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Abstract: Coronavirus disease 2019 (COVID-19) and influenza are two respiratory infectious diseases
of high importance widely studied around the world. COVID-19 is caused by the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), while influenza is caused by one of the influenza
viruses, A, B, C, and D. Influenza A virus (IAV) can infect a wide range of species. Studies have
reported several cases of respiratory virus coinfection in hospitalized patients. IAV mimics the SARS-
CoV-2 with respect to the seasonal occurrence, transmission routes, clinical manifestations and related
immune responses. The present paper aimed to develop and investigate a mathematical model to study
the within-host dynamics of IAV/SARS-CoV-2 coinfection with the eclipse (or latent) phase. The
eclipse phase is the period of time that elapses between the viral entry into the target cell and the release
of virions produced by that newly infected cell. The role of the immune system in controlling and
clearing the coinfection is modeled. The model simulates the interaction between nine compartments,
uninfected epithelial cells, latent/active SARS-CoV-2-infected cells, latent/active IAV-infected cells,
free SARS-CoV-2 particles, free IAV particles, SARS-CoV-2-specific antibodies and IAV-specific
antibodies. The regrowth and death of the uninfected epithelial cells are considered. We study the
basic qualitative properties of the model, calculate all equilibria, and prove the global stability of all
equilibria. The global stability of equilibria is established using the Lyapunov method. The theoretical
findings are demonstrated via numerical simulations. The importance of considering the antibody
immunity in the coinfection dynamics model is discussed. It is found that without modeling the
antibody immunity, the case of IAV and SARS-CoV-2 coexistence will not occur. Further, we discuss
the effect of AV infection on the dynamics of SARS-CoV-2 single infection and vice versa.
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1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV) are
two respiratory RNA viruses with high pandemic potential. SARS-CoV-2 causes the coronavirus
disease 2019 (COVID-19). According to the update provided by the World Health Organization
(WHO) on 2 October 2022 [1], over 593 million confirmed cases and over 6.4 million deaths were
reported globally. Influenza viruses infect about 20% of the world’s population in annual epidemics,
resulting in 3-5 million severe illnesses and 290,000-650,000 deaths each year [2].

Both SARS-CoV-2 and TAV infect the uninfected epithelial cells of the host respiratory tract [3,4],
and have analogous transmission ways. Moreover, they have common clinical manifestations including
dyspnea, cough, fever, headache, rhinitis, myalgia and sore throat [5]. Viral shedding usually takes
place 5 to 10 days in influenza, whereas it does 2 to 5 weeks in COVID-19 [5]. Acute respiratory
distress is less common in influenza than in COVID-19 [5]. Deaths in influenza cases are less than 1%,
while in cases of COVID-19 it ranges from 3 to 4% [5]. The precautionary measures implemented by
governments to limit the transmission of SARS-CoV-2 can play a role in reducing the transmission of
the IAV [6].

Eleven vaccines for COVID-19 were approved by WHO for emergency use. These include
Novavax/Nuvaxovid, Bharat Biotech/Covaxin, CanSino/Convidecia, Pfizer/BioNTech/Comirnaty,
Moderna/Spikevax, Serum Institute of India COVOVAX (Novavax formulation), Janssen (Johnson &
Johnson)/Jcovden,  Oxford/AstraZeneca/Vaxzevria, Serum Institute of India Covishield
(Oxford/AstraZeneca formulation), Sinopharm (Beijing)/Covilo, and Sinovac/CoronaVac [7].
Currently, there are three types of influenza vaccines used worldwide: live attenuated influenza
vaccine, inactivated influenza vaccine and recombinant hemagglutinin vaccine [8].

It was reported in [9] that, 94.2% of individuals with COVID-19 were also coinfected with several
other microorganisms, such as fungi, bacteria and viruses. Important viral copathogens include the
respiratory syncytial virus (RSV), human enterovirus (HEV), human rhinovirus (HRV), influenza A
virus (IAV), influenza B virus (IBV), human metapneumovirus (HMPV), parainfluenza virus (PIV),
human immunodeficiency virus (HIV), cytomegalovirus (CMV), dengue virus (DENV), Epstein Barr
virus (EBV), hepatitis B virus (HBV) and other coronaviruses (COVs), among which the HRV, HEV
and IAV are the most common copathogens [10]. Several coinfection cases of COVID-19 and
influenza were reported in [5,9, 11-13] (see also the review papers [14—18]). Lansbury et al. [14]
presented a systematic review and meta-analysis that included 30 studies for evaluating coinfections
among patients infected with COVID-19. It was reported that 7% of patients had a bacterial
coinfection and 3% of patients had another respiratory virus, with RSV and IAV being among the
most common coinfecting viruses. Dao et al. [15] conducted a systematic review and meta-analysis
that included 54 publications and found that, 7% of COVID-19 patients are co-infected with influenza
viruses. Most influenza co-infections were due to the IAV [15]. A respective study in Wuhan, China
showed that the coinfection rate of IAV and SARS-CoV-2 was 49.8% during the outbreak period of
COVID-19 [19]. Based on two separate studies presented in [11] and [12], COVID-19-influenza
coinfection did not result in worse clinical outcomes [11]. In addition, this condition reduced the
mortality rate among COVID-19-influenza coinfected patients. Coinfection with influenza virus in
COVID-19 patients might render them less vulnerable to morbidities associated with COVID-19, and
therefore, a better prognosis overall [12]. In [18], it is found that, although patients with IAV and
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SARS-CoV-2 coinfection did not experience longer hospital stays compared with those SARS COV-2
single-infection, they usually presented with a more severe clinical conditions. In an animal
study [20], it was found that the disease severity is increased in hamsters with SARS-CoV-2 and [AV
coinfection compared with those with SARS-CoV-2 mono-infection.

Viral interference phenomenon can appear in case of infections with multiple competitive
respiratory viruses [21-23]. One virus may be able to suppress the growth of another virus [21, 24].
In [22], it was reported that an H3N2 strain of IAV was inhibited by SARS-CoV-2 coinfection in the
hamster model. Oishi et al. [23] used the golden Syrian hamster model, and found that, IAV interferes
with SARS-CoV-2 replication in the lung, even more than one week after IAV clearance. Disease
progression and outcome in SARS-CoV-2 infection are highly dependent on the host immune
response, particularly in the elderly in whom immunosenescence may predispose to increased risk of
coinfection [21].

1.1. Mathematical models of within-host IAV and SARS-CoV-2 infections

Over the years, mathematical models have demonstrated their ability to provide useful insight to
gain a further understanding of the dynamics and mechanisms of the viruses within a host level.
These models may assist in the development of viral therapies and vaccines as well as the selection of
appropriate therapeutic and vaccine strategies. Moreover, these models are helpful in determining the
sufficient number of factors to analyze the experimental results and explain the biological
phenomena [3]. Stability analysis of the model’s equilibria can help researchers to (i) expect the
qualitative features of the model for a given set of values of the model’s parameters, (ii) establish the
conditions that ensure the persistence or deletion of this infection, and (iii) determine under what
conditions the immune system is stimulated against the infection.

1.1.1. Mathematical models of IAV single-infection

Mathematical models of within-host IAV single-infection were developed in several works (see the
review papers [25-29]). Baccam et al. [30] presented the following IAV-single-infection with limited
target cells and eclipse (or latent) phase:

TAV infectious transmission

. —
X=- BpXP ,
TAV infectious transmission  latent transition
E= BpXP N A
latent transition  natural death ( 1.1 )
. — —
I = 5 EE - 7/] I s
IAV production  natural death
. — —
P= K pI - T pP .

where X = X(¢), E = E(¢), I = I(t) and P = P(¢) are the concentrations of uninfected epithelial cells,
latent IAV-infected epithelial cells, active [AV-infected epithelial cells and free AV particles, at time ¢,
respectively. The model was fitted using real data from six patients infected with influenza [30].

Several works were devoted to developing IAV single-infection dynamics models by considering
the following:
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e Innate immune response: It represents the first line of defense that recognizes the antigens and
activate the adaptive immune response. In [30], the effect of interferon (IFN) response was
included in the IAV infection model. The dynamics of the IFN are given as:

F =wpl(t — 1) — ppF,

where, F'is the concentration of IFN, @ is the IFN production rate constant, ur is the IFN decay
rate constant, and 7 is the time lag that occurs between the initiation of an AV infection and the
appearance of IFN. IFN can reduce viral replication in an infected cell, the rate of viral production
in the presence of IFN was modeled by replacing 6g by ; ffE =. The rate that IAV-infected cells
in the eclipse phase begin virus production (kp) may also be altered and was accounted for by
replacing this parameter by - +"; . The efficiency of these interferon effects is reflected by the
parameters €z and ep [30,31]. Saenz et al. [32] presented an influenza model with interferon
response. It is reported that the model with interferon response provided better fitting with real

data than that without interferon response.

e Adaptive immune response: Cytotoxic T Lymphocytes (CTLs) and antibodies are the two major
components of the adaptive immune response. CTLs destroy the viral-infected cells, while the
antibodies neutralize the viruses. An influenza dynamics model with different forms of the CTL
response was developed in [33]. It was shown that slight changes in the virus dynamics was
observed when different choices of CTL response were implemented. Both CTL and antibody
immunities were included into the IAV model in [34].

e Both innate and adaptive immune responses [3,35-38]. The model presented in [37] predicted
that, the level and time of the viral peak are affected by the innate interferon response, while the
clearance phase and duration of infection are determined by the CTL response. Handel et al. [38]
showed that, both the innate and adaptive immune responses are required to give an appropriate
explanation of the real data.

e Drug therapy: There are two approved anti-IAV drugs, adamantane antiviral drugs which block
infection by reducing the rate of infection, and neuraminidase inhibitors which block the
production of newly formed virions [31]. Beauchemin et al. [39] used model (1.1) to study the
effect of the antiviral drug amantadine on IAV infection. Handel et al. [40] presented a
mathematical model for within-host influenza infection under the effect of neuraminidase
inhibitors drugs. Lee et al. [34] included the effect of a combination of neuraminidase inhibitors
and anti-IAV therapies in the IAV model. The IAV model predicts that the drug therapies are
more beneficial when they are administered early.

e Regrowth and death of the uninfected epithelial cells. In [34], the first equation of model (1.1)
was modified by considering the target cell production and death as:

epithelial cells production  natural death  TAV infectious transmission
— — —

X = aX(0) - aX - BpXP , (1.2)
where X(0) is the initial concentration of the uninfected epithelial cells.

Mathematical analysis of within-host IAV infection model was studied in a few papers [33,41,42].
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1.1.2. Mathematical models of SARS-CoV-2 single-infection

Model (1.1) was utilized to characterize the dynamics of SARS-CoV-2 within a host in [43—45]. Li
et al. [46], used Eq (1.2) for the uninfected epithelial cell dynamics in case of SARS-CoV-2 infection.
The model with target-cell limited and model with regrowth and death of the uninfected epithelial
cells presented, respectively, in [43,46] were extended and modified by including (i) effect of immune
response [44,47-51], (ii) effect of different drug therapies [52,53], and (iii) effect of time delay [54].

Stability analysis of within-host SARS-CoV-2 single-infection models was investigated in [49-51,
55].

Mathematical model of IAV/SARS-CoV-2 coinfection. Recently, mathematical models were
developed to characterize within-host co-dynamics of COVID-19 with other diseases, such as:
SARS-CoV-2-cancer [56], SARS-CoV-2/HIV  coinfection [57], SARS-CoV-2/malaria
coinfection [58]. Based on the target cell-limited model (1.1), and the Pinky and Dobrovolny [24]
developed a model for the within-host dynamics of two respiratory viruses coinfection (SARS-CoV-2
and TAV).

SARS-CoV-2 infectious transmission ~ TAV infectious transmission

. — —
X=- BvXV - BeXP ,
SARS-CoV-2 infectious transmission latent transition
. — —
L= ByXV - 5L,
TAV infectious transmission  latent transition
. — —
E= BpXP e
latent transition  natural death
: <~ - (1.3)
Y= 6L - wY ,
latent transition  natural death
. — =
i= "siE - Tyl
SARS-CoV-2 production  natural death
. — —
V= KvY - T VV ,
TAV production  natural death
. — —
P= K PI - T pP .

where L = L(t), Y = Y(t) and V = V(¢) are the concentrations of latent SARS-CoV-2-infected
epithelial cells, active SARS-CoV-2-infected epithelial cells and free SARS-CoV-2 particles, at time ¢,
respectively. Model (1.3) describes the competition between two respiratory viruses, SARS-CoV-2
and IAV. However, the effect of the immune response was not modeled. Further, the regrowth and
death of the uninfected epithelial cells were not considered. Furthermore, mathematical analysis of
the model was not studied.

The objective of the present work is to formulate a mathematical model for within-host
IAV/SARS-CoV-2 coinfection with eclipse phase. The model is a generalization of the model (1.3) by
taking into account (i) the regrowth and death of the uninfected epithelial cells, (i1) the death of the
latent SARS-CoV-2-infected cells and latent IAV-infected cells, (iii) the effect of
SARS-CoV-2-specific antibody and IAV-specific antibody. We study the basic qualitative properties
of the model, calculate all equilibria, investigate the global stability of equilibria and demonstrate the
theoretical results via numerical simulations. We discuss the importance of including the antibody
immunity in the IAV/SARS-CoV-2 co-infection model.
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Our proposed model can be helpful to characterize the dynamics of coinfection with SARS-CoV-2
strains (Alpha, Beta, Gamma, Delta, Lambda and Omicron), or coinfection of SARS-CoV-2 (or IAV)
and other respiratory viruses. Moreover, the model may help to predict new treatment regimens for
viral coinfections.

2. Model formulation

In this section, we present an IAV/SARS-CoV-2 coinfection dynamics model with a latent phase.
The dynamics of TAV/SARS-CoV-2 coinfection is presented in the diagram Figure 1. We denote
Z = Z(t) and M = M(¢) for the concentrations of SARS-CoV-2-specific antibodies and IAV-specific
antibodies, at time ¢, respectively. The ODEs that describe the coinfection dynamics are:

Y
Free ‘ Latent & Active SARS-Cov-2-

SARS-CoV-2- SARS-Cov-2- oV
SARS-CoV-2 infected cell nfected cell ~ SPecific
W) " antibody
[¢

@

Uninfected
epithelial
cell (X)

+ Active TAV-
Ll infected  IAV-specific

Latent | cell antibody
IAV-infected cell [0 ()
w » (E)

Free IAV
®

Figure 1. The schematic diagram of the IAV/SARS-CoV-2 coinfection dynamics within-

host.
epithelial cells production  natural death ~ SARS-CoV-2 infectious transmission ~ IAV infectious transmission
. — — — —
X = 2 - Tax - ByXV - BpXP :
SARS-CoV-2 infectious transmission ~ natural death  latent transition
. — — —
L= ﬁ VX \% - n LL — 0 LL ,
TAV infectious transmission ~ natural death  latent transition
. — — —
E = /E;I)AJKT‘/I - 7]1;1[2 - 6513162 5
latent transition ~ natural death
R —
Y= 6L - wY ,
latent transition  natural death
, 2.1
I = ) EE - ’}/]I s ( )
SARS-CoV-2 production  natural death ~ SARS-CoV-2 neutralization
. — — —
V= Ky Y - Ty vV - Ry VZ ,
IAV production  natural death  IAV neutralization
. — — —
P= K pI - 7T pP - X pP M ,
SARS-CoV-2-specific antibody proliferation  natural death
. — ——
Z = (04 VZ - /,t;ngf .
IAV-specific antibody proliferation  natural death
. —_— —
M= ouPM — uyM
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where (X, L, E,Y,I,V,P,Z, M) = (X(t), L(t), E(t), Y(2), I(?), V(¢¥), P(?), Z(t), M(1)).

In model (2.1) the regrowth death of the uninfected epithelial cells is considered. Further, the death
of the latent SARS-CoV-2-infected and latent IAV-infected cells are included, Furthermore, the effect
of SARS-CoV-2-specific and [AV-specific antibodies are modeled. First, we start our mathematical
analysis of the system by examining the nonnegativity and boundedness of the system’s solutions.

3. Basic qualitative properties

Here, we study the basic qualitative properties of system (2.1).
Lemma 1. The solutions of system (2.1) are nonnegative and bounded.

Proof. We have that

X |x=0= 1> 0, L |i—o=ByXV >0forall X,V >0,
E |p=o=BpXP >0forall X,P >0, Y |y_o= 6L forall L >0,

I |j0= 0gE for all E > 0, V |y=o=kyY >0 forall Y >0,

P |p:0: KpI > 0forall I > O, Z |Z:0: O,

M |m=0= 0.

This guarantees that, (X(7), L(¢), E(?), Y(¢), 1(?), V(?), P(t), Z(t), M(t)) € Rgo for all + > 0 when
(X(0), L(0), E(0), Y(0), 1(0), V(0), P(0), Z(0), M(0)) € RZO. Let us define

W Xt Lt Eavale Dy Yp 0%v, Yite
2KV 2Kp ZKVO-Z 2KPO-M
Then
‘P:/l—aX—nLL—nEE_&Y_ﬂl_7Y7TVV_VIFPP_)/y%V,uZZ_yI%PluMM

2 2 2KV 2Kp 2Kvo'z 2KPO'M

<A-¢ X+L+E+Y+1+27—YV+LP+ ALy S Ll

Ky 2Kp 2/<V0'Z 2KPO'M

M|=21-¢7,

where ¢ = min{a@, n.,ng, 5, 5, 7y, wp, uz, ). Hence, 0 < (1) < Ay if W(0) < A, for 7 > 0, where
Al = g Since X, L, E,Y,1,V,P,Z and M are all nonnegative, then 0 < X(¢), L(¢), E(?), Y(1),I(t) < A,
0< V() <A, 0<P@l) <A, 0<Z(1) <Ay, 0 < M(f) < As if X(0) + L(0) + E(0) + Y(0) + I1(0) +
ZLV(0) + 2L P(0) + 72 Z(0) + 522 M(0) < Ay, where A; = 2;—;A1, A; = %PA], Ay = %K;Al and

As = %Al. This proves the boundedness of the solutions. O

4. Equilibria

Here, we calculate the system’s equilibria and deduce the conditions of their existence. Any
equilibrium point 2 = (X, L, E, Y, I, V, P, Z, M) satisfies:

0=A-aX-ByXV —BpXP, 4.1
0=pByXV -0 +0L)L, 4.2)
0 =pBpXP - (ne +0p)E, 4.3)
0=06.L—vyyY, 4.4)
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0=0gE -y, 4.5)
0=«xyY—myV —-uy,VZ, 4.6)
0 =«kpl —mpP — xpPM, 4.7)
0=0,VZ-u;Z, 4.8)
0=0yPM —uyM. 4.9)

Solving Eqs (4.1)-(4.9), we get eight equilibria.

(i) Infection-free equilibrium, =, = (X, 0,0, 0, 0,0, 0,0, 0), where X, = 1/a.

(i1) SARS-CoV-2 single-infection equilibrium without antibody immunity
El = (X],L],O, Y], O, Vl,O, 0, O), where

X, = Yyaty (L + 01) [ = ayyny [ XokvByoL 1]
1=, 1= - 1],
KvByor KyPBvor | yymy (nr + 6r)

_any | XokyBvoL _a | XokyBvoL
Y, = S|, vy = | DoBvo
kyBy | yymy (n + 01) Bv | yymy (e + 01)

Therefore, L; > 0, Y; > 0 and V; > 0 when % > 1. We define the basic SARS-CoV-2

single-infection reproductive ratio as:
_ XokyBvoL
YT yymy (i + 61)
The parameter R | determines whether or not a SARS-CoV-2 single-infection can be established. Thus,
we can write

Xo ayyny
X = —, L = % _1 ’
TR, 1 Kvﬁv5L( =1
Yi= 2V (R = 1), Vi=— (R -1).
By

KyPBy

It follows that, Z; exists if R > 1.

(111) IAV single-infection equilibrium without antibody immunity, =, = (X5, 0, E»,0, 1,0, P,,0,0),
where

X, = Yimp (Ne + Ok) E = aymp [ XokpBpoE }
2= T, ) = -1/,
KpPpOE KpBpOE | Yimp (Mg + OF)

L arp | XokpPBpoE ]’ P, = a [ XokpPBpor 1]

B kpBp | Yimtp Mg + OF) - Br | vimp (Mg + OF) -

Therefore, E, > 0, I, > 0 and P, > 0 when % > 1. We define the basic IAV-infection
reproductive ratio as:

XokpBpOE
yimp (M + 0p)
The parameter R,, determines whether or not the IAV single-infection can be established. In terms of
R,, we can write:

R, =

X, = ﬁ E, = Qytp
? ? KpPBproE

(R - 1),
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an
12 = P
KpBp

(R, -1), P2=g(%2—1)-
Bp

Therefore, Z, exists if R, > 1
(iv) SARS-CoV-2 single-infection equilibrium with stimulated SARS-CoV-2-specific antibody
immunity, E3 = (X3, L3, O, Y3, 0, V3, O, Z3, O), where

X, = Aoz L= ABypz _ ABypzd1
3= ————, L3 = , Y3 = ,
Bvuz + aoz (L +61) Byuz + aoy) Yy (L +61) Byuz + aoyz)
Uz Ty AByozkyOL
Vi="—, Zz=— -
oz xy [yymy (e + 61) Bz + @oz)
We note that = exists when APvozkvoL > 1. Let us define the SARS-CoV-2-specific antibody
Yrav(nL+oL)Byvuz+aoz)

activation ratio in case of SARS-CoV-2 single-infection as:

R, = ABvozkyoL
3 — .
yyay (M + 61) Bypz + o z)
Thus, Z3 = 72 (R3 —1). The parameter R determines whether or not the SARS-CoV-2-specific
antibody immunity is activated in the absence of 1AV infection.

(v) IAV single-infection equilibrium with stimulated of IAV-specific antibody immunity,
E4 = (X4,0,E4,0,14,0, Py, 0, My), where

X, = /?'O-M _ /lﬁPﬂM I = /l,Bp,LlM(SE
4=, = , 1g = )
Beuy + aoy (Mg + 0r) (Bpum + @0 y) vi Me + 6p) Bpuy + aoy)
A 1)
P4:,UM’ M4:E BpoyKpOE _
oM %xp | Yimtp (Mg + Or) (Bpiy + o)

—_ . ABpoMKPOE
sﬁ/ —
€ nOte that — eXlStS Whel’l i P(’]E 5E)(ﬂP I »)

activation ratio for IAV single-infection as:

> 1. We define the IAV-specific antibody immunity

R, = ABpT MKpOE
4 = .
yimtp (e + 08) (Brpy + @0 i)
Thus, M, = Z—ﬁ (R4 —1). The parameter R, determines whether or not the IAV-specific antibody
immunity is activated in the absence of SARS-CoV-2 infection.

(vi) IAV/SARS-CoV-2 coinfection equilibrium with only stimulated SARS-CoV-2-specific
antibody immunity, s = (Xs, Ls, Es, Ys, Is, Vs, Ps, Zs, 0), where

_ v (e + 0F) 1= Bvuzyimp (Mg + Of)

9

X5

KpPPOE kpBpOEoz (, +61)°
Es = Yimp(Bviiz + @0z) [ ABpkpOET 7z B 1] A Bvuzyimpdy (e + 0k) ’
KpPBPOECZ Yimp (Mg + 6p) (Bvz + aoz) kpBrOEozyy (ML + 6L)
I = nip (Byuz + aoz) [ ABpkpOETZ B 1] V= ,U_z,
KpPpoz Yimp (e + 6p) (Bypz + aoz) 0z
ps = Bvuz + aoz [ ABpkpOET 7z B 1] ,
Broz Yimp e + 6p) (Bypz + aoz)
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Zs

2y | kpBpyyOemy (g, + 61) Xy

We note that Z5 exists when,

Ri ABpKpOET 7 S
R, Yimrp (Mg + Op) (Byuz + aoz)

Now, we define the SARS-CoV-2 infection reproductive ratio in the presence of AV infection as:

1.

ABpKpOEO 7
yimp (e + 0) Bypiz + @oz)
The parameter R s determines whether or not SARS-CoV-2-infected patients could be coinfected with
IAV. Hence,

Rs =

Es = Yimp(Bypz + aoz) (Rs— 1), I5= wp(Byz + aoz) (Rs - 1),
kpPBporoz BpozKp
ps = Bykz + aoz (Rs—1).

Broz

and then =5 exists if % > 1and Rs > 1.
(vii) TAV/SARS-CoV-2 coinfection equilibrium with only stimulated IAV-specific antibody
immunity, Z¢ = (Xe, Le, Es, Y5, I6, Ve, Ps, 0, M), where

X, = Yyry(nL + 61) I = Yyrv(Beiim + @0 y) [ APBvKvOLO M 1]
6 - —’ 6 - - b
KyPBvor KvBvOLo m Yyrv(L + 01)(Brim + aoy)
E = YyBrummy (ML + 61) v, = TV (Bpum + @oy) [ AByKkyO Lo M ]
6 — 5 6 — - )
KyBvOroy (Mg + OF) KyBvom Yyrv(r + 0)(Bpiy + a0 yy)
I = Broepummyyy (L + 61) _ Bpim +aoy [ ABvKyOLO M ]
6 — 5 6 — - )
kyPByvOromyr Me + Ok) Bvou Yyv(ne + 01)(Bpuy + o)
) +0
oM %xp | KvBvyiormp (Mg + OF) %p
We note that Z¢ exists when
& > 1 and APvkvOLTm > 1.
R Yyv(nL + 01)(Bpuy + o)

We define the SARS-CoV-2 infection reproductive ratio in the presence of AV infection as:

R, = AByKkyOLO M
6 = .
Yyrv(me + o) (Bppm + @0 y)
Thus,
+ +
L = Yyrv(Bppm + @0 y) (‘R(s _ 1)’ Y, = y(Bppm + o y) (%6 _ 1)’
KyPyvOLO M Bvouky
+
Vs = Betiy + a0y (Re - 1).

Bvou
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The parameter R¢ determines whether or not SARS-CoV-2-infected patients could be coinfected with
IAV.

(viii) TAV/SARS-CoV-2 coinfection equilibrium with stimulated both SARS-CoV-2-specific and
[AV-specific antibody immunities, Z; = (X7, L7, E7, Y7, I7, V7, P7, Z7, M7), where

X, = AoTz0y L= BvAuzou ,
Beinoz + Bvizoy + @0 z0y (ML + 61) (Bpumoz + Bypzom + @0 z0 )
E, = BpAunoz Y, = BvorAuzom ’
(Mg + 6p) Bpumoz + Byuzoy + aozoy) Yy (e + 01) Bpuyoz + Byuzoy + aozoy)
L= BrOpAunoz V= ,U_z, P, = ,U_M’
Y1 e + 08) (Brumoz + Bvuzom + €020 1) oz om
Z = ﬂ[ ABvKkyOLO Oz B 1] ’
xy | yyrv (ML + 610) (BrumOz + Byvpzom + @020 i)
M, = Q[ ABpKpOET MOz _ 1].
xp | yimp (NE + Ok) (Bppm Oz + Byizom + €020 y)

It is obvious that = exists when

ABvKyO Lo MOz o1
Yyy (e + 61) Bpumoz + Pyzom + @070 y) ’
ABpKpOEO O 7 o1

Yimrp (Mg + 0p) Bpumoz + Byizo pm + @0 720 )

Now, we define

R = APBykyOLOM0T 7z
7 — ’
yyry (M + 6r) Bpumoz + Byzom + @070 y)
R = ABpKpOEO 0T 7
8

~ yimp (g + 0) (Bpun oz + Bylizoy + a0 z0y)

Here, R; is the SARS-CoV-2-specific antibody activation ratio in case of IAV/SARS-CoV-2
coinfection, Ry is the IAV-specific antibody activation ratio in case of IAV/SARS-CoV-2 coinfection.
Hence, Z; = % (R;—1)and M; = Z—}’; (Rg—1). If R; > 1 and Rg > 1, then = exists.

In summary, we have eight threshold parameters which determine the existence of the model’s
equilibria

R, = XokyByvor R, = XokpBpoE . Ry = AByozKyOL ’
Yymy (L +61) Yimp (e + OF) Yyry (L + 61) (Byuz + aoz)

R, = ABpO MKpOE , S = ABpkpOEo 7 ’
Yimp (e + 68) (Bpim + @oy) Yimp (e + 6p) (Bypz + aoy)

R, = AByKyOLO R, = AByKkyOLO Oz ,
Yyrv(nL + 0L)(Bppa + aoy) Yy (ML + 61) (BpiumOz + ByizO y + a0 70 y)

Rg = ABpKpOET Oz (4.10)

vimp Mg + 0p) Bpumoz + Bvzom + Qo7 y)
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5. Global stability

This section is devoted to studying the global asymptotic stability of all equilibria. We configure
Lyapunov functions following the way outlined in [59]. The following arithmetic-mean-geometric-
mean inequality will be utilized:

MR T JunGe) ), w20, i=12,.n G-

n

Let a function A (X, L, E,Y,1,V, P, Z, M) and Q ; be the largest invariant subset of

dA; )
Q={X,L,E,Y,I,VPZM): = = 0y, j=0,1,..,7.
Define a function
Fvy=v-1-Inv, v>0.
Theorem 1. If R < 1 and R, < 1, then B is globally asymptotically stable (G.A.S).

Proof. Define

X +0 +0 X X
AO:XOF(Y)+L+E+77L Ly Metoe, PvXo,  BrXop,

0 or O Ty Tp
Ry Xp
+ By Xo Z + BpXo M.
OzTy OpuTTp

We note that, Ag > Oforall X, L, E,Y,I,V,P,Z M > 0 and Ay(X,,0,0,0,0,0,0,0,0) = 0. We calculate
% along the solutions of model (2.1) as:
dA\ Xy
e (1 - Y) [1—aX - ByXV — BpXP] + pyXV — (L + 6L)L + BpXP — (ng + 6p)E

+0 +6 X
’”5 LioLL —yy¥]+ TEOE (5 g 4 PV
L E Ty

X X py
PrXo [kpl — 7pP — %pPM] + By Xo——[0,VZ — iz Z] + BrXo—r
TTp o7y ouTp
X +6 +6 X,
:(1——0)(/1—C¥X)—7Y(UL L)Y_VI(UE E)I+KV,8V Oy
X oL Of my
L keBrXo . BvXortviz ,  BrXoxeiy
Tp TyOz TpO iy

+

[Kvy - 7Tvv - %VVZ]

+

[y PM — piy M)

M.

Using the equilibrium condition, 4 = aX, we get

dN\g _ —a/(X - Xo)? s Yy (1 +61) ( KvBvorXo 1) Y+ vi (Mg + Ok) ( kePpoeXo \s
at X Or Yyy (1 + 61) Ok Yirtp (Mg + k)
_ﬁVXO%V#ZZ_ﬂPXO %P'UMM
Tyoz TpO pm
X - Xo)? +6 +6
_ —a/( 0) LY (1L +61) (R, = 1)Y + Y1 (e + 6k) (Ry— 1)1
X 6L 6E
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Hylz XpUm
Z - BrXo
Ty0oz TpO M

Since R < 1 and R, < 1, then dAO <Oforall X,Y,I,Z, M > 0. In addition dAO =0, when X = X,

andY =1=7Z=M =0. The solutlons of system (2.1) tend to Q, [60] which 1ncludes elements with
Y =1=0. Thus, Y = I = 0 and from the fourth and fifth equations of system (2.1) we have:

— BvXo M.

0=Y=6,L= L(t) =0, forall t,
0=1=6,E= E(t) =0, forallz.

In addition, from the second and third equations of system (2.1) we have:

0=L=pyX)V= V() =0, forall t,
0=E =ppXoP = P(t) =0, forall 1.

Therefore, Qy = {Z,} and applying Lyapunov-LaSalle Asymptotic Stability Theorem (L-LAST) [61,
63], we obtain that E; is G.A.S. O

Theorem 2. Suppose that R, > 1, R,/R| < 1 and R3 < 1, then E, is G.A.S.

Proof. Let us formulate a Lyapunov function A, as:

X L +0 Y +0 X \%
A= XF( ) e L[ L) s B X0y (L) 20y Brtiy p(V
X] L] 6L Yl 5E Ty
N ﬁPX1P N ,Bvxl%vz N BrXixp
Tp Ozty O pmTTp

1

M.

We calculate =l as:

dA;

dr (1‘_)“ aX = pvXV - ﬂPXPH(l——)[ﬂVXV (7 +61) L]

+0 +0
+BXP = e+ 00 E + T2 (1 - —) [6.L = yy¥] + 220 (5, — y,1]
L E
X \%
EIES (1 - —1)[KVY—7TVV— 2y VZ] +ﬂ” U lkpl — 7pP — %pPM]
Ty \% Tp
+ﬁVX1 L [02VZ - uyZ) +:8PX1 [ouPM — pyM]. (5.2)
Oz7ty O mTp
Simplifying Eq (5.2), we get
dA L, +0 Y
T (1 - _) A1—-aX) - ﬁVXV— + (L +06L) L — vy (L + 01) L)Y — (e +61) L—
dl‘ o1 Y
+0 +0 V
n vy (ML L) Y, - vi (Me E)I ﬁvxl—Y ﬁle—Y—l + BV XV
5L O
+,3vX1 VIZ +ﬁPX1—1 BvXi il BrXi %PﬂM M.
OzTty OpyTTp

Using the equilibrium conditions for =;:

A=aX, +BvXiVi, BvXiVi= @ +6L) L,
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leﬁyl, V1—K—VY1,
oL 1%
we obtain
dA1 X X L XV YL
1——) X, — aX) + 4B, X, V) — By X,V X,V X,v, &
dt ( (aX; — aX) By X1V, ,BV11 ﬁVI]LXV] ﬁv11YL1
VY +0 X kp0
_ByXiVy 1 + vi (Me E)( BpXikpOE _ 1)I+ﬁv 1Xviz (2‘/1 _ 1)2
VY, O Yirp (Mg + OF) ozny  \uz
—BpX, M (5.3)
OpmTTp

Then collecting terms of (5.3), we get

dAl G,’(X - X1)2 X1 L XV YlL VIY
= X1V |4 - -
dt x A X LX,V, YL, VY,
L (e + k) (‘Rz )I xy Xy (@oz + Byuz) (R, -

2
5E 9.%1

1)Z — BpX, ZPHM .
T znty Omu7Ttp
Using inequality (5.1), we get

X, LXV 1L VY -

X LX)V, YL1 VY1_

Since R,/R; < 1 and R; < 1, then dA‘ <Oforall X,L,Y,I,V,Z,M > 0. Moreover, 2. = () when
X=X,,L=L,Y=Y, V=V and I = Z = M = 0. The solutions of system (2.1) tend to Q, where
I = 0. Hence, I = 0 and the fifth equation of system (2.1) gives

0=1=06gE = E®) =0, forall «.

In addition, from the third equation of system (2.1) we get,
0=FE=ppX,P= P(t) =0, forall 1.
Hence, Q, = {E,} and E, is G.A.S by using L-LAST [61-63]. O
Theorem 3. Let R, > 1, R /R, < 1and Ry < 1, then E, is G.A.S.
Proof. Consider

X E +0 +0 1
A= XoF ||+ L+ EF| = |+ L2y f TETOE (2
X2 E2 6L 5E 12
X X. P
L BrXey B 2P2F( )+,8VX2 Z+BpXa—22 M,
Tty Tp P, 07ty oyTTp
We calculate 2 as:
dA2 X2
— (1 - 7) [1—aX — ByXV — BpXP] + ByXV — (1, + 6,) L
E +0
(1= Z2)goxp — e + 00 E1+ B0 5,1~y
L
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+77E+5E( I

X
1- 7) [65E — yiI] + =22 [kyY — vV — %y VZ]
\%

O
X P
4 Bk (1 _ _2) [kpl = 70pP — 2pPM] + By Xo—Y— [04VZ — 11, 7]
Tp P Ozty
OuTp
Then simplifying Eq (5.4), we get
dA2 E, Yy (L +61)
1——)/1 X XP— + +0g)E, - ———Y
= (A= aX) = BXP=2 + (i + ) >
+0 +0
(e E)I—(UE+5E)E—2+ Y1 (e E)12+K—V,8VX2Y
6E E
P2 HyUz
+ —IBPX21 = —ﬁszl— + BpXaPs + _,BPXZPZM i BvXoZ
ZTy
_ %PﬂMﬁpsz-
OmTTp
Using the equilibrium conditions for =,:
A=aX, +BpXoP>r, BpXoP> = Mg+ 0g) Es,
E =25 p=2p,
65 Tp
we obtain,
dA2 X, E,XP
1——) Xo —aX) +4Bp X, Py — XP—— X> P
dt ( (aX; — aX) BpX>o Py — BpXaPs ﬁPZQEXZPZ
LE P>I +0 6 X
_ BpXoPy 2 2 ﬁPX2P2—2 Yy (ML L)( LkvBv X, _ 1) %
IE, PI, oL Yyry (7L + 01)
BPXZ%P/JM (O'MP B 1) M ﬂvxz%v,uzz
O MTTp My O zty
G’(X — X2)2 X2 EZXP 12E PZI

=Y LB X,P, |4 -2 - 2 22
X '8”“( X EX;P, IE, PIZ)
+01) (R X +
VY(UL L) 1_1 Y + 2p (o + Bpiim) (‘R4—1)M
6L %2 TpO pm
_ By Xorvpz
OzTy

Z.

If R/R, < 1and R, < 1, then employing inequality (5.1), we get d;\tz <Oforall X,E,Y,I,P.Z, M >

0. Further, 2 = O when X = X, E = E», I = L, P = Pyand Y = Z = M = 0. The solutions of

system (2.1) tend to €, which has ¥ = 0, and gives ¥ = 0. The fourth equation of system (2.1) gives
0=Y=6L= L) =0, forallt.

In addition, from the second equation of system (2.1) gives
0=L=pyX,V= V(t) =0, forall .

Therefore, Q, = {Z,}. Applying L-LAST, we get Z, is G.A.S. O
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Theorem 4. Let R; > 1 and Rs < 1, then Z3 is G.A.S.
Proof. Define

X L +0 Y +0
As = XoF (= |+ LoF (=) + E+ 222k yyr (— | + TE205
X3 L; 0

L Y3 O
+ Yy (1 + 61) ViF K Y (e + 5E)P + Yyxv (e + 5L)Z3F £ + Yixp (Mg + 6E)M.
KvéL V KP(SE KV5L0-Z Z3 KpdEO'M

A
We calculate Q as:

any

X L

= (1 - ?) [1—aX —ByXV — BpXP] + (1 - f) [BvXV — (. + 61) L] + BpXP

n+ 6L ( _ g) ~
6L 1 Y [6LL ’}/YY] +

Ne + Of

-~ (e +0p)E + [6£E — yil]

L (nL +61) Y1 (Me + Ok)

V.

(1 - —3) [kyY — 7y V — 0y VZ] + 22 228 (o] — 2pP — 5 pPM]
KyOr, KpOE

+ Yyxy (L +6r) ( Z3 1 Yixp (Mg + OF) [

= —) [04VZ = 1,7] + oy PM — iy M. (5.5)
KV6L0-Z Z

KP(SEO'M
Then simplifying Eq (5.5), we get

dA
o (1 _ —)u aX) + By XV + BoXsP — ﬁvXV— F (g +61) Ly — (71 + 61) L—

+0 +0 +01)YV +0
+ vy (L L) Ys — myyy (M L) V- vy (e L) 3 + myyy (M L) Vs
6L KV6L 5LV KV5L
+0 +0 +0 +0
L vy (L L)ZV3 _ ey (e E)P _ xvyyiz (L L)Z %xvyy (ML L)
KvéL KpéE UzKVaL Kvé‘L
+ xyyyiz (n + 5L)Z _ APYIHM (e + 5E)M

3
Uzkv(SL O'MKP(SE

Using the equilibrium conditions for Ej:

A= ong +,8\/X3V3, ,8\/X3V3 = (T]L + (SL) L3,

Ly=2v,, ¥ =mVs+uyVaZs, Vs=12,
(5 gz
we obtain,
dA; LiXV
1——) X — aX) + 48, X3 Vs — XV—— X3V
I ( (aX3 — aX) + 4By X3Vs — By X3 V3 ﬂV33LX;V3
Y3L ViY  mpyr (e + 55) BrX3kpdE
— By X3 Vi— — By X,V + —1|p
PrsVayr, ~Pr5Vayy, KpOK 7py1 (e + O%)
_ %pYikm (Mg + 5E)M
O'MKP6E
CK(X - X3)2 X3 L3XV YgL VgY
S LAY 3 % A /R A - _
X PvXsVs X LX;V; YLy VY,
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+0 +0
+ mpyr (Me E) (‘Rs _ l)P _ XPYiHMm (e E)
KP(SE O'MKpdE

Using inequality (5.1) and Rs < 1, we get = dA3 <Oforall X,L,Y,V,P,M > 0. Further, dé\; = 0 when

X=X3,L=1L3,Y=Y;,V=Vzand P = M 0. Further, the trajectories of system (2.1) tend to Q;
which has elements with V = V3 and P = 0. Then V = 0 and P = 0. The sixth and seventh equations
of system (2.1), provide

0=V =xyYs—nyV3 —xyV3Z = Z(t) = Z3, forall ¢,
0=P=«kpl = I(t) =0, forall .

In addition, from the fifth equation of system (2.1) gives

0=17=6gE = E(t) =0, forall ¢.
Consequently, Q3 = {Z3}. Applying L-LAST, we find that Z; is G.A.S. O
Theorem 5. If R, > 1 and R¢ < 1, then Z, is G.A.S.

Proof. Define a function A4 as:

X E +0 +0 1 +0
A= xF (X e Lo Er(E) o 1t oy e *0py p (1) yr (Lt o0y,
X4 E4 (5L 6E 14 KV(SL
71 (e +5E)P4F( ) Yyxv (. +5L)Z+ Yixp (MEe +5E)M4F(£).
KpOE P, KyOroz KpOET M 4

Calculating = dA“

dAy X4
7 = ( - )[/l aX — ﬁvXV ﬁPXP] +ﬁvXV (T]L + 6L)L
+0
(1= Z2)goxp e + 000 E1 + B0 5,1~y
L
+0 I +0
Lo (1 - —4) (6, — o] + L0 oy pv — vz
6E I KV6L
+0 P +0
4 21E +9p) (1 - —4) kol — 7tpP — pPM] + L2V ILTOD 77
KpOE Kyoroz
Yixp (Mg + OF) ( M4)
G HEP e T OE) PM — uyM 5.6
KP6E0-M M [O-M Hu ] ( )

Equation (5.6) can be written as:

dA E,
= (1- —)u OX) + ByXsV + BrXuP = BpXP— + (1 + 0) Es — (e + 6E>E—
+0 +0 +0 +0g) P
n Y1 (e E)I4 WYy (e L) V- mpyr (e E)P e (e E) 41
6E KV(SL KpéE 6EP
+0 +0 +0 +0
+ mpyr (M E)P4 + %pyr ME E)MP4 _ XVYYHz (L L)Z _ XPYiHMm (e E)M
KP(SE KP(SE KV5LO-Z KP(SEO'M
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+0 +6
_APYI (e £) M,P+ xpYiy (Me £)

M,.
KpdE O-MKP5E

Using the equilibrium conditions for E4

A =aXy+BpXsPs, PpX4Ps= g + 0) Es,

kply = TpPy+xpPsMy, Ey= 21, Py =EM
6 O'M
we obtain,
dA4 X4 E.XP
1——) X4 — aX) +4Bp X Py — Bp X4 Py— — Bp X4 P
dt ( (aXy — aX) BpX4Py /3P44X '8P44EX4P4
LE Pyl +0 +6 X4kyO
_ BpX Py 2L 4 ,8pX4P4—4 _ XVvYvHz (L L)Z+ myyy (ML L)( BvXakyor _ 1) %
IE, Pl KyOLOz KyOr myyy (ML +6L)
X - X,)? X EXP LE P4l
:_u+ﬁpx4p44__4_4__4__ 4
X X EX4P, IE, Pl
+0 +0
L vy (m +61) (Re— 1)V — %xyyyiz (ML L)Z.
KvéL KV6LO-Z

Since R < 1, then employing inequality (5.1), we get = ‘”\4 < Oforall X,E,I,V,P,Z > 0. Further,
dA“ =0when X=X, E=E4,I=1;,,P=PsandV =7 = O The solutions of system (2.1) tend to Q,
Wthh contains elements with P = P4 and V = 0, then V = P = 0. The sixth and seventh equations of
system (2.1) imply

0=V=xY = Y(#) =0, forallt,
0 =P =«ply —pPsy — xpPsM = M(t) = M., for all ¢.

In addition, since Y = 0, then ¥ = 0. The fourth equation of system (2.1) gives

0=Y=6L= L) =0, forallz.
Therefore, Q, = {24} . Applying L-LAST, we get Z, is G.A.S. O
Theorem 6. If Rs > 1, R /R, > 1 and Rg < 1, then Es is G.A.S.

X L E 5
As = XoF [ ) b or (L) + B (L) ¢ IOty (X
Xs Ls Es oL Ys

+’7E+5E15F 7Y(77L+5L)VF )’1(77E+5E)P5F
Is Vs Ps

Proof. Define

6[5 KvéL KpéE
Ly (. + 5L)Z5F L yixe (e + 0k) M.
Ky 0z Zs KpOEOT
Calculating = % as:
dA X
dts (1 - —5) [A—aX —BvXV - BpXP] + (1 - —) [BvXV — (. + 61) L]
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E +0 Y.
+(1 - —5)[ﬁpXP—(nE+6E)E] L ato (1 - —5)[5LL—)/YY]
E oL Y
+0 I +0 V.
M (1 - —5) (6, — y,1] + L0+ 01 (1 - —5) (kY =y V — %y VZ]
6E 1 KV6L \%
0 P 0 Z
e (e + 6F) (1 B _5) (kpl — 70pP — %pPM] + Yyy (L +61) (1 B _5) (2VZ = 1,7)
KpOE KyOL07 zZ
+0
+M[O’MPM—/JMM]. (5.7)
KP6EUM

Equation (5.7) can be simplified as:

dA E
(- —)u OX) + BuXsV + BrXsP ~ ByXVE 4+ 00 Ls — BpX P
+0 +0
+ (e +0p) Es — (nr +61) L— + MYS — (Mg + 0k) E— + Mls
Y 5L I 6E
+0 +0.) V. +0 +0
_ myyy (L + 61) VoY (L +61) Vs y 4 Ty (e +61) Ve + %yyy (L +6r) Viz
KV6L 5LV KV5L KV6L
+6 +0g) P +0 +6
_TeYI (e E)P N (e £) 51 + mpyr (M E)P5 + %xpyr (M E)MP5
KP(SE 5EP KP6E KP(SE
+0 +0 +0
_ XvYvHz (e L)Z XYy (e L) VZs + xvyyiz (ML L)ZS
KV6L0-Z KV5L KV6L0-Z
_xpYim (Mg + 5E)M
KPéEO-M
Using the equilibrium conditions for =s:
A =aXs +ByXsVs + BpXsPs, PyXsVs = +6L)Ls,
BrXsPs = (Mg +6p) Es, kyYs =nyVs +xyVsZs,
kpls = mpPs, V5= =d
O'Z
Yy Yi
Ls==Ys, Es=-—I;,
5 5 5 5r 5
we obtain,
dA X Xs X
dts (1 - —5)((YX5 —aX) +4ByXsVs + 48pXsPs —,BVXSVS— —,BPXSPSYS
—ByXsV. LsXV — BpXsP EsXP XSV YsL — BpXsP IE
VSSLXV5 PSSEXP5 vssY PSSIES
VsY PsI L BPYikm (e + 5E) Oum
- By X5V XsP —P—-1|\M
BvXs SVY — BpXs 5P15 PR i 5
X — X5)? X LsXV  YsL VsY
_u_,_ﬁvxsvs g _ B2 5= 1S
X X LX5Vs YLs VYs

Xs EsXP ILE PsI
+PrXsPs |4 - — -5~ T T B
X EXsPs IEs PI;
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+0 + +
+ %pyr (M £) (@O 20y + Byvizom + BriimOz) (%s _ 1) M.
KpOELBPO 70 m

Since Ry < 1, then employing inequality (5.1), we get = dA‘ < Oforall X,L,E,Y,[,VPLM > 0.

Moreover, we have dA5 =0,when X = X5, L=Ls, E = Ejs, Y Y5, I=1,V=Vs;,P=Psand M = 0.
The trajectories of system (2.1) converge to Qs which comprises elements with ¥ = Ys and V = Vs,
then V = 0. The sixth equation of system (2.1) implies that

0=V =xyYs—nyVs —xyVsZ = Z(t) = Zs, for all ¢.
Consequently, Qs = {Z5}. and by applying L-LAST, we get Zs is G.A.S. m|
Theorem 7. Let R¢ > 1, R, < 1 and R,/R,| > 1, then Z¢ is G.A.S.

Proof. Consider a function Ag as:

X L E 0 Y
Ao =XeF | — |+ LeF | — | + EcF | — nL oL Yo | —
X6 L E6 (5L Y6

L et 5E16F L (ML +61) s L (e + 5E)P6F
5E 16 KV5L V6 KP(SE P6

+0 +0 M
LYy L+ 61) ,  yixe (e + 0p) M (M)
KyOLOz KpOEO M

M

Calculating = % as:

dA X, L
d_tﬁ = (1 - Yﬁ)[/l—an—ﬁVXV—ﬁpXP] + (1 - f)[ﬁvXV— (e + 61) L]
E +0
+ (1 - —6)[,6’pXP ~ (e +0p) E] + -2 (1 - —)[5LL 7vY]
E 73 Y
+6 I +0 Vi
B0k (1 g,y + M(l - )Y =V = V2]
Sk I KvOL 4
+ P *+o
L Y10 +0r) (1 - _6) kol — 7pP — wpPM] + L2V 1L 0 [02VZ - ;7]
KP5E KV(SLO-Z
+6 M,
4 Yip (e + Ok) (1 6) [0sPM — uyM]. (5.8)
KP6E0_M M

We collect the terms of Eq (5.8) as:

dA E¢
e-(1- —) (A= aX) + BrXeV + BoXeP = XV + (. +61) L ~ BpX P2
+0 +0
b+ 06) Eg — (g + ) 128+ LLOLEOD gy 6E)E— USRI
Y 5L 5E
_ vYy (e + 5L)V Yy (e +61) Ve Y+ myyy (L +61) Ve + xyyy (mL + 5L)
KyOr oLV KyOr KyOr,
ey (e + 5E)P _ Y1 (g + 6k) P6I LTy (e + (5E)P6 g2l (e + 5E)MP6
KpOE ogP KpOE KpOE
_ XyYyHz (e + 5L)Z _ xpYiim (g + 5E)M _ %pY1 (g + 6E) PM, + xpYipm (NE + 5E)M
KV5LO-Z KP(SEO'M KP5E KP(SEO'M

Mathematical Biosciences and Engineering Volume 20, Issue 2, 3873-3917.



3893

Using the equilibrium conditions for Eg:

A =aXe+ BvXeVe + BrXePs, PBvXeVe = +61) Le, BpXePs = (g + 0) Eg,

L6:EY6a E6:£I6’ Y6=ﬂV6,
6L 6E Ky
16:72P6+%_PP6M6a P6=ﬂ—M,
Kp Kp OMm
we obtain,
dA6 Xs Xs Xs
—:1——)X—X+4 XoVe + 4BpXsPs — By XeVe— — BpXePs—
7 ( X(a/e aX) + 4By XeVs ,3P66,BV66X ,3P66X
,3XVL6XV ,3XPE6XP ,3XVY6L ﬂXPIGE
vXoVorxoy, ~Praslopyp. ~PvXeVey -~ PrXePoqp
VeY Psl  nyyyuz (N, +061) (02
— By XeVe—— — BpXePs—— + —Ve—1|Z
BvXs Vv, BrXs 5Pl P g 6
a(X - X6)2 X6 L6XV Y6L V6Y
= BT g X Ve4 - 28 - _ Lok
X BvXsVs X LXgVe YLs VY

X EX¢P¢ IEs Plg
+0 + +
+ xvyy (ML L) (@ozoy + Bviizoy + B0 z) (R, - 1) 7
KyOromByoz

+,8PX6P6(4——————— )

Since R, < 1, then employing inequality (5.1), we get % < Oforall X,LEYIV,PZ > 0.

Moreover,% =0when X =Xo, L=Ls, E=FEs,Y =Y, 1 =15,V = Vs, P=Pgand Z = 0. The

solutions of system (2.1) tend to Q¢ which contains elements with P = P then, P = 0. The seven
equation of system (2.1) implies that

0=P= kpls — mpPg — xpPeM — M(t) = M, for all .
Consequently, Q6 = {Z¢). Using L-LAST we deduce that 5 is G.A.S. |
Theorem 8. IfR; > 1 and Rg > 1, then =7 is G.A.S.

Proof. Define a function A as:

X L E +0 Y
A7 = X7F (}7) + L7F (—) + E7F(—) + iz LY7F(—)

+0 1 +0 \% +0 P
+ Ui EI7F L Yy (L L)V7I_— AN Y1 (e E)P7,_— r

(SE I7 Kv(SL V7 KpéE P7
+ Yoy (. + 5L)Z7F z + Yixp (Mg + OF) MoF ﬂ _

KV5L0-Z Z7 KP(SEO'M M7

Calculating ‘% as:

dA\; (1 X7

hialal A e

L
- J 2= X = gyxV - BoXP) + (1 = ) [BXV - (i + 600 L)
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# (1= ) 18oXP = 40 B+ Tk (1= D) 6, - )

or Y

+0 I +0 V.

M (1 - —7) (6, — y,1] + L0+ 01 (1 - —7) (kY =y V — %y VZ]
6E I KvéL \%

0 P 1) Z

+ M (1 _ _7)[KP]_ 7pP — xpPM] + M (1 _ —7)[O'ZVZ—,UZZ]

KP5E P KV6LO-Z Z
Yrxp (Mg + OF) ( M7)

+ — 1 - — PM — uy M| . 59

KpOr 021 M [O'M Mm ] (5.9)

We collect the terms of Eq (5.9) as:

dA7 X7 L7 E7
= - (1 - Y)(ﬂ ~aX) +ByXyV +BpXoP = ByXV + (i +61) Ly~ BpXP—

Y +0 I +0
+(77E+6E)E7_(77L+5L)L77+)/Y(77L L)Y7_(UE+5E)E77+71(77E E)I7

6L é‘E
+0 +0p)V +0 +0
_ TvYy (L L)V_ vy (L L) 7Y+ mvyy (L L) Vo + xvyy (ML L)V7Z
KyOL Y% KyOrL KyOL
+0 +0p) P +0 +0
_ 7y (e E)P _ Y1(e +6g) 77, TPV (Mg + Ok) Pt %xpyr (Mg + Of) MP,
KpéE 6EP KPéE KP6E
+0 +0 +0 +0
_ %vyvpz (N +61) g vy (m +61) VZo + xyyyiz (M +0r) Z - %pYiiiy (Mg + OF) M
KV6LO-Z Kv6L KV6L0-Z KP6E0-M
+0 +0
_xpYi (e E)PM7 + %xpYim (e £) M.
KpOE KpOEOT m
Using the equilibrium conditions for =;:
A =aX; +BvX7V7+BpX7P7,  BvX7V7 = +061) Ly,
BrXaPr = (e +08) By, Ly = 20¥,, E;=2ip,
or 3
Y7 = ﬂV7+ﬂV7Z7, I7 = EP7+}£P7M7,
Ky Ky Kp Kp
V7 = ll_z’ P7 = #_M9
(04 OMm
we obtain,
dA7 X7 X7 X7
—zl——)X—X+4 X7V: +4B8pX7P7 — By X7V — — BpX7P7—
dr ( X(017 aX) By X7V ,3P77,3v77X ,3P77X
,8XVL7XV ,BXPE7XP ,BXVY7L ﬁXPI7E
VX7 7LX7V7 pX7 7EX7P7 vX7 7YL7 pX7 7”57
V.Y P;1
— By X7Vi—— — BpX7P7—
BvX7 7VY7 BrX; 7PI7
_aX - X7)?

X; LXV Y.L ViY
< +ﬁVX7V7(4 7 7 7 7)

X LX;V; YL, VY,
+,8pX7P7(4————————).
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Using inequality (5.1), we get % <Oforall X,L,E,Y,I,V,P > 0, where % = 0 when X = X,

L=1,,E=E;,Y=Y;,1=1;,V =V;and P = P;. The solutions of system (2.1) tend to Q. which
includes element with V = V; and P = P; which gives V = P = 0 and from the sixth and seventh
equations of system (2.1) we get

0=V-= kyY, —nmyV, —xyV.Z = Z(t) = Z;, for all ¢,
0=P= kpl; — mpP7 — xpP7M — M(t) = M, for all ¢.

Therefore, Q; = {Z;} and by employing L-LAST, we get Z; is G.A.S. O

Based on the above findings, we summarize the existence and global stability conditions for all
equilibrium points in Table 1.

Table 1. Conditions of existence and global stability of the system’s equilibria.

Equilibrium point Existence conditions Global stability conditions

= = (X0,0,0,0,0,0,0,0,0) None R <land R, <1

2 =(X1,L,,0,7,,0,V1,0,0,0) Ry >1 Ri>1L R/ R <land R; < 1
= = (X,0,E,0,1,0, P,,0,0) R, > 1 Roy>1, R /R, <land R,y <1
2 = (X3,L3,0,Y5,0,V3,0,Z5,0) Ri; > 1 Ri;>land Rs < 1

Ey = (X4,0,E4,0,14,0, Py, 0, My) Ry> 1 Ry>1land Rg < 1

55:(X5,L5,E5,Y5,15,V5,P5,Z5,0) %5 > 1 and %1/?’\2> 1 %5 > 1,%33 1 and %1/%2> 1
Ee = (X6, Lg, E¢, Y6, Is, Vi, Pg, 0, M) %6 > 1 and %2/%1 > 1 %6 > 1, %7 < 1and %2/%1 > 1
=7 = (X7,L7,E7, Y., I, V7,P7,Z7,M7) %7 > 1 and %8 > 1 ?’\7 > 1 and ?’\g > 1

6. Effect of the antibody immunity on the IAV/SARS-CoV-2 coinfection dynamics

We noted that system (2.1) has eight equilibria for which the coexistence case of IAV and SARS-
CoV-2 can only be occurred if at least one type of the specific antibody immunities is active. Now,
we discuss the importance of considering the antibody immune response in the IAV/SARS-CoV-2
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dynamics model. If the antibody immune response is neglected then system (2.1) becomes:

X =1-aX-ByXV —BpXP,
L =ByXV - (q +6,)L,
E :ﬂpXP - (T]E + (SE)E,

Y =6,L -y, (6.1)
[ =6pE -y,
V=xY-mV,
P = kpl — ntpP.

We can see that system (6.1) describes the competition between IAV and SARS-CoV-2 on one source
of target cells, epithelial cells. The model admits only three equilibria:

(i) Infection-free equilibrium, 2, = (X,,0,0,0,0,0,0), where both IAV and SARS-CoV-2 are
cleared,

(ii) SARS-CoV-2 single-infection equilibrium Z;, = (X;,L;,0,Y,,0,V;,0), where the IAV is
blocked,

(i1i1)) TIAV single-infection equilibrium, =5, = (X,,0,E,,0,1,,0, P,), where the SARS-CoV-2 is
blocked, Wheref(,- = Xi, i= 0, 1,2, Z] = L], Y] = Y], ‘71 = V], E2 = Ez, iz = 12, and Pz = P2.

We note that the case of IAV and SARS-CoV-2 coexistence does not appear. In the recent studies
presented in [5,9, 11, 12], it was recorded that some COVID-19 patients were detected to be
coinfected with TAV. Therefore, neglecting the immune response may not describe the coinfection
dynamics accurately.  This supports the idea of including the immune response into the
TAV/SARS-CoV-2 coinfection model, where the case of IAV and SARS-CoV-2 coexistence is
observed.

7. Numerical simulations

The global stability of the system’s equilibria will be illustrated numerically. We use the values of
the parameters presented in Table 2. In addition, we make a comparison between single-infection and
coinfection.

Table 2. Model parameters.

Parameter ~ Value Parameter  Value  Parameter  Value Parameter  Value

p 0.5 Yi 0.2 ny 0.05 M 0.04
a 0.05 Ky 0.2 Xp 0.04 I 0.05
By Varied «p 0.4 oz Varied 7g 0.06
Be Varied 7ny 0.2 oy Varied 6, 0.05
Yy 0.11 TTp 0.1 Uz 0.05 Ok 0.06
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7.1. Stability of the equilibria
Now, we solve system (2.1) with three different initial conditions (states) as:
C1:(X(0),L(0),E(0), Y(0),1(0), V(0), P(0), Z(0), M(0)) = (8,0.5,1,1,0.5,1,0.5, 1,4),
C2: (X(0),L(0),E(0), Y(0),1(0), V(0), P(0), Z(0), M(0)) = (7,1,1.5,1.5,0.7,1.5,0.8,2,6),
C3:(X(0),L(0),E(0), Y(0),1(0), V(0), P(0), Z(0), M(0)) = (6,1.5,2,2,1,2,1.4,3,8).

Selecting the values of By, Bp, 0z and o), leads to the following situations:

Situation 1 (Stability of =): 8y = 0.001, 8p = 0.001, 0z = 0.01 and o, = 0.02. For these values
of parameters, we have R; = 0.0455 < 1 and R, = 0.1 < 1. Figure 2 shows that the trajectories
tend to the equilibrium &, = (10,0,0,0,0,0,0,0,0) for all initials C1-C3. This demonstrates that, =
is G.A.S based on Theorem 1. In this situation, both SARS-CoV-2 and IAV will be removed.

Situation 2 (Stability of =,): By = 0.05, Bp = 0.001, 0z = 0.002 and o), = 0.02. With such
selection we obtain R; = 2.2727 > 1, R; = 0.0874 < 1 and hence R,/R; = 0.044 < 1. The
equilibrium point Z; exists with 2, = (4.4,2.8,0,1.27,0,1.27,0,0,0). It is clear from Figure 3 that,
the trajectories tend to =; for all initials C1-C3. Thus, the numerical results agree with Theorem 2.
This case simulates a SARS-CoV-2 single-infection without antibody immunity.

Situation 3 (Stability of =,): By = 0.005, 8p = 0.03, 0z = 0.01 and o), = 0.001. This gives
R, =3 >1, R, =0.12 < 1 and then R,;/R, = 0.0758 < 1. The numerical results show that,
2, = (3.33,0,2.78,0,0.83,0,3.33,0,0) exists. We can observe from Figure 4 that, the trajectories
converge to =, regardless of the initial states. This result supports the result of Theorem 3. This
situation represents an IAV single-infection without antibody immunity.

Situation 4 (Stability of =;): 8y = 0.09, 8p = 0.002, 0z = 0.05 and o, = 0.05. This yields
R = 1461 > 1 and Rs = 0.0714 < 1. Figure 5 shows that the trajectories tend to
23 =(3.57,3.21,0,1.46,0, 1,0, 1.84, 0) regardless of the initial states. Therefore, =5 is G.A.S and this
supports Theorem 4. Hence, a SARS-CoV-2 single-infection with stimulated SARS-CoV-2-specific
antibody is attained.

Situation 5 (Stability of =,): By = 0.01, B8p = 0.1, 0 = 0.01 and o), = 0.02. The values
of R4 and R are computed as Ry, = 2 > 1 and R = 0.0909 < 1. Thus, E4 exists with 2, =
(2,0,3.33,0,1,0,2,0,2.5). In Figure 6 we see that the trajectories tend to Z4 regardless of the initial
states. It follows that 54 is G.A.S according to Theorem 5. Hence, an IAV single-infection with
activated IAV-specific antibody is achieved.

Situation 6 (Stability of =5): By = 0.09, 8p = 0.02, 0z = 0.095 and o), = 0.009. Then, we
calculate Rs = 1.027 > 1, Rg = 0.5369 < 1 and R;/R, = 2.0455 > 1 The numerical results drawn
in Figure 7 show that =5 = (5,2.37,0.11, 1.08,0.03,0.53,0.13,4.18, 0) exists and it is G.A.S and this
is consistent with Theorem 6. As a result, a coinfection with SARS-CoV-2 and IAV is attained where
only SARS-CoV-2-specific antibody is stimulated.

Situation 7 (Stability of Z¢): Sy = 0.09, 8p = 0.09, 0z = 0.03 and o), = 0.03. We compute
Re = 1.2032 > 1, R; = 0.6392 < 1 and R,/R; = 2.2 > 1. We find that, the equilibrium Z¢ =
(2.44,0.84,2.44,0.38,0.73,0.38, 1.33, 0, 3) exists. Further, the numerical solutions outlined in Figure
8 show that, Z¢ is G.A.S and this boosts the result of Theorem 7. In this situation, a coinfection with
SARS-CoV-2 and IAV are attained where only IAV-specific antibody is activated.

Situation 8 (Stability of =;): By = 0.09, Bp = 0.09, 0z = 0.5 and o, = 0.5. This selection yields
R, = 30898 > 1 and Ry = 67976 > 1. Figure 9 shows that
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=7 = (7.55,0.68,0.45,0.31,0.14,0.1, 0.08, 8.36, 14.49) exists and it is G.A.S based on Theorem 8. In
this situation, a coinfection with SARS-CoV-2 and TAV is established regardless of the initial states.
In this case, both SARS-CoV-2-specific antibodies and IAV-specific antibodies are working against
the coinfection.

For more confirmation, we investigate the local stability of the system’s equilibria. Calculating the
Jacobian matrix J = J(X, L, E, Y, 1, V, P,Z, M) of system (2.1) as:

JI1. 0 0 0 0 -BVX —BPX 0 0
BVV Jn O 0 0 B_VX 0 0 0
BPP O Jy O 0 0 BPX 0 0
0 oL 0 —yY O 0 0 0 0
J= 0 0 0oFE 0 —ylI 0 0 0 0 ,
0 0 0 «V 0 Je6 0 - VV 0
0 0 0 0 k_P 0 J77 0 —x_PP
0 0 0 0 0 o7 0 Jssg 0
0 0 0 0 0 0 oMM 0 Joo
where Jiy = —(@+BvV +BpP), Jn=-ML+6L), J53=—e+6p), Jos=— (v +uvZ), Jp7 =

—(mp+upM), Jgg =07V =z, Joo=0uP — py.

At each equilibrium, we compute the eigenvalues 4;, j = 1,2,...,9 of . If Re(1;) < 0,i=1,2,...,9,
then the equilibrium point is locally stable. We select the parameters By, 8p, 0z and o, as given in
situations 1-8, then we compute all nonnegative equilibria and the accompanying eigenvalues. Table 3
outlined the nonnegative equilibria, the real parts of the eigenvalues and whether or not the equilibrium
point is stable.
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Table 3. Local stability of nonnegative equilibria =;, i = 0, 1, ..., 9.

Situation The equilibria Re(4)), j=1,2,...,9 Stability
1 Zp = (10,0,0,0,0,0,0,0,0) (=0.18,-0.18,-0.18,-0.15,-0.08, -0.07, -0.05, -0.05, -0.04) stable
) Zp = (10,0,0,0,0,0,0,0,0) (-0.22,-0.22,-0.18,-0.18,-0.07, -0.05, —0.05, —0.04, 0.04) unstable
21 =(4.4,2.8,01.27,0,1.27,0,0,0) (-0.22,-0.22,-0.17,-0.17,-0.08, —-0.04, -0.04, -0.05, -0.04) stable
3 Zp = (10,0,0,0,0,0,0,0,0) (=0.24,-0.24,-0.18,-0.18,0.06, -0.05, —0.05, -0.05, —0.04) unstable
=5 =(3.33,0,2.78,0,0.83,0,3.33,0,0) (-0.24,-0.24,-0.17,-0.17,-0.07, -0.05, —0.05, -0.05, —0.04) stable
29 = (10,0,0,0,0,0,0,0,0) (-0.24,-0.24,-0.18,-0.18,0.08, -0.05, —0.05, —0.05, —0.04) unstable
4 Z1 =(2.44,3.78,0,1.27,0,1.27,0,0,0) (-0.25,-0.25,-0.17,-0.17,-0.08, -0.06, —0.06, —0.04, 0.04) unstable
=23 =(3.57,3.21,0,1.46,0,1,0, 1.84,0) (-0.27,-0.27,-0.17,-0.17,-0.07, -0.04, —-0.04, -0.04, -0.03) stable
Zp =(10,0,0,0,0,0,0,0,0) (-0.29,-0.29,-0.19,-0.19,0.15,-0.05, -0.05, -0.04, -0.03) unstable
5 23 =(1,0,3.75,0,1.13,0,4.5,0,0) (-0.47,-0.29,-0.18,-0.15,-0.08, -0.08, —0.08, —0.05, 0.05) unstable
24 =(2,0,3.33,0,1,0,2,0,2.5) (=0.31,-0.31,-0.17,-0.17,-0.06, —-0.06, —-0.07, -0.05, —0.03) stable
Zp = (10,0,0,0,0,0,0,0,0) (=0.24,-0.24,-0.23,-0.23,0.08, -0.05, —0.05, —0.04, 0.03) unstable
21 =1(2.44,3.78,0,1.72,0,1.72,0,0,0) (-0.25,-0.25,-0.2,-0.2,0.11, -0.06, —0.06, —0.04, —0.03) unstable
6 2 =(5,0,2.08,0,0.63,0,2.5,0,0) (-0.22,-0.22,-0.22,-0.22, -0.05, —-0.04, —-0.04,0.04, -0.02) unstable
23 =(5.14,2.43,0,1.11,0,0.53,0,4.4,0) (-0.32,-0.32,-0.21,-0.21, -0.02, -0.02, -0.04, -0.04, 0.001) unstable
Z5 =(5,2.37,0.11,1.08,0.03,0.53,0.13,4.18,0) (=0.31,-0.31,-0.21,-0.21, -0.02, -0.02, -0.04, —0.03, —0.001) stable
Zp = (10,0,0,0,0,0,0,0,0) (=0.28,-0.28,-0.24, -0.24,0.14,0.07, -0.05, -0.05, -0.04) unstable
Z1 =(2.44,3.78,0,1.72,0,1.72,0,0,0) (=0.25,-0.25,-0.23, -0.23, -0.06, —0.06, —0.04, 0.04, 0.002) unstable
- 2 =(1.11,0,3.71,0,1.11,0,4.44,0,0) (-0.4,-0.31,-0.19,-0.19,0.09, -0.08, —0.08, —0.05, —0.03) unstable
=23 =(2.5,3.75,0,1.7,0,1.67,0,0.09, 0) (=0.25,-0.25,-0.23,-0.23, -0.06, —-0.06, 0.04, —=0.04, —0.001) unstable
24 =(2.94,0,2.94,0,0.88,0,1.33,0,4.12) (=0.32,-0.32,-0.21,-0.21, -0.04, -0.04, —0.05, —0.04, 0.008) unstable
6 = (2.44,0.84,2.44,0.38,0.73,0.38,1.33,0, 3) (-0.3,-0.3,-0.21,-0.21, -0.05, -0.05, -0.04, -0.02, —0.02) stable
Zp = (10,0,0,0,0,0,0,0,0) (-0.28,-0.28,-0.24, -0.24,0.14, 0.08, -0.05, -0.05, -0.04) unstable
=) =(2.44,3.78,0,1.72,0,1.72,0,0,0) (0.81,-0.25,-0.25,-0.23, -0.23, -0.06, —0.06, —0.04, 0.04) unstable
2, =(1.11,0,3.7,0,1.11,0,4.44,0,0) (2.18,-0.4,-0.31,-0.19,-0.19, -0.08, —-0.08, —0.05, —0.03) unstable
3 =3 =(8.47,0.76,0,0.35,0,0.1,0,9.87,0) (=0.63,-0.27,-0.27,-0.26,0.13, -0.05, -0.01, -0.01, -0.04) unstable
Z4 =(8.74,0,0.52,0,0.16,0,0.08,0, 17.17) (-0.67,-0.41,-0.24,-0.24,0.07,-0.01, -0.01, -0.05, -0.05) unstable
Zg =(2.44,9.27,0.15,1.64,0.04, 1.64,0.08, 0, 3) (0.77,-0.27,-0.27, -0.25, -0.25, —0.06, —0.06, —0.006, —0.006) unstable
27 =(7.55,0.68,0.45,0.31,0.14,0.1,0.08, 8.36, 14.49) (-0.54,-0.49,-0.49,-0.27,-0.02, -0.02, —-0.05, -0.01, -0.01) stable
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Figure 2. Solutions of system (2.1) when R; < 1 and R, < 1.
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7.2. Comparison results

In this subsection, we present a comparison between the single-infection and coinfection.

7.2.1. Influence of IAV infection on the dynamics of SARS-CoV-2 single-infection

Here, we compare the solutions of model (2.1) and the following SARS-CoV-2 single-infection
model:

X =2A-aX-pByXV,
L :ﬂ\/XV - (I]L + 6L) L,
Y =6,.L—vyY, (7.1)

V= KvY—ﬂ'Vv—%\/VZ,
Z = O'sz —/.lzz.

We fix parameters By = 0.09, 5p = 0.05, 0z = 0.5, and o, = 0.9 and select the initial state as:
C4 . (X(0),L(0),E(0),Y(0),1(0), V(0), P(0),Z(0), M(0)) =(7.5,0.3,5,0.5,0.4,0.05,0.04,9,9.5)..

From Figure 10 we observe that when the SARS-CoV-2 single-infected individual is coinfected with
IAV, then the concentrations of uninfected epithelial cells, latent SARS-CoV-2-infected cells, active
SARS-CoV-2-infected cells and SARS-CoV-2-specific antibodies are reduced. — However, the
concentration of free SARS-CoV-2 particles tends to be the same value in both SARS-CoV-2
single-infection and IAV/SARS-CoV-2 coinfection. This result agrees with the observation of Ding et
al. [11] which said that “IAV/SARS-CoV-2 coinfection did not result in worse clinical outcomes in
comparison with SARS-CoV-2 single-infection”.

7.2.2. Influence of SARS-CoV-2 infection on the dynamics IAV single-infection

To examine the impact of SARS-CoV-2 infection on AV single-infection, we compare the solutions
of model (2.1) and the following IAV single-infection model:

X =1-aX-pBpXP,
E =BpXV — (g + 6p) E,
I =6E -y, (7.2)

P:KPI—T[[JP—%IJPM,

M = oy PM — uyM.

We fix parameters By = 0.09, Bp = 0.08, 0z = 0.07 and o, = 0.05 and consider the following initial
condition:

C5: (X(0),L(0),E(0),Y(0),1(0), V(0), P(0), Z(0), M(0)) = (4,1,5,0.6,0.5,0.2,0.05, 3, 8) .

It can be observed from Figure 11 that, when the IAV single-infected individual is coinfected with
SARS-CoV-2 then the concentrations of uninfected epithelial cells, latent IAV-infected cells, active
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IAV-infected cells and IAV-specific antibodies are decreased. However, the concentration of free IAV
particles tend to the same value in both AV single-infection and IAV/SARS-CoV-2 coinfection.

T T T
—— IAV/SARS-CoV-2 coinfection
<<<<<<< SARS-CoV-2 single infection

T T T
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SARS-CoV-2 single infection | |
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Figure 10. Comparison between the solutions of SARS-CoV-2-single infection model and
TAV/SARS-CoV-2 coinfection model.
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8. Discussion

IAV and SARS-CoV-2 coinfection cases were reported in some works (see [5, 9, 11, 12]).
Therefore, it is important to understand the within-host dynamics of this coinfection. In this paper, we
develop and examine a within-host TAV/SARS-CoV-2 coinfection model. The model considered the
interactions between uninfected epithelial cells, latent SARS-CoV-2-infected cells, latent
TAV-infected cells, active SARS-CoV-2-infected cells, active IAV-infected cells, free SARS-CoV-2
particles, free IAV particles, SARS-CoV-2-specific antibodies and IAV-specific antibodies. We
examined the nonnegativity and boundedness of the solutions. We found that the system has eight
equilibria and we proved the following:

(I) The infection-free equilibrium Z, always exists. It is G.A.S when R; < 1 and R, < 1. In this
case, the patient is recovered from both IAV and SARS-CoV-2.

(I1) The SARS-CoV-2 single-infection equilibrium without antibody immunity =; exists if R; > 1.
It is G.A.S when R > 1, R,/R; < 1 and R; < 1. This case leads to the situation of the patient
only infected by SARS-CoV-2 with an inactive immune response. As we will see below that if both
SARS-CoV-2-specific antibody and IAV-specific antibody immunities are not activated against the two
viruses, then according to the competition between the two viruses, SARS-CoV-2 may be able to block
the TAV.

(IIT)- The TAV single-infection equilibrium without antibody immunity Z, exists if R, > 1. It
is G.A.S when R, > 1, R;/R, < 1 and R, < 1. This case leads to the situation of the patient
only infected by IAV with an unstimulated immune response. Then, IAV may be able to block the
SARS-CoV-2.

(IV) The SARS-CoV-2 single-infection equilibrium with stimulated SARS-CoV-2-specific antibody
immunity =3 exists if R3 > 1. Itis G.A.S when R3 > 1 and Rs < 1. This point represents the situation
of SARS-CoV-2 single-infection patient with active SARS-CoV-2-specific antibody immunity.

(V) The AV single-infection equilibrium with stimulated IAV-specific antibody immunity 2, exists
if Ry > 1. Itis G.A.S when R4 > 1 and R < 1. This point represents the case of IAV single-infection
patient with active [AV-specific antibody immunity.

(VD) The TAV/SARS-CoV-2 coinfection equilibrium with only stimulated SARS-CoV-2-specific
antibody immunity Zs exists if Rs > 1 and R;/R, > 1. Itis G.A.S when Rs > 1, Rg < 1 and
Ri/R, > 1. Here, the IAV/SARS-CoV-2 coinfection occurs with only stimulated SARS-CoV-2-
specific antibody immunity.

(VII) The IAV/SARS-CoV-2 coinfection equilibrium with only stimulated IAV-specific antibody
immunity Z¢ exists if Rg > 1 and R,/R; > 1. Itis G.A.S when R¢ > 1, R, < 1 and R,/ R > 1.
It means that the IAV/SARS-CoV-2 coinfection occurs with only stimulated [AV-specific antibody
immunity.

(VIII) The IAV/SARS-CoV-2 coinfection equilibrium with stimulated both SARS-CoV-2-specific
antibodies and TAV-specific antibody immunities Z; exists and it is G.A.S if R; > 1 and Rg > 1. It
means that, the IAV/SARS-CoV-2 coinfection occurs with both SARS-CoV-2-specific antibodies and
[AV-specific antibody immunities are activated.

The global stability of equilibria was established using the Lyapunov method. We performed
numerical simulations and demonstrated that they are in good agreement with the theoretical results.
We discussed the influence of AV infection on SARS-CoV-2 single-infection dynamics and vice
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versa. We found that the concentration of free IAV or SARS-CoV-2 particles cells tends to be the
same value in both single-infection and coinfection. This agrees with the work of Ding et al. [11]
which reported that IAV/SARS-CoV-2 coinfection did not result in worse clinical outcomes. In
addition, the spread of seasonal influenza can increase the likelihood of coinfection in patients with
COVID-19 [9].

The model developed in this work can be improved by (i) utilizing real data to find a good
estimation of the parameters’ values, (ii) studying the effect of time delays that occur during infection
or production of IAV and SARS-CoV-2 particles, (iii) considering viral mutations [64, 65], (iv)
considering the effect of treatments on the progression of both viruses, and (v) including the influence
of CTLs in killing SARS-CoV-2-infected and IAV-infected cells. @~ Memory is an important
characteristic of viral infections and immune response. It will be important to address the effect of
memory on the dynamics of IAV/SARS-CoV-2 coinfection by formulation of the model via fractional
differential equations [66—68].

The innate immune response is one of the major antiviral responses to explain host-pathogen
interaction. Also, it is a trigger to induce adaptive immunity which is the major focus of our proposed
model. Model (2.1) can be extended to include the effect of IFN response as:

X =1-aX-ByXV - BoXP,

L=ByXV-nL oL
Ead I 1+ GLF’
. OrE
E = BpXP —ngE — ,
Bp NEe 1+ e F
. orL
Y = - yrY,
1+¢F vy
, OgE
I= £ =i,
1+ EEF
LI V- VZ
= —nmyV —x ,
1+ eyF v v
. Kp]
P= —npP — xpPM,
1+ EpF e *r

Z=0,VZ - u,Z,
M = oy PM — uyM,
F=wp(Y(t-71)+1(t—-1) — upF.

where €, €g, €y and €p are the efficiencies of the IFN effects. These research points need further
investigations so we leave them to future works.
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