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Abstract: In a shallow aquatic environment, a mathematical model with variable cell quota is
proposed to characterize asymmetric resource competition for light and nutrients among aquatic
producers. We investigate the dynamics of asymmetric competition models with constant and variable
cell quotas and obtain the basic ecological reproductive indexes for aquatic producer invasions.
The similarities and differences between the two types of cell quotas for dynamical properties
and influences on asymmetric resource competition are explored through theoretical and numerical
analysis. These results contribute to further revealing the role of constant and variable cell quotas in
aquatic ecosystems.
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1. Introduction

Asymmetric resource competition is an important form of competition. It describes an unfair
resource allocation among individuals of a population or between populations. The reasons for this
unfairness include spatial distribution of resources, population characteristics, individual differences,
etc. Such competition is ubiquitous in nature. For example, Lawton and Hassell in [1] stated that
asymmetric resource competition among insects is a more common phenomenon than symmetric
resource competition with equal opportunities to compete for resources. Terrestrial plants also exhibit
strong asymmetry to resources due to individual differences. Taller and bigger plants always dominate
the competition and obtain more resources [2].

Aquatic producers are the basis of aquatic communities and influence energy flow and material
cycling in aquatic ecosystems. Their growth is limited by light and nutrients [3–7]. Light comes from
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the water surface and changes with the seasons or day and night. Aquatic producers photosynthesize
mainly by absorbing blue-violet and red light in the spectrum. Light intensity descends exponentially
over water depth since it is absorbed by water and aquatic producers [8–11]. Nutrients in aquatic
water bodies come from a variety of sources. For example, natural rainfall usually causes an inflow of
nutrients at the surface; industrial or domestic wastewater enters aquatic habitats through underground
pipes or tributaries. Each of the nutrient inputs may disrupt the nutrient balance in the aquatic
environment. The nutrients we consider here are mainly derived from lake bottom sediments. They
are transported into aquatic habitats by water exchange and turbulence [12–14]. In this situation, the
different spatial direction of light and nutrient supply causes asymmetric resource competition among
aquatic producers.

Jäger and Diehl in [15] modeled the asymmetrical resource competition between aquatic producers
for light and nutrients in a shallow aquatic environment. Let x be the water depth coordinate with
x = 0 at the water surface and x = xp + xb at the water bottom. Aquatic producers are divided into two
parts: pelagic producers (P) and benthic producers (B). The former is located in the pelagic habitat
(x ∈ [0, xp]), mainly composed of various phytoplankton. The latter, including submerged
macrophytes and benthic algae, lives in the benthic habitat (x ∈ [xp, xp + xb]). Light (Ip, Ib) first passes
through the pelagic habitat and then reaches the benthic habitat. Following the Lambert-Beer law [8],
it is given by Ip(x, P) = I0 exp

(
−k0x − kpPx

)
, x ∈ [0, xp] in the pelagic habitat and

Ib(x, P, B) = Ip(xp, P) exp
(
−k0(x − xp) − kbB(x − xp)

)
, x ∈ [xp, xp + xb] in the benthic habitat.

Nutrients (U,V) are just the opposite, passing through the benthic and pelagic habitat in turn. This
process involves two nutrient exchanges. One is the nutrient exchange between the benthic habitats
and sediment ((b/xb)(V0 − V)). The other is the nutrient exchange between the pelagic and benthic
habitat ((a/xp)(V − U) and (a/xb)(V − U)). This form of spatial supply of resources results in pelagic
producers having the priority to use light and benthic producers having the preemptive right for
nutrients. This creates unfair allocations of resources between pelagic and benthic producers. In [15],
Jäger and Diehl also introduced a mathematical model to describe this asymmetric resource
competition among aquatic producers. Their model can be simplified as

dP
dt
= rp fp(U)gp(P)P − mpP −

v
xp

P,

dU
dt
=

a
xp

(V − U) − cprp fp(U)gp(P)P + θpcpmpP,

dB
dt
= rb fb(V)gb(P, B)B − mbB,

dV
dt
=

b
xb

(V0 − V) −
a
xb

(V − U) − cbrb fb(V)gb(P, B)B + θbcbmbB.

(1.1)

The biological significance of variables and parameters in the model (1.1) can be found in Table 1. The
growth rate of aquatic producers takes the multiplication of Monod functions

rp fp(U)gp(P) = rp ·
U

βp + U
·

1
xp

∫ xp

0

Ip(x, P)
Ip(x, P) + αp

dx,

rb fb(V)gb(P, B) = rb ·
V
βb + V

·
1
xb

∫ xp+xb

xp

Ib(x, P, B)
Ib(x, P, B) + αb

dx.
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This means that the resource-based growth in the model (1.1) is in the Monod form. One of its
distinguishing feature is that aquatic producers’ cell quota (nutrient to carbon ratio cp, cb) is constant.
The first objective of the present paper is to analyze the dynamic properties of the model (1.1)
theoretically and to derive rigorously the basic ecological reproductive indexes for pelagic and benthic
producer invasions. These analyses can well validate and complement the numerical simulations of
model (1.1) in [15].

Table 1. Biological meanings of variables and parameters in model (1.1).

Symbol Meaning Symbol Meaning

t Time x Depth
xp Thickness of the pelagic habitat xb Thickness of the benthic habitat
P Biomass density of pelagic producers U Dissolved nutrient concentration in the pelagic

habitat
B Biomass density of benthic producers V Dissolved nutrient concentration in the benthic

habitat
Qp Cell quota (N : C) of pelagic producers Qb Cell quota (N : C) of benthic producers
rp, rb Maximum specific production rate of pelagic

producers and benthic producers respectively
mp,mb Loss rate of pelagic producers and benthic

producers respectively
I0 Light intensity at the water surface k0 Background light attenuation coefficient
kp, kb Light attenuation coefficient of pelagic

producers and benthic producers respectively
cp, cb Nutrient to carbon quotas of pelagic producers

and benthic producers respectively
Qmin,p Cell quota of pelagic producers at which

growth ceases
Qmax,p Cell quota of pelagic producers at which

nutrient uptake ceases
Qmin,b Cell quota of benthic producers at which

growth ceases
Qmax,b Cell quota of benthic producers at which

nutrient uptake ceases
δp Maximum specific nutrient uptake rate of

pelagic producers
δb Maximum specific nutrient uptake rate of

benthic producers
θp, θb Proportion of nutrients in pelagic producer

and benthic producer loss that is recycled
respectively

αp, αb Half-saturation constant for light-limited
production of pelagic producers and benthic
producers respectively

βp, βb Half saturation constant for nutrient-limited
production of pelagic producers and benthic
producers respectively

a Nutrient exchange rate between the pelagic
and benthic habitat

b Nutrient exchange rate between the benthic
habitats and the sediment

V0 Concentration of dissolved nutrients in the
sediment

In aquatic ecosystems, it has long been recognized that the cell quota in aquatic producers is not
fixed but constantly changing [16]. This variable cell quota characterizes aquatic producer quality and
affects the biodiversity of aquatic ecosystems. It has been applied to investigate some ecological
mechanisms and elucidate important ecological problems. For example, producer and grazer
interactions [6, 17, 18], the coexistence of three species systems [19–21], and the degradation of
organic matter by bacteria [22–24]. The Droop form is most commonly used to describe the
resource-based growth of a population that depends on the variable cell quota. In [25], Wang et al.
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compared the Monod (constant cell quota) and droop (variable cell quota) forms for resource-based
population dynamics through theoretical analysis and experimental data. They stated that a population
growth model with the two forms has similar dynamics in the closed nutrients, whereas in the case of
the low nutrient uptake rate, the transient dynamics are significantly different. Therefore, it is of great
significance to investigate the differences and similarities of asymmetric resource competition among
aquatic producers under constant and variable cell quotas.

Motivated by the above considerations, we propose the following asymmetric resource competition
model with the variable cell quota between pelagic and benthic producers:

dP
dt
= rpup(Qp)gp(P)P︸              ︷︷              ︸

pelagic producer growth

− mpP︸︷︷︸
pelagic producer loss

−
v
xp

P︸︷︷︸
sinking due to gravity

,

dQp

dt
= hp(Qp) fp(U)︸         ︷︷         ︸

nutrient uptake of pelagic producers

− rpup(Qp)gp(P)Qp︸                ︷︷                ︸
dilution due to pelagic producer growth

,

dU
dt
=

a
xp

(V − U)︸       ︷︷       ︸
nutrient exchange

− hp(Qp) fp(U)P︸           ︷︷           ︸
pelagic producer consumption

+ θpQpmpP︸     ︷︷     ︸
nutrient recycling

,

dB
dt
= rbub(Qb)gb(P, B)B︸                 ︷︷                 ︸

benthic producer growth

− mbB︸︷︷︸
benthic producer loss

,

dQb

dt
= hb(Qb) fb(V)︸        ︷︷        ︸

nutrient uptake of benthic producers

− rbub(Qb)gb(P, B)Qb︸                  ︷︷                  ︸
dilution due to benthic producer growth

,

dV
dt
=

b
xb

(V0 − V) −
a
xb

(V − U)︸                          ︷︷                          ︸
nutrient exchange

− hb(Qb) fb(V)B︸           ︷︷           ︸
benthic producer consumption

+ θbQbmbB︸    ︷︷    ︸
nutrient recycling

.

(1.2)

Here Qp and Qb represent the cell quotas (N : C) in pelagic and benthic producers, respectively. In
model (1.2), the resource-based growth of aquatic producers is the Droop form. It is expressed as
rpup(Qp)gp(P) and rbub(Qb)gb(P, B), where ui(Qi) = (1 − Qmin,i/Qi),Qmin,i ≤ Qi ≤ Qmax,i, i = p, b. The
biomass reduction of aquatic producers is mpP,mbB owing to respiration, predation and death, and
(v/xp)P due to sinking. The aquatic producer nutrient uptake rate is hp(Qp) fp(U) and hb(Qb) fb(V),
where hi(Qi) = δi(Qmax,i − Qi)/(Qmax,i − Qmin,i), i = p, b. The dilution rate of cell quota is
rpup(Qp)gp(P) and rbub(Qb)gb(P, B). Nutrients can be released after biomass loss by aquatic producers
with proportions θp, θb. Another objective of this study is to explore the dynamics of model (1.2) and
to compare the differences and similarities in the dynamic properties of the two models under constant
and variable cell quotas. These comparisons contain the variation pattern of the basic ecological
reproductive indexes and asymmetric resource competition for varying environmental factors.

The structure of this paper is organized as follows. In Section 2, we investigate the dynamics
of models (1.1) and (1.2), including the dissipation, existence and stability of equilibria. The basic
ecological reproductive indexes for aquatic producer invasion are rigorously derived. The differences
and similarities in the dynamical properties of the two models are illustrated. In Section 3, we explore
the variation pattern of the basic ecological reproductive indexes and the results of asymmetric resource
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competition for varying environmental factors via sensitivity analysis and some numerical bifurcation
diagrams. A brief discussion and summary are in the last section.

2. Model dynamics

In this section, we investigate the dynamics of models (1.1) and (1.2). Considering the ecological
background of (1.1) and (1.2), we will explore the solutions of (1.1) and (1.2) with the nonnegative
initial values

P(0) ≥ 0, Qmin,p ≤ Qp(0) ≤ Qmax,p, U(0) ≥ 0,
B(0) ≥ 0, Qmin,b ≤ Qb(0) ≤ Qmax,b, V(0) ≥ 0.

(2.1)

By standard mathematical arguments, (1.2) ((1.1)) has a unique nonnegative global solution for any
initial values satisfying (2.1).

2.1. Dynamics of model (1.2)

This subsection is devoted to studying the dynamic properties of the model (1.2) containing
dissipation, the existence and stability of equilibria.

Theorem 2.1. System (1.2) is dissipative.

Proof. Note that Qmin,i ≤ Qi(0) ≤ Qmax,i for i = p, b. From the Qp and Qb equations in (1.2), we have
Qmin,i ≤ Qi(t) ≤ Qmax,i, i = p, b for all t ≥ 0. It follows from the P and B equations in (1.2) that

dP
dt
≤

(
rpgp(P) −

(
mp +

v
xp

))
P,

dB
dt
≤ (rbgb(0, B) − mb) B.

This means that
lim sup

t→∞
P(t) ≤ A1 and lim sup

t→∞
B(t) ≤ A2,

where A1, A2 satisfy
rpgp(A1) = mp + v/xp, rbgb(0, A2) = mb.

By the U and V equations in (1.2), we obtain

dU
dt
≤

a
xp

(V − U) + θpmpQmax,pA1,

dV
dt
≤

b
xb

(V0 − V) −
a
xb

(V − U) + θbmbQmax,bA2

for sufficiently large t. Consider the following auxiliary systems

dh1

dt
=

a
xp

(h2 − h1) + θpmpQmax,pA1 := H1(h1, h2),

dh2

dt
=

b
xb

(V0 − h2) −
a
xb

(h2 − h1) + θbmbQmax,bA2 := H2(h1, h2).
(2.2)
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It is obvious that (2.2) has a unique positive equilibrium (h∗1, h
∗
2) satisfying

h∗1 = V0 +

(
1
a
+

1
b

)
xpθpmpQmax,pA1 +

xb

b
θbmbQmax,bA2,

h∗2 = V0 +
1
b

(
xpθpmpQmax,pA1 + xbθbmbQmax,bA2

)
.

We claim that (h∗1, h
∗
2) is globally asymptotically stable. The Jacobian matrix at (h∗1, h

∗
2) is

J(h∗1, h
∗
2) =

(
−a/xp a/xp

a/xb −(a + b)/xb

)
.

This shows that two eigenvalues of J(h∗1, h
∗
2) have negative real parts since

−

(
a
xp
+

a + b
xb

)
< 0,

a(a + b)
xpxb

−
a2

xpxb
=

ab
xpxb

> 0.

Define the Dulac function D(h1, h2) = h−1
1 h−1

2 in R2
+. A direct calculation gives

∂(H1D)
∂h1

+
∂(H2D)
∂h2

≤ −

(
a
xp
+
θpmpQmax,pA1

h2

)
1
h2

1

−

(
b
xb
+
θbmbQmax,bA2

h1

)
1
h2

2

< 0.

Hence, there is no positive periodic orbit for (2.2) in R2
+. This indicates that (h∗1, h

∗
2) is globally

asymptotically stable. From the comparison theorem, we have

lim sup
t→∞

U(t) ≤ lim
t→∞

h1(t) = h∗1, lim sup
t→∞

V(t) ≤ lim
t→∞

h2(t) = h∗2,

since the U and V equations are a cooperative system. □

We now investigate the existence and stability of equilibria of model (1.2). The four possible
equilibria are shown below:
Ev

1 = (0,Qp1,V0, 0,Qb1,V0), where

Qp1 =
rpQmin,p(Qmax,p − Qmin,p)gp(0) + βpQmax,p fp(V0)

rp(Qmax,p − Qmin,p)gp(0) + βp fp(V0)
,

Qb1 =
rbQmin,b(Qmax,b − Qmin,b)gb(0, 0) + βbQmax,b fb(V0)

rb(Qmax,b − Qmin,b)gb(0, 0) + βb fb(V0)
.

Ev
2 = (0,Qp2,Uv

2, B
v
2,Qb2,Vv

2), where Qp2,Uv
2, B

v
2,Qb2,Vv

2 solve

hp(Qp) fp(0) − rpup(Qp)gp(0)Qp = 0,
V − U = 0,
rbub(Qb)gb(0, B) − mb = 0,
hb(Qb) fb(V) − rbub(Qb)gb(0, B)Qb = 0,
b(V0 − V) − a(V − U) − xbhb(Qb) fb(V)B + xbθbmbQbB = 0.
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Ev
3 = (Pv

3,Qp3,Uv
3, 0,Qb3,Vv

3), where Pv
3,Qp3,Uv

3,Qb3,Vv
3 solve

rpup(Qp)gp(P) − mp − v/xp = 0,
hp(Qp) fp(U) − rpup(Qp)gp(P)Qp = 0,
a(V − U) − xphp(Qp) fp(U)P + xpθpmpQpP = 0,
hb(Qb) fb(V) − rbub(Qb)gb(P, 0)Qb = 0,
b(V0 − V) − a(V − U) = 0.

Ev
4 = (Pv

4,Qp4,Uv
4, B

v
4,Qb4,Vv

4), where Pv
4,Qp4,Uv

4, B
v
4,Qb4,Vv

4 solve

rpup(Qp)gp(P) − mp − v/xp = 0,
hp(Qp) fp(U) − rpup(Qp)gp(P)Qp = 0,
a(V − U) − xphp(Qp) fp(U)P + xpθpmpQpP = 0,
rbub(Qb)gb(P, B) − mb = 0,
hb(Qb) fb(V) − rbub(Qb)gb(P, B)Qb = 0,
b(V0 − V) − a(V − U) − xbhb(Qb) fb(V)B + xbθbmbQbB = 0.

(2.3)

To explore asymmetrical resource competition among aquatic producers, we define the basic
ecological reproductive indexes with variable cell quota for pelagic and benthic producers by

Rp,v
0 =

rpup(Qp1)gp(0)
mp + v/xp

, Rb,v
0 =

rbub(Qb1)gb(0, 0)
mb

,

Rp,v
1 =

rpup(Qp2)gp(0)
mp + v/xp

, Rb,v
1 =

rbub(Qb3)gb(Pv
3, 0)

mb
.

(2.4)

These indexes describe the average number of new aquatic producers produced by aquatic producers
during one life cycle. This means that they represent the reproductive capacity of aquatic producers.

Theorem 2.2. Ev
1 always exists, and it is locally asymptotically stable if max{Rp,v

0 ,R
b,v
0 } < 1, while Ev

1
is unstable if max{Rp,v

0 ,R
b,v
0 } > 1. Furthermore, if

mp > rpup(Qmax,p)gp(0) − v/xp, mb > rbub(Qmax,b)gb(0, 0), (2.5)

then Ev
1 is globally asymptotically stable.

Proof. It is obvious that Ev
1 ≡ (0,Qp1,V0, 0,Qb1,V0). The Jacobian matrix at Ev

1 is

J(Ev
1) =



a11 0 0 0 0 0
a21 a22 a23 0 0 0
a31 0 a33 0 0 a36

0 0 0 a44 0 0
a51 0 0 a54 a55 a56

0 0 a63 a64 0 a66


,

where

a11 = rpup(Qp1)gp(0) − mp − v/xp, a21 = −rpup(Qp1)Qp1g′p(0),
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a22 = h′p(Qp1) fp(V0) − rp(up(Qp) + u′p(Qp1)Qp1)gp(0), a23 = hp(Qp1) f ′p(V0),

a31 = −hp(Qp1) fp(V0) + θpmpQp1, a33 = −a/xp, a36 = a/xp,

a44 = rbub(Qb1)gb(0, 0) − mb, a51 = −rbub(Qb1)Qb1(∂gb/∂P)(0, 0),
a54 = −rbub(Qb1)Qb1(∂gb/∂B)(0, 0), a55 = h′b(Qb1) fb(V0) − rb

(
ub(Qb1) + u′b(Qb1)Qb1

)
gb(0, 0),

a56 = hb(Qb1) f ′b(V0), a63 = a/xb, a64 = −hb(Qb1) fb(V0) + θbmbQb1, a66 = −(a + b)/xb.

Note that
aii < 0, i = 2, 5, a33 + a66 < 0, a33a66 − a36a63 > 0

and if max{Rp,v
0 ,R

b,v
0 } < 1, then a11, a44 < 0. By the Routh-Hurwitz criterion, all the eigenvalues of

J(Ev
1) have negative real parts. This suggests that E1 is locally asymptotically stable if max{Rp,v

0 ,R
b,v
0 } <

1. Conversely, if max{Rp,v
0 ,R

b,v
0 } > 1, then E1 is unstable.

From the P and B equations in (1.2), we have

dP
dt
≤

(
rpup(Qmax,p)gp(P) −

(
mp +

v
xp

))
P,

dB
dt
≤

(
rbub(Qmax,b)gb(0, 0) − mb

)
B,

since Qmin,i ≤ Qi(t) ≤ Qmax,i, i = p, b for any t ≥ 0. Then

lim sup
t→∞

P(t) = 0 and lim sup
t→∞

B(t) = 0,

if (2.5) holds. From the theory of asymptotical autonomous systems [26], the U and V equations in
(1.2) reduce to

dU
dt
=

a
xp

(V − U),

dV
dt
=

b
xb

(V0 − V) −
a
xb

(V − U).

Following the similar arguments as those in (1.2), we obtain

lim sup
t→∞

U(t) = V0 and lim sup
t→∞

V(t) = V0.

Thus, the Qp and Qb equations reduce to

dQp

dt
= hp(Qp) fp(V0) − rpup(Qp)gp(0)Qp,

dQb

dt
= hb(Qb) fb(V0) − rbub(Qb)gb(0, 0)Qb,

which imply that
lim sup

t→∞
Qp(t) = Qp1 and lim sup

t→∞
Qb(t) = Qb1.

Hence, Ev
1 is globally attractive, and then it is globally asymptotically stable. □
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Theorem 2.3. Ev
2 exists if and only if Rb,v

0 > 1. Moreover, if Rp,v
1 < 1, then Ev

2 is locally asymptotically
stable, while Ev

2 is unstable if Rp,v
1 > 1.

Proof. From Theorem 2 in [23], Ev
2 exists uniquely if and only if Rb,v

0 > 1. The Jacobian matrix at Ev
2 is

J(Ev
2) =



a11 0 0 0 0 0
a21 a22 a23 0 0 0
a31 0 a33 0 0 a36

a41 0 0 a44 a45 0
a51 0 0 a54 a55 a56

0 0 a63 a64 a65 a66


,

where

a11 = rpup(Qp2)gp(0) − mp − v/xp, a21 = −rpup(Qp2)Qp2g′p(0),

a22 = h′p(Qp2) fp(Uv
2) − rp

(
up(Qp2) + u′p(Qp2)Qp2

)
gp(0),

a23 = hp(Qp2) f ′p(Uv
2), a31 = −hp(Qp2) fp(Uv

2) + θpmpQp2,

a33 = −a/xp, a36 = a/xp, a41 = rbub(Qb2)(∂gb/∂P)(0, Bv
2)Bv

2,

a44 = rbub(Qb2)(∂gb/∂B)(0, Bv
2)Bv

2, a45 = rbu′b(Qb2)gb(0, Bv
2)Bv

2,

a51 = −rbub(Qb2)(∂gb/∂P)(0, Bv
2)Qb2, a54 = −rbub(Qb2)(∂gb/∂B)(0, Bv

2)Qb2,

a55 = h′b(Qb2) fb(Vv
2) − rb

(
u′b(Qb2)Qb2 + ub(Qb2)

)
gb(0, Bv

2),
a56 = hb(Qb2) f ′b(Vv

2), a63 = a/xb, a64 = −hb(Qb2) fb(Vv
2) + θbmbQb2,

a65 = −h′b(Qb2) fb(Vv
2)Bv

2 + θbmbBv
2, a66 = −(a + b)/xb − hb(Qb) f ′b(Vv

2)Bv
2.

It is clear that a11, a22 are the two eigenvalues of J(Ev
2). The remaining four eigenvalues of J(Ev

2) satisfy
λ4 + a1λ

3 + a2λ
2 + a3λ + a4 = 0, where

a1 = −(a33 + a44 + a55 + a66),
a2 = a44a55 − a45a54 − a36a63 − a56a65 + a66(a44 + a55) + a33(a44 + a55 + a66),
a3 = a36a63(a44 + a55) − a45a56a64 + a44a56a65 + a45a54a66 − a44a55a66

+ a33(a45a54 − a44a55 + a56a65 − (a44 + a55)a66),
a4 = a36a63(a45a54 − a44a55) + a33(a45a56a64 − a44a56a65 − a45a54a66 + a44a55a66).

A direct calculation shows a11 < 0 if Rp,v
1 < 1 and

a22 < 0, ai > 0, i = 1, 2, 3, 4, a1a2 − a3 > 0, a3(a1a2 − a3) > 0, a4(a1a2a3 − a2
3 − a2

1a4) > 0.

By the Routh-Hurwitz criterion, all eigenvalues of J(Ev
2) have negative real parts. Therefore, Ev

2 is
locally asymptotically stable. On the contrary, if Rp,v

1 > 1, then Ev
2 is unstable. □

By similar arguments as those in Theorem 2.3, the existence and stability of Ev
3 are ensured by the

following theorem. The details are omitted here.

Theorem 2.4. Ev
3 exists if and only if Rp,v

0 > 1. Moreover, if Rb,v
1 < 1, then Ev

3 is locally asymptotically
stable, while Ev

3 is unstable if Rb,v
1 > 1.
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Remark 2.5. From Theorems 2.3 and 2.4, we have the following conclusion. If R j,v
0 > 1 and R j,v

1 < 1,
j = p, b, then model (1.2) has a bistable structure, where both Ev

2 and Ev
3 are locally

asymptotically stable.

Next, we use mp as the bifurcation parameter to study the existence of Ev
4. Let

mv
p = rpup(Qp1)gp(0) −

v
xp
, mv

b = rbub(Qb1)gb(0, 0),

m̄v
p = rpup(Qp2)gp(0) −

v
xp
, m̄v

b = rbub(Qb3)gb(Pv
3, 0)

(2.6)

and denote m̂v
p by mb = rbub(Qb3(m̂p))gb(Pv

3(m̂p), 0). We consider the coexistence equilibrium Ev
4

bifurcating from Π = {(mp, 0,Qp2,Uv
2, B

v
2,Qb2,Vv

2) : mp > 0} at mp = m̄v
p and meeting mp = 0 or

Γ = {(mp, Pv
3,Qp3,Uv

3, 0,Qb3,Vv
3) : mp ∈ (0,mv

p)} at mp = m̂v
p.

Theorem 2.6. Assume that Rp,v
1 > 1 and Rb,v

1 > 1 hold. Then for each fixed mb ∈ (0,mv
b), Ev

4 exists if
mp ∈ (max{0, m̂v

p}, m̄
v
p).

Proof. This proof is divided into two parts. The first part is to explore the existence of Ev
4 near

(m̂v
p, 0,Qp2,Uv

2, B
v
2,Qb2,Vv

2) by the local bifurcation theory (see Theorem 1.7 in [27]). The second part
to prove that (1.2) has at least one Ev

4 for mp ∈ (max{0, m̂v
p}, m̄

v
p) by applying the global bifurcation

theory (see Theorem 3.3 and Remark 3.4 in [28]).
(i) Local bifurcation. Define H : R7

+ → R
6 as

H(mp, P,Qp,U, B,Qb,V) =



rpup(Qp)gp(P)P − mpP −
v
xp

P

hp(Qp) fp(U) − rpup(Qp)gp(P)Qp
a
xp

(V − U) − hp(Qp) fp(U)P + θpmpQpP

rbub(Qb)gb(P, B)B − mbB
hb(Qb) fb(V) − rbub(Qb)gb(P, B)Qb

b
xb

(V0 − V) −
a
xb

(V − U) − hb(Qb) fb(V)B + θbmbQbB


.

Obviously, H(mp, 0,Qp2,Uv
2, B

v
2,Qb2,Vv

2) = 0. Let F := H(P,Qp,U,B,Qb,V)(m̄v
p, 0,Qp2,Uv

2, B
v
2,Qb2,Vv

2). It
follows that

F[η1, η2, η3, η4, η5, η6] =



0
f1(η1, η2, η3)
f2(η1, η3, η6)
f3(η1, η4, η5)

f4(η1, η4, η5, η6)
f5(η3, η4, η5, η6)


for any (η1, η2, η3, η4, η5, η6) ∈ R6

+, where

f1 = −g′p(0)rpup(Qp2)Qp2η1 + hp(Qp2) f ′p(Uv
2)η3

+
(
h′p(Qp2) fp(Uv

2) −
(
up(Qp2) + rpu′p(Qp2)Qp2

)
gp(0)

)
η2,

f2 = (−hp(Qp2) fp(Uv
2) + θpmpQp2)η1 − (a/xp)η3 + (a/xp)η6,
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f3 = rbub(Qb2)(∂gb/∂P)(0, Bv
2)Bv

2η1 + rbu′b(Qb2)gb(0, Bv
2)Bv

2η5

+ rbub(Qb2)(∂gb/∂B)(0, Bv
2)Bv

2η4,

f4 = −rbub(Qb2)(∂gb/∂P)(0, Bv
2)Qb2η1 − rbub(Qb2)(∂gb/∂B)(0, Bv

2)Qb2η4

+
(
h′b(Qb2) fb(Vv

2) − rb
(
u′b(Qb2)Qb2 + ub(Qb2)

)
gb(0, Bv

2)
)
η5 + hb(Qb2) f ′b(Vv

2)η6,

f5 = (a/xb)η3 − hb(Qb2) fb(Vv
2) + θbmbQb2η4 − (h′b(Qb2) fb(Vv

2) + θbmb)Bv
2η5

− ((a + b)/xb − hb(Qb) f ′b(Vv
2)Bv

2)η6.

For (η1, η2, η3, η4, η5, η6) ∈ ker F, one can obtain

fi = 0, i = 1, 2, 3, 4, 5. (2.7)

Let η1 = 1. Note that (2.7) is a five-dimensional homogeneous linear equation, and its coefficient
determinant is not zero. Hence, there exists a unique solution (1, η̂2, η̂3, η̂4, η̂5, η̂6) satisfying (2.7). This
means that dim ker F = 1 and ker F = span{1, η̂2, η̂3, η̂4, η̂5, η̂6}. It is obvious that

range F =
{
(σ1, σ2, σ3, σ4, σ5, σ6) ∈ R6 : σ1 = 0

}
,

and codim range F = 1. A direct calculation gives

Fmp,(P,Qp,U,B,Qb,V)(m̄v
p, 0,Qp2,Uv

2, B
v
2,Qb2,Vv

2)(1, η̂2, η̂3, η̂4, η̂5, η̂6) = (−1, θpQp2, 0, 0, 0, 0),

which does not belong to range F.
According to the Crandall-Rabinowitz bifurcation theorem (see Theorem 1.7 in [27]), the smooth

curve Υ = {(µp(s), Pv
4(s),Qp4(s),Uv

4(s), Bv
4(s),Qb4(s),Vv

4(s)) : 0 < s < ε} for some ε > 0 near
(µ̄v

p, 0,Qp2,Uv
2, B

v
2,Qb2,Vv

2) contains all positive coexistence equilibria of (1.2) with the form

Pv
4(s) = s + o(s), Qp4(s) = Qp2 + sη̂2 + o(s), Uv

4(s) = Uv
2 + sη̂3 + o(s),

Bv
4(s) = Bv

2 + sη̂4 + o(s), Qb4(s) = Qb2 + sη̂5 + o(s), Vv
4(s) = Vv

2 + sη̂6 + o(s).

(ii) Global bifurcation. Let Λ be the set of all positive coexistence equilibria of (1.2). From
Theorem 3.3 and Remark 3.4 in [28], there exists a connected set Λ+ in Λ such that Λ+ connects to Π
and contains Υ and its closure includes (µ̄v

p, 0,Qp2,Uv
2, B

v
2,Qb2,Vv

2). Furthermore, Λ+ satisfies one of
the following: 1) Λ+ is not compact in R7

+; 2) Λ+ meets another bifurcation point
(m̃p, 0,Qp2,Uv

2, B
v
2,Qb2,Vv

2) with m̃p , m̄v
p; 3) Λ+ contains

(mp, P̂v
4,Qp2 + Q̂p4,Uv

2 + Ûv
4, B

v
2 + B̂v

4,Qb2 + Q̂b4,Vv
2 + V̂v

4) with 0 , (P̂v
4, Q̂p4, Ûv

4, B̂
v
4, Q̂b4, V̂v

4) ∈ X,
where X is a closed complement of ker F = span{1, η̂2, η̂3, η̂4, η̂5, η̂6} in R6

+.
If 3) holds, then P̂v

4 = 0. It is a contradiction to P̂v
4 > 0. If 2) holds, then there is a coexistence

equilibria sequence
{(

mi
p, (P

v
4)i,Qi

p4, (U
v
4)i, (Bv

4)i,Qi
b4, (V

v
4)i

)}
such that(

mi
p, (P

v
4)i,Qi

p4, (U
v
4)i, (Bv

4)i,Qi
b4, (V

v
4)i

)
→

(
m̃p, 0,Qp2,Uv

2, B
v
2,Qb2,Vv

2

)
as i→ ∞. It follows from the first equality in (2.3) that

rpup((Qv
p4))igp((Pv

4)i) − mi
p − v/xp = 0.
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Letting i→ ∞ gives
rpup(Qv

p2)gp(0) − m̃p − v/xp = 0,

which indicates that m̃p = m̄v
p. It is a contradiction, and then 2) does not hold.

According to the above discussion, 1) must hold, and then Λ+ is not compact in R7
+. From the first

equality in (2.3), one can see 0 < mp < m̄v
p if (1.2) has positive coexistence equilibria. By Theorem 2.1,

we have

0 < Pv
4 < A1, 0 < Bv

4 < A2, Qi,min ≤ Qi
4 ≤ Qi,max, i = p, b, 0 < Uv

4 < h∗1, 0 < Vv
4 < h∗2

for any mp ∈ (0, m̄v
p). This means that Λ+ must meet the boundary of (0, m̄v

p) × R6
+. Note that Λ+

connects to Π as mp → m̄v,−
p and Λ+ cannot meet (mp, 0,Qp1,V0, 0,Qb1,V0) for any mp ∈ (0, m̄v

p).
Therefore, one of the following two alternatives must happen. The first alternative is mp → 0 for
some fixed mb ∈ (0,mv

b), which indicates that the projection of Λ+ on the mp-axis contains the interval
(0, m̄v

p). The second alternative is that Λ+ meets Γ at mp = m̂v
p. Thus, Ev

4 exists on (m̂v
p, m̄

v
p). The proof

is complete. □

To facilitate an understanding of the dynamics of model (1.2), we use the loss rates mp and mb as
parameters to describe the attractive region of the above equilibria. From (2.6) and Theorems 2.2–2.6,
we let

∆v
1 := {(mp,mb) : mp > mv

p, mb > mv
b},

∆v
2 := {(mp,mb) : mp > m̄v

p, 0 < mb < mv
b},

∆v
3 := {(mp,mb) : 0 < mp < mv

p, mb > m̄v
b},

∆v
4 := {(mp,mb) : 0 < mp < m̄v

p, 0 < mb < m̄v
b}.
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Figure 1. The attractive region of Ev
i , i = 1, 2, 3, 4 in the (mp,mb)-plane. Here Qmax,p =

0.02,Qmin,p = 0.002, βp = 5, βb = 3, αp = 60, αb = 100 and other parameters are from
Table 2.
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Figure 1 displays the districts of pelagic and benthic producers from extinction to survival in the
(mp,mb)-plane. In ∆v

1, the solutions of model (1.2) converge to Ev
1. It indicates that both pelagic

and benthic producers are extirpated. In ∆v
2, benthic producers win asymmetric resource competition

while pelagic producers go extinct. In this region, Ev
2 attracts all solutions. Correspondingly, pelagic

producers dominate aquatic ecosystems while benthic producers disappear in ∆v
3. Then the solutions

of model (1.2) converge to Ev
3. Pelagic and benthic producers can coexist in the region ∆v

4, and Ev
4 is an

attractor. ∆v
2∩∆

v
3 is a bistable region where the solutions converge to Ev

2 or Ev
3 for different initial values.

2.2. Dynamics of model (1.1)

We investigate the dynamic properties of model (1.1). The four possible equilibria are shown below:
Ec

1 ≡ (0,V0, 0,V0), Ec
2 = (0,Uc

2, B
c
2,V

c
2), where Uc

2, B
c
2,V

c
2 solve

V − U = 0, rb fb(V)gb(0, B) − mb = 0,
b(V0 − V) − xbcbrb fb(V)gb(0, B)B + xbθbcbmbB = 0.

Ec
3 = (Pc

3,U
c
3, 0,V

c
3), where Pc

3,U
c
3,V

c
3 solve

rp fp(U)gp(P) − mp − v/xp = 0,
a(V − U) − xpcprp fp(U)gp(P)P + xpθpcpmpP = 0,
b(V0 − V) − a(V − U) = 0.

Ec
4 = (Pc

4,U
c
4, B

c
4,V

c
4), where Pc

4,U
c
4, B

c
4,V

c
4 solve

rp fp(U)gp(P) − mp − v/xp = 0,
a(V − U) − xprp fp(U)gp(P)P + xpθpcpmpP = 0,
rb fb(V)gb(P, B) − mb = 0,
b(V0 − V) − a(V − U) − xbcbrb fb(V)gb(P, B)B + xbθbcbmbB = 0.

We define the basic ecological reproductive indexes with the constant cell quota as

Rp,c
0 =

rp fp(V0)gp(0)
mp + v/xp

, Rb,c
0 =

rb fb(V0)gb(0, 0)
mb

,

Rp,c
1 =

rp fp(Uc
2)gp(0)

mp + v/xp
, Rb,c

1 =
rb fb(Vc

3)gb(Pc
3, 0)

mb
.

(2.8)

Let

mc
p = rp fp(V0)gp(0) −

v
xp
, mc

b = rb fb(V0)gb(0, 0),

m̄c
b = rb fb(Vc

3)gb(Pc
3, 0), m̄c

p = rp fp(Uc
2)gp(0) −

v
xp
,

and denote m̂c
p as mb = rb fb(Vc

3(m̂c
p))gb(Pc

3(m̂c
p), 0).

Carrying out similar arguments to those in Theorems 2.1–2.6, we obtain the following theorem.
The details of the proof are omitted here.
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Theorem 2.7. (i) System (1.1) is dissipative.
(ii) Ec

1 always exists, and it is locally asymptotically stable if max{Rp,c
0 ,R

b,c
0 } < 1, while Ec

1 is unstable
if max{Rp,c

0 ,R
b,c
0 } > 1. Furthermore, if mp > rpgp(0) − v/xp, mb > rbgb(0, 0), then Ec

1 is globally
asymptotically stable.

(iii) Ec
2 exists if and only if Rb,c

0 > 1. Moreover, if Rp,c
1 < 1, then Ec

2 is locally asymptotically stable,
while Ec

2 is unstable if Rp,c
1 > 1.

(iv) Ec
3 exists if and only if Rp,c

0 > 1. Moreover, if Rb,c
1 < 1, then Ec

3 is locally asymptotically stable,
while Ec

3 is unstable if Rb,c
1 > 1.

(v) Assume that Rp,c
1 > 1 and Rb,c

1 > 1 hold. Then for each fixed mb ∈ (0,mc
b), Ec

4 exists if mp ∈

(max{0, m̂c
p}, m̄

c
p).

Remark 2.8. The above theoretical analysis results give the threshold conditions for pelagic and benthic
producers to invade aquatic ecosystems, respectively, and the criterion for their coexistence. These
findings explain and complement the results of the numerical analysis in [15]. It follows from (iii)
and (iv) in Theorem 2.7 that both Ec

2 and Ec
3 are locally asymptotically stable if R j,c

0 > 1 and R j,c
1 < 1,

j = p, b.

In order to compare with model (1.2), we also take (mp,mb) as the parameters and define

∆c
1 := {(mp,mb) : mp > mc

p, mb > mc
b},

∆c
2 := {(mp,mb) : mp > m̄c

p, 0 < mb < mc
b},

∆c
3 := {(mp,mb) : 0 < mp < mc

p, mb > m̄c
b},

∆c
4 := {(mp,mb) : 0 < mp < m̄c

p, 0 < mb < m̄c
b}.

From Figure 2, one can see that the solutions of model (1.1) converge to Ec
i in each region ∆c

i . ∆
c
2 ∩ ∆

c
3

is also a bistable region of Ec
2 and Ec

3. The ecological interpretation of the corresponding region is
the same as in Figure 1. It can be seen from Figures 1 and 2 that the dynamic behavior of models
(1.1) and (1.2) are similar, mainly including equilibria, bistability, and no oscillation. This suggests
that there is no essential difference in the dynamics of models for constant and variable cell quotas.
However, the ranges of ∆v

i , ∆
c
i and the bistable region are not the same. Therefore, the results of the

asymmetric competition are not identical within certain parameter ranges for two different types of
cell quotas.

3. Constant versus variable cell quotas

Models (1.1) and (1.2) have different forms of cell quota. This difference would bring some
changes to the asymmetric resource competition among aquatic producers. In the following, we will
compare the asymmetric resource competition and the effects of environmental factors between the
constant and variable cell quotas. These comparisons contain the basic ecological reproductive
indexes (2.4) and (2.8), the results of asymmetric resource competition, and the evolution trend of the
biomass densities of pelagic and benthic producers with environmental factors. In Table 2, we list the
ecologically reasonable parameter values applied in the numerical analysis.
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Figure 2. The attractive region of Ec
i , i = 1, 2, 3, 4 in the (mp,mb)-plane. Here cp =

0.004, cb = 0.04, βp = 5, βb = 3, αp = 60, αb = 100 and other parameters are from Table 2.
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Figure 3. Influence of V0 ∈ (0.5, 500) and I0 ∈ (10, 1200) on the basic ecological
reproductive indexes. Left: variable cell quota; Right: constant cell quota.
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Table 2. Numerical values of parameters of model (2.3) with references.

Symbol Values Units Source Symbol Values Units Source

xp 4 m Assumption xb 0.1 m Assumption

Qmax,p 0.04 mgP/mgC [23, 24] Qmin,p 0.004 mgP/mgC [23, 24]

Qmax,b 0.04 mgP/mgC [23, 24] Qmin,b 0.004 mgP/mgC [23, 24]

rp 1 day−1 [15] rb 1 1/day [15]

θp 0.1 (0–1) — Assumption θb 0.1 (0–1) — Assumption

lp 0.1 day−1 [15] lb 0.1 day−1 [15]

I0 300 µmol(photons)/m2s [15] k0 0.54 m−1 [15]

k1 0.0003 m2/mgC [15] k2 0.0005 m2/mgC [15]

δp 0.3(0.2–
1)

mgP/mgC/day [23, 24] δb 0.4(0.2–
1)

mgP/mgC/day [23, 24]

βp 3 mgP/m3 [15] βb 5 mgP/m3 [15]

αp 100 µmol(photons)/m2s [15] αb 60 µmol(photons)/m2s [15]

a 0.05 m/day [15] b 0.05 m/day [15]

v 0.1 m/day [15] V0 50(0.5–
500)

mgP/m3 [15]

cp 0.015 mgP/mgC [15] cb 0.025 mgP/mgC [15]

In view of the model analysis in Section 2, R j,v
i = 1 and R j,c

i = 1, i = 0, 1, j = p, b are the critical
thresholds of aquatic producers from extinction to survival. From (2.4) and (2.8), one can observe that
the basic ecological reproductive indexes in models (1.1) and (1.2) are not the same. A significant
difference is that the indexes in (2.4) depend on variable cell quotas of pelagic and benthic producers.
Figure 3 shows the changing trend of the basic ecological reproductive indexes for varying sediment
nutrient concentration V0 and light intensity I0. The following phenomenons can be seen: 1) Rb,v

1 < 1
if V0 > 141.5 (Figure 3(a)); 2) Rb,c

i < 1, i = 0, 1 when V0 tends to 0.5 and Rb,c
1 < 1 if V0 > 367.5

(Figure 3(b)); 3) R j,v
i > 1, Rb,c

i > 1, i = 0, 1, j = p, b if I0 ∈ (75, 846) and Rp,v
1 < 1 if I0 > 846

(Figure 3(c)); 4) R j,v
i > 1, Rb,c

i > 1, i = 0, 1, j = p, b if I0 ∈ (196, 1200). Phenomenons 1) and 2)
illustrate that pelagic and benthic producers with variable cell quota are more likely to coexist in
nutrient-poor environments, while in eutrophic environments, pelagic producers win asymmetric
resource competition and dominate aquatic ecosystems. The reason is that variable cell quotas can
well offset the adverse effects of nutrient deprivation. High nutrient input breaks the balance of
resource supply, making pelagic producers dominant in asymmetric competition. Phenomenons 3)
and 4) indicate that low light is detrimental for aquatic producers to coexist, while high light causes
benthic producers with variable cell quota to win asymmetric resource competition. These studies
suggest that the basic ecological reproductive indexes are not consistent for constant and varying cell
quotas, and thus the coexistence region of pelagic and benthic producers are also very different for
varying V0 and I0.
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Figure 4. Sensitive analysis of basic ecological reproductive indexes R j,v
i , R j,c

i , i = 0, 1, j =
p, b via parameters for models (1.2) and (1.1). The white areas represent highly correlation
between input parameters and output variables (0.4≤ |PRCC| <1), the dark gray areas
indicate moderate correlations (0.2≤ |PRCC| <0.4), and light grey areas represent statistically
insignificant(0< |PRCC| <0.2). Left: variable cell quota; Right: constant cell quota.
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Based on the Latin Hypercube Sampling (LHS) and Partial Rank Correlation Coefficients (PRCCs)
analyses, we explore the correlation of basic ecological reproductive indexes to model parameters.
Due to the lack of available data on the distribution function, it is reasonable to assume that all input
parameters conform to a normal distribution according to previous studies. The mean is the parameter
value in Table 1, and the standard deviation is 0.1 times the mean. From Figure 4, one can see the
correlation between R j,v

i and Rb,c
i , i = 0, 1, j = p, b on model parameters that are linked to environmental

factors. The value of the histogram represents the degree of correlation between them. High values
indicate that they are more correlated, indicating that this parameter has a more significant influence
on R j,v

i and Rb,c
i . The overall observation shows that parameters I0, k0, xp, rb, rp,mb,mp have a relatively

large influence on the reproductive indexes, while others are not too significant for some indexes.
Sensitivity analysis of basic ecological reproductive indexes also reveals differences between constant
and variable cell quotas. For example, in Figure 4(c1),(c2), the indexes Rp,v

1 , Rb,v
1 show the correlations

for the parameters.
We now consider the influences of environmental factors on the biomass densities of pelagic and

benthic producers. These environmental factors have a necessarily close connection with resource
supply, including parameters I0, k0 related to light, parameters V0, a, b related to nutrients. The
following numerical bifurcation diagrams reveal the evolution trend of pelagic and benthic producer
biomass densities for varying I0, k0,V0, a, b.
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(a) Bifurcation diagram for water surface light intensity
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(b) Bifurcation diagram for background light attenuation coefficient
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Figure 5. Influences of the water surface light intensity I0 and background light attenuation
coefficient k0.

Figure 5(a) shows that very low water surface light intensity is harmful to both pelagic and benthic
producers. As I0 increases, pelagic producers first invade aquatic ecosystems. A sharp regime shift
follows, with benthic producers invading aquatic habitats and rapidly increasing biomass, while
pelagic producer biomass rapidly declines. This suggests that the low light intensity is beneficial for
pelagic producers, and the high light intensity allows benthic producers to win in asymmetric resource
competition. For varying background light attenuation coefficient k0, a sharp regime shift also occurs
from benthic to pelagic producer dominance. Especially if the water is very turbid, both pelagic and
benthic producers become extinct (see Figure 5(b)). For constant and variable cell quotas, pelagic and
benthic producer biomass show similar evolutionary trends and regime transitions in Figure 5 (see
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solid and dashed lines). Two differences can also be observed. One is that when only one type of
producer is present, its biomass is higher for the variable cell quota. This suggests that the variable
cell quota facilitates the increase in producer biomass. The other is that the coexistence range of
pelagic and benthic producers is relatively small when the cell quota is varied relative to the constant
cell quota. This is because the variable cell quota reduces the dependence of pelagic producers on
nutrients, making it easier to win in asymmetric resource competition.
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(b) Bifurcation diagram for nutrient exchange rates
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Figure 6. Influences for the sediment nutrient concentration V0 and nutrient exchange
rates a, b.

From Figure 6, one can see the changes in pelagic and benthic producer biomass for varying
sediment nutrient concentration V0 and nutrient exchange rates a, b. Low nutrient concentrations or
exchange rates allow benthic producers to win the asymmetric competition, while high ones are
beneficial for pelagic producers to dominate aquatic habitats. During this process, there is a clear
regime switch from benthic to pelagic producers. Similar to light-related environmental factors,
pelagic and benthic producers have higher biomass and small coexistence areas for the variable cell
quota when nutrient-related factors change. These findings indicate that the variable cell quota can
influence asymmetric resource competition among aquatic producers and exhibit properties that differ
from the constant cell quota.

4. Discussion

Asymmetric competition is widespread in aquatic ecosystems due to the asymmetric supply of
resources such as light and nutrients. Jäger and Diehl in [15] stated that asymmetric competition
between pelagic and benthic producers might have different competition outcomes compared to
classical resource competition theories based on numerical simulations. A significant difference is
that pelagic and benthic producers can coexist even when one of them is at a disadvantage in terms of
both light and nutrient uptake. In contrast, in the classical theory of resource competition, the
conditions for the coexistence of two populations are that their utilization of resources must be
significantly different. This means that asymmetric competition is more beneficial to the coexistence
of pelagic and benthic producers.
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In this study, we investigate the dynamic properties of the model (1.1), which explain and
complement the numerical analysis results in [15]. Model (1.2) is proposed to describe asymmetric
resource competition among aquatic producers with the variable cell quota. We also explore the
dynamics of model (1.2) and compare the similarities and differences under constant and variable cell
quotas. It should be emphasized that models (1.1) and (1.2) are only suitable for describing shallow
aquatic environments but not all aquatic habitats.

The basic ecological reproductive indexes R j,v
i = 1 and R j,c

i = 1, i = 0, 1, j = p, b for aquatic
producer invasions are rigorously derived. If max{Rp,v

0 ,R
b,v
0 } < 1 (max{Rp,c

0 ,R
b,c
0 } < 1), then the

extinction of aquatic producers is inevitable. If Rb,v
0 > 1 and Rp,v

1 < 1 (Rb,c
0 > 1 and Rp,c

1 < 1), then
benthic producers win the asymmetric competition and dominate aquatic habitats. Correspondingly, if
Rp,v

0 > 1 and Rb,v
1 < 1 (Rp,c

0 > 1 and Rb,c
1 < 1), then pelagic producers win the competition and

dominate aquatic ecosystems. If Rp,v
1 > 1 and Rb,v

1 > 1 ( Rp,c
1 > 1 and Rb,c

1 > 1), then pelagic and
benthic producers can coexist. Finally, if Rp,v

1 < 1 and Rb,v
1 < 1 (Rp,c

1 < 1 and Rb,c
1 < 1), then the models

have bistability, where either pelagic or benthic producers may win asymmetric competition.

The constant cell quota (Monod forms) and variable cell quota (Droop forms) have been widely used
in aquatic ecological models. The former indicates that nutrient consumption and growth/cell division
in aquatic producer cells occur simultaneously, while the latter indicates that the two processes are
considered separately [25]. The existing studies show that the variable cell quota model describes
the data more accurately, while the constant cell quota model is more applicable due to its simple
form [25]. In view of the importance and wide applicability of constant and variable cell quotas in
aquatic ecosystems, elucidating the similarities and differences between the two types of cell quotas
can facilitate the further development of aquatic ecological models.

Here we attempt to explore the similarities and differences between constant and variable cell
quota models under asymmetric resource competition. Theoretical analysis reveals the similarity of
the dynamics of model (1.1) with the constant cell quota and model (1.2) with the variable cell quota.
They both have four equilibria and bistable structures. However, asymmetric competition results in
models (1.1) and (1.2) are not consistent for different parameter values. Sensitive analysis and
bifurcation diagrams show that if there is only one aquatic producer, the aquatic producer biomass is
higher when the cell quota is changed, which is beneficial to its survival. However, the variable cell
quota reduces the dependence of pelagic producers on nutrients, thus enabling them to win an
advantage in the asymmetric resource competition. This causes a reduction in the coexistence of
pelagic and benthic producers.

Compared with the research work of Wang et al. in [25], our model is composed of two populations
and includes the effect of light. Numerical analysis shows that light can bring some differences to
some basic ecological reproductive indexes for two different types of cell quotas (see Figure 3(c),(d)).
There are still some biological problems that deserve further discussion. For example, the roles of
zooplankton [21, 29] and toxins [30, 31] in asymmetric competition.
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