 0.715 2.147 0.047 

 GOMF-GABA receptor activity 22 0.733 2.111 0.032 

 GOCC-voltage gated channel complex 17 0.791 2.188 0.047 

 GOCC-presynaptic membrane 142 0.541 2.097 0.034 

Low-risk group GOBP-cilium movement 179 -0.711 -2.308 0.002 

 GOBP-sperm motility 119 -0.645 -2.259 0.005 

 GOMF-oxidoreductase activity acting on a sulfur group of donors 58 -0.617 -2.129 0.016 

 GOMF-nucleoside diphosphate kinase activity 18 -0.759 -2.088 0.022 

 GOCC-motile cilium 223 -0.678 -2.339 0.003 

 GOCC-9plus2 motile cilium 146 -0.658 -2.310 0.003 

GO: gene ontology, BP: biological process, MF: molecular function, CC: cellular component, Size: the number of 

genes enriched, ES: enrichment score, NES: normalized enrichment score, FDR: false discovery rate. 
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Figure 3. Construction and validation of an ER stress-related gene signature in UCEC. (A) Univariate 

Cox regression analysis of differentially expressed ERGs (DEERGs) in the training group (n = 263) to 

identify survival related ERGs. (B) Cross-validation to determine the number of parameters in the 

LASSO regression model. (C) The LASSO coefficient profiles of 7 survival related DEERGs. (D–G) 

The correlation between expression levels of 4 hub genes with overall survival of UCEC patients by 

Kaplan-Meier survival analysis and log rank test. (H–J) Kaplan-Meier survival curves of different risk 

groups in entire group, train group and test group, respectively. (K–M) Layout of risk scores, survival status 

of each UCEC patient and expression heatmap of 4 hub ERGs in entire group, training group and test group, 

respectively. In the training group, in the high-risk group, n = 131; in the low-risk group, n = 132. In the test 

group, in the high-risk group, n = 125; in the low-risk group, n = 135. 
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3.3. Verification of the four ERGs’ prognostic signature in UCEC 

All the UCEC cases were classified into high and low risk groups according to the median risk 

score of the training group; thereby, there were 131 and 132 cases of high and low risk, respectively, 

in the training group and 125 and 135 cases of high and low risk, respectively, in the test group. The 

high-risk group showed reduced OS whether in the entire, test or training group (Figure 3H–J). The 

risk score distribution, survival status of each UCEC patient and expression heatmap of 4 hub genes 

in the entire, test and training groups are also shown in Figure 3K–M respectively. The expression 

heatmap displayed the upregulation of DRD2 and the downregulation of ATP2C2, CIRBP and 

CRELD2 in the high-risk group in both the test and training sets, which totally coincided with the 

above mentioning that DRD2 may be a risk factor. 

We performed a univariate Cox regression algorithm on the entire group to identify potential 

prognostic factors, including age, grade, stage and risk score. As shown in Figure 4A, they were all 

potential risk factors for unfavorable clinical outcome of UCEC (P < 0.05). To explore the prognostic 

independence of risk score, we applied multivariate Cox regression analysis. It turned out that risk 

signature was still an independent survival predictor (P < 0.05, HR > 1) (Figure 4B). We further 

classified UCEC patients according to their clinical characteristics to evaluate the prognostic value of 

the risk signature. Patients with low risk score showed better OS (all P < 0.05), and the trends exhibited 

high consistence between patients with age ≤ 60 and > 60, grade I-II and III and stage I-II and III-IV 

(Figure 4C–E), which reflected the solid prognostic feasibility of the risk score. 

Time dependent ROC curves further elucidated that the AUC values of risk score for 

predicting 1, 3, and 5-year survival in the training group were 0.807, 0.793 and 0.769, respectively; 

and those in the test group were 0.695, 0.652 and 0.664, respectively, indicating that the ER stress 

related risk model processed moderate prognostic accuracy in UCEC (Figure 4F–H). Compared with 

age, grade and stage, the AUC of risk score was the highest and reached 0.736, showing the better 

prognostic sensitivity and specificity of risk score compared to these clinical factors (Figure 4I). Also, 

the C-indexes among risk score, grade and stage were satisfactory, about 0.7, which also reflected 

the accuracy of the risk model (Figure 4J). To predict the 1, 3, and 5-year survival probability of each 

specific UCEC patient, we constructed a nomogram with clinical variables and risk score (Figure 4K). 

The higher the total points were, the poorer the prognosis. The calibration curve showed the nomogram 

predicted 1,3,5-year OS highly matched the observed OS (Figure 4L). PCA and t-SNE plots indicated 

that the gene expression patterns between high and low risk groups were clearly separated after 

dimensionality reduction (Supplementary Figure 1). All of the above confirmed that the ERG-related 

risk model was a powerful and reliable outcome predictor of UCEC. 
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Figure 4. Identification of prognostic independence and accuracy of the gene signature in UCEC. Forest 

plot of the (A) univariate and (B) multivariate Cox regression analyses in all UCEC cases. (C–E) 

Kaplan-Meier survival analysis of UCEC patients with high and low risk stratified by age, grade and 

stage. Time dependent ROC curves for predicting survival in 1, 3, and 5 years in entire (F), training (G) 

and test (H) groups. (I) ROC curve comparing the prognostic value among risk score, age, grade and 

stage. (J) Consistence index of risk score, grade and stage in predicting survival. (K) Construction of a 

nomogram with risk score, age, grade and stage (*P < 0.05, **P < 0.01, ***P < 0.001). Each variable 

corresponds to a point in the top “Points” bar, indicating its contribution to the overall survival (OS). 

The total points downward correspond to 1, 3 or 5-year survival possibility. (L) Calibration curve 

presenting the consensus between nomogram predicted 1, 3, 5-year OS and observed OS. 
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3.4. GSEA of different risk groups in UCEC 

To investigate the functions of differentially expressed genes between high and low-risk groups, 

we performed GSEA based on gene expression level. The larger the│NES│and the smaller the FDR 

q value are, the higher the indicated reliability of the enrichment analysis results. In the high-risk group, 

KEGG enrichment analysis showed highly expressed genes were mainly enriched in the extracellular 

matrix (ECM) receptor interaction (NES = 2.014, FDR = 0.127), axon guidance (NES = 1.935, 

FDR = 0.150) and dilated cardiomyopathy pathway (NES = 1.921, FDR = 0.113) (Figure 5A). In the low-

risk group, they were enriched in alpha linolenic acid metabolism (NES = -2.169, FDR = 0.005), fatty acid 

metabolism (NES = -2.141, FDR = 0.004) and ether lipid metabolism (NES = -2.136, FDR = 0.003) 

(Figure 5B). Table 2 elucidates the top 2 enriched GO terms in BP, MF and CC of differentially 

expressed genes between high and low risk groups. Highly expressed genes of the high-risk group 

were enriched in nerve development and voltage gated sodium channel activity, while those of the low-

risk group were mainly enriched in cilium movement (Table 2). 

 

Figure 5. Gene set enrichment analysis (GSEA) of differentially expressed genes between 

high and low risk groups in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. 

(A–C) Upregulated KEGG pathways in high-risk group with the enrichment score (ES) > 0. 

(D–F) Upregulated KEGG pathways in low-risk group with the ES < 0. 

3.5. Immune infiltration analysis based on the risk model in UCEC 

In order to estimate the immune statuses of the two risk groups, we calculated tumor immune 

microenvironment scores. As shown in Supplementary Figure 2, there was no significant difference 

between the two groups in stromal score, immune score and ESTIMATE score, indicating the similar 

tumor purities between different risk groups. We further compared 22 TIICs via CIBERSORT. The 

results showed the fractions of CD8+ T cells, regulatory T cells (Tregs) and resting dendritic cells in 

the low-risk group were significantly higher than those of the high-risk group (P < 0.05) (Figure 6A). 

Conversely, the M1 macrophages and activated dendritic cells (aDCs) showed higher infiltration in the 

high-risk group (P < 0.05) (Figure 6A). Immune function analysis showed type I interferon (IFN) 

response, major histocompatibility complex (MHC) class I, antigen presenting cell (APC) co-inhibition 

and parainflammation were significantly upregulated in the high-risk group (P < 0.05), while type II IFN 

response and T cell co-stimulation were more active in the low-risk group (P < 0.05) (Figure 6B). We 
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further conducted ssGSEA for immunocytes and immune functions, and the results showed high 

consistence with those of CIBERSORT. The aDCs were more abundant in high-risk cases (P < 0.001), 

while immature dendritic cells (iDCs), neutrophils and T helper cells were significantly enriched in 

the low-risk group (P < 0.05) (Figure 6C). The immune function analysis results of ssGSEA totally 

accorded with those of CIBERSORT (Figure 6D). We further investigated the relationship between 22 

TIICs and survival. The Kaplan-Meier survival curves showed that UCEC patients with low infiltration 

of plasma cells and aDCs had more favorable OS (P < 0.05) (Figure 6E,I). Highly enriched Tregs, CD8+ 

T cells and activated neutral killer cells were related with favorable OS (P < 0.05) (Figure 6F–H), which 

might be potential immunotherapy targets. 

3.6. Drug sensitivity analysis 

To further explore the instructional significance of the risk model for clinical treatment, we 

analyzed the differences in drug sensitivity between the two risk groups by estimating the IC50. 

As shown in Figure 7, the IC50 of the drugs, such as cisplatin, cetuximab, bortezomib and 

navitoclax, were negatively correlated with risk score (P < 0.001). Patients with high-risk scores 

were more sensitive to these drugs, indicating they might be effective anti-UCEC drugs. We further 

analyzed the small molecular drugs that were sensitive to differentially expressed genes between 

high and low risk groups via CMap. Table 3 exhibits the top 10 potential sensitive drugs. 

Table 3. Screening drugs sensitive to differentially expressed genes between high and low 

risk groups via Connectivity Map database. 

Drug name MOA Raw-CS -log10(FDR) Norm-CS 

Leflunomide Dihydroorotate dehydrogenase 

inhibitor, PDGFR inhibitor 

-0.5523 15.6536 -1.8867 

Pentoxifylline Phosphodiesterase inhibitor -0.5303 15.6536 -1.8117 

Methiopril ACE inhibitor -0.5109 15.6536 -1.7452 

Pterostilbene Cyclooxygenase inhibitor, 

PPAR receptor agonist 

-0.5109 15.6536 -1.7453 

Tetramethylsilane Internal standard for NMR 

spectroscopy 

-0.5057 15.6536 -1.7275 

Fostamatinib Syk inhibitor -0.5007 15.6536 -1.7105 

Ebelactone-b Lipase inhibitor -0.5001 15.6536 -1.7085 

Tipifarnib-P2 Farnesyltransferase inhibitor -0.4968 15.6536 -1.6971 

Medroxyprogesterone-

acetate 

Progesterone receptor agonist -0.4951 15.6536 -1.6914 

CO-102862 Sodium channel inhibitor -0.495 15.6536 -1.6912 

MOA: mechanism of action, CS: connectivity score, FDR: false discovery rate, Norm-CS: normalized connectivity 

score, PDGFR: platelet-derived growth factor receptor, ACE: angiotensin converting enzyme, PPAR: peroxisome 

proliferator activated receptor, NMR: nuclear magnetic resonance. 
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Figure 6. Tumor immune microenvironment analysis and tumor-infiltrating immune cells (TIICs) 

related survival of two risk groups in UCEC. (A) The violin plots showing the constitution of 22 TIICs 

in two risk groups via CIBERSORT. (B) The heatmap depicting the immune function of two risk groups. 

(C–D) The enrichment scores of specific immunocytes (C) and immune functions (D) by single-sample 

gene set enrichment analysis (ssGSEA). (E-I) Kaplan-Meier survival analysis estimating the prognostic 

value of 22 TIICs. Only immunocytes with P < 0.05 in the log rank test were shown: Those were plasma 

cells (E), regulatory T cells (F), CD8 T cells (G), activated neutral killer cells (H) and activated dendritic 

cells (I). *P < 0.05, **P < 0.01, ***P < 0.001, ns: no significance. 
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Figure 7. The correlations between drug sensitivity and risk score in UCEC patients by 

Spearman’s correlation analysis. Only drugs with a significantly negative correlation 

between half-maximal inhibitory concentration (IC50) and risk scores were shown in the 

scatter plots (P < 0.001). The higher the risk score, the lower the IC50, indicating the higher 

sensitivity to those drugs. 

4. Discussion 

Due to a growing and ageing population, uterus cancer is predicted to account for 5% of all female 

cancers in the UK in 2035 with 11,576 cases, a 24.17% increase over 2014 [36]. Given the large 

number of surviving UCEC patients, survivorship and follow-up to improve their prognosis are 

crucial [37]. However, there has not been much advancement in UCEC biomarkers or treatment in the 

last few decades, particularly for advanced and recurrent cases [38]. The treatment of UCEC is 

multimodal, including accurate surgical staging, proper systemic adjuvant therapies and molecular 

targeted therapy. Tyrosine kinase inhibitors (TKIs) and immunotherapy have emerged as new treatment 
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avenues for UCEC [38]. ER plays an essential role in calcium homeostasis, lipid biosynthesis and the 

synthesis and folding of nearly a third of the protein. ER stress occurs when its ability to fold proteins or 

dispose of unfolded proteins is compromised, subsequently influencing the cellular function and fate [39]. 

Numerous studies have proposed that dysregulated UPR secondary to ER stress is involved in 

tumorigenesis and progression [40,41]. However, ER stress in UCEC has been rarely investigated. 

The present study identified DEERGs between UCEC and normal samples and constructed a 4-

ERG risk model to predict prognosis and instruct treatment via LASSO regression analysis. Nowadays, 

gene signatures have been an effective tool to forecast prognosis and assist clinical decision making. 

ER stress related prognostic risk models have been constructed in various cancers, such as esophageal 

cancer [42], diffuse glioma [43,44] and hepatocellular cancer [45], but with few reports in UCEC. The 

risk signature constructed in our present study was validated to possess considerable prognostic 

accuracy and feasibility. In addition, we constructed a nomogram integrating the risk score and clinical 

variables, which could effectively predict the 1, 3 and 5-year survival probability of UCEC patients. 

In addition, we explored the difference of immune infiltration between different risk groups, thereby 

providing reference for immunotherapy in UCEC. We analyzed the drug sensitivity and screened the 

sensitive drugs for UCEC patients with different risk scores. Our established signature may serve as a 

novel biomarker for personalized treatment and ideal follow-up for UCEC patients. 

In our study, 4 DEERGs were identified by LASSO Cox regression analysis: namely, ATP2C2, 

CIRBP, CRELD2 and DRD2. High expression of DRD2 was associated with poor outcome, while the 

other three were just the opposite (Figure 3D–G). Combined with the results of multivariate Cox 

regression, DRD2 is a risk factor for UCEC patients’ survival. The controversial roles of the 4 genes 

in various types of cancers have been extensively investigated. For example, in the aspect of etiology 

of tumors, DRD2 polymorphisms were reported to correlate with reward-motivated behaviors, such as 

smoking and obesity [46], which may be adverse exposure factors for cancers. Gemignani et al. 

reported DRD2 polymorphisms could modulate the risk of colorectal cancer [47]. Tan et al. found that 

higher expression of DRD2 correlated with better survival and could inhibit the tumorigenesis in breast 

cancer [48], which seems inconsistent with the role in UCEC. Nevertheless, it was reported that 

DRD2 inhibitor might be a potential therapeutic target in neuroendocrine tumor, prostate cancer 

and glioblastoma [49,50]. Similarly, as shown in our study, DRD2 may be an adverse factor for the 

prognosis of UCEC. ATP2C2 is involved in calcium ion homeostasis and was reported to be related to 

the development and unfavorable OS of breast cancer [51]. CIRBP was reported to negatively correlate 

with the prognosis of pancreatic ductal adenocarcinoma patients. Inhibiting CIRBP could hinder the 

tumor progression and enhance treatment sensitivity [52]. CRELD2 was also involved in the 

progression of breast cancer and could serve as a potential therapeutic target [53]. However, in our 

multivariate Cox regression, the HRs of ATP2C2, CIRBP and CRELD2 were all below 1, and their 

high expressions were correlated with better survival, indicating that they may be protective factors 

for UCEC. Further studies are still needed to investigate their exact roles in UCEC. 

Individualized immunotherapy according to molecular classification has been an emerging 

therapeutic direction for UCEC [54]. The U. S. Food and Drug Administration has approved a series 

of immunotherapy options, such as pembrolizumab and dostarlimab, to be used in advanced or 

recurrent UCEC patients with mismatch repair deficient [54,55]. These drugs work by blocking the 

inhibition of programmed death 1 on T cells. A number of immune-related gene signatures have been 

established in UCEC with the attempt to shed light on immunotherapy [56–58]. In our study, we 

analyzed the difference of 22 TIICs between different risk groups. CD8+ T cells and Tregs were more 
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abundant in the low-risk group, which may be related to better OS of the low-risk group, but previous 

studies reported controversial results [59,60]. Conversely, aDCs were active in the high-risk group and 

associated with unfavorable OS. Therefore, a higher TIIC infiltration status may indicate a better 

prognosis. Strikingly, the TIICs can also predict the response to immunotherapy. UCEC subtypes with 

high abundance of TIICs may have active anti-tumor response and respond better to immunotherapy [61]. 

Thus, our risk signature may indirectly predict the response to immunotherapy, but how ER stress 

influences the anti-tumor immune response in UCEC remains to be elucidated [4]. 

By R packages and CMap, we investigated potential sensitive anti-UCEC drugs. Notably, among 

the drugs sensitive to the high-risk group, we mainly screened out several kinds of drugs: TKIs, such 

as dasatinib, foretinib, and saracatinib; monoclonal antibodies, such as cetuximab; and cell cycle 

blockers, such as RO-3306 and TAE684 (Figure 7). TKIs are important components in the combination 

therapy of UCEC. Wang et al. used sunitinib, a multitargeted TKI, prior to radiotherapy and found its 

radiosensitization activity in endometrial cancer cell lines [62]. A phase 3 clinical trial found that 

lenvatinib, also a multitargeted TKI, plus pembrolizumab contributed to better prognosis than 

chemotherapy in advanced UCEC patients [63]. Therefore, our model can relatively accurately predict 

the sensitive drugs and have implications for treatment. Appropriate treatment should be based on 

correct clinical stages, pathological grades and molecular classification. More clinical trials and 

practice are warranted to verify the synergistic effect of combination therapy strategies in UCEC. 

However, it must be noted that there are several gaps in our present study. The first is  that our 

data was completely sourced from the TCGA database, so the sample size might be too small to 

find statistical significance. In addition, the feasibility of the prognostic signature was short of 

further validation by external databases as well as molecular experiments. What’s more,  the 

crosstalk between ER stress and tumor immune microenvironment needs more in-depth molecular 

mechanism exploration. 

5. Conclusions 

In conclusion, although further certification is required, our present study proposed a novel ER 

stress-related risk model, which has been proven not only to have considerable prognostic capacity but 

also to offer exciting reference for UCEC immunotherapy and drug treatment, thus improving the 

prognosis of UCEC patients. In the future, we will further investigate its prognostic value and the 

underlying mechanism by clinical samples and in vitro molecular experiments. 
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