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Abstract: Cancer is a disease that causes abnormal cell formation and spreads throughout the body,
causing harm to other organs. Breast cancer is the most common kind among many of cancers world-
wide. Breast cancer affects women due to hormonal changes or genetic mutations in DNA. Breast
cancer is one of the primary causes of cancer worldwide and the second biggest cause of cancer-related
deaths in women. Metastasis development is primarily linked to mortality. Therefore, it is crucial for
public health that the mechanisms involved in metastasis formation are identified. Pollution and the
chemical environment are among the risk factors that are being indicated as impacting the signaling
pathways involved in the construction and growth of metastatic tumor cells. Due to the high risk of
mortality of breast cancer, breast cancer is potentially fatal, more research is required to tackle the
deadliest disease. We considered different drug structures as chemical graphs in this research and com-
puted the partition dimension. This can help to understand the chemical structure of various cancer
drugs and develop formulation more efficiently.

Keywords: resolvability parameters; breast cancer structures; resolving set; locating set; locating
number; partition resolving set

1. Introduction

Trillions of cells make up the human body. Cell division occurs naturally in all living things. Cancer
develops when uncontrollable cell division occurs and spreads to neighboring tissues, forming tumors.
Cancer can occur in any region of the body. Patient recovery rates have significantly improved in
recent years. Cancer develops as a result of hormonal or genetic alterations in the DNA. Cancer affects
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people of all ages, from babies to the elderly, although it most commonly affects adults. A biopsy is
essential to confirm the diagnosis if another growth, lump, or tumor appears in the body. Tumors may
be cancerous or benign. Benign non-cancerous tumors do not spread to neighboring tissues. Certain
benign tumors, on the other hand, can be lethal if they form in the brain.

The chance of acquiring cancer can be reduced by various variables, including keeping a healthy
lifestyle, avoiding cancer-causing foods, and receiving cancer-prevention vaccinations. Tobacco use,
carcinogen exposure, and cooking with Teflon-coated utensils are all carcinogens with the potential to
produce the worst illness [1–3].

Cancer affects all humans, regardless of gender. Women are disproportionately impacted by breast
and cervical cancer. According to 2020, million women worldwide were affected by breast cancer,
with 685,000 losing their struggle against the worst illness. It is most commonly seen in the lining of
milk ducts and the lobules that provide milk to these ducts. There are more than 18 types of breast
cancer. Mammograms are used to detect breast cancer at an early stage. Clinical trials, immunological
therapy, hormone therapy, targeted therapy, surgery, chemotherapy, and radiation therapy are all part
of the treatment [4, 5].

Assume G(V(G), E(G)) is an undirected graph of a chemical structure (network), with V(G) rep-
resenting the set of primary nodes (vertex set) and E(G) representing the set of branches (edge set).
The distance between two primary nodes v1, v2 ∈ V(G), abbreviated as d(v1, v2), is the least number
of edges between the v1, v2 route. Assume R ⊂ V(G) is the subset of principal nodes defined by
R = {v1, v2, . . . , vs}, and consider a principal node v ∈ V(G). A primary node’s identification or position
r(v|R) with regard to R is really a distance (d(v, v1), d(v, v2), . . . , d(v, vs)). If each primary node in V(G)
has a unique identity according to the ordered subset R, then this subset is termed a network resolving
set. The metric of dimension is the minimal number of elements in the subset R, which is indicated
by the word dim (G). Metric dimension is used in various applications, including combinatorial opti-
mization, robot roving [6], complicated games, image processing, pharmaceutical chemistry, polymer
production [7], and the electric field. These applications may all be found in [8–16].

The Authors examined windmill graphs in terms of metric generalization in their research work
[17,18]. The authors explored the extended version of the measured dimension graph and characterized
this parameter as a function of two variables. Researchers derived metrics and upper limits on various
generalized families of graphs in [19]. Polycyclic hydrocarbons are discussed in depth in this [20],
along with the notion of metric and its extensions. In [21], symmetric graphs are created using the
rooted product, and metrics and their extensions are investigated. Researchers present the concept of
the hollow coronoid on the metric dimension and its generalization [22]. The authors investigated and
measured the resolvability of quartz structure and precisely calculated metric parameters for quartz
structure without considering the pendant nodes beyond the circle.

The research of [23] provides information on rough graphs on the themes of metric dimensions
and their generalized parameters. The authors of [24] studied hereditary bipartite networks and how
to compute the metric basis of this extended class of complex networks. The concept of pseudo-
valuation on KU-algebras was examined in the research work given in [25], as well as the link between
pseudo-valuations and KU-algebras and their generalizations. More current publications on chemical
networks [26–30], and the metric parameters of various chemical structures and networks may be found
in [31–36]. In [37, 38], authors discussed some modeling and algorithms for that modeling regarding
some disease and their cures.
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Definition 1.1. Let Rp ⊆ V(G) is the s-elements proper set and r(v|Rp) =

d(v|Rp1), d(v|Rp2), . . . , d(v|Rps), is the s-tuple distance identification of a principal node v in as-
sociation with Rp. If the entire set of principal nodes have unique identifications, then Rp is named as
the partition resolving set of the principal node of a network G. The least possible count of the subsets
in that set of V(G) is labeled as the partition dimension pd of G.

Figure 1. Flowchart for comouting the partition dimension of a chemical structure.

Further, the methodology is presented in Figure 1. Partition dimension is another type of dimension
like metric dimension on the basics of vertices. Computing the metric dimension of different chemical
structures is an NP-hard problem and adding the partition dimension is too. Because partition dimen-
sion has a more complicated structure than metric dimension, fewer precise partitions are accessible,
and boundaries are frequently offered. Bounds for the partition of the generalized class of convex poly-
topes were reported in [39,40]. Presents a chemical fullerene graph, [41] details constraints on another
chemical structure, [42] presents several nanotubes and sheets in the form of partition sets, and [43]
provides the two-dimensional lattice structure.

Resolvability concepts are used in various applications, including combinatorial optimization, robot
roving, complicated games, image processing, pharmaceutical chemistry, polymer production, and the
electric field. These applications may all be found in [6, 7, 14–16].

2. Main results

We will include our findings of partition locating sets of various cancer drugs structures, such as
Daunorubicin, Degualin, Minocyline, Podophylb toxin, Pterocevin, and Raloxifene.

Mathematical Biosciences and Engineering Volume 20, Issue 2, 3838–3853.
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Podophylb toxin structure’s order and size are
∣∣∣V (GPodophylb toxin

)∣∣∣ = 30,∣∣∣E (GPodophylb toxin
)∣∣∣ = 33, respectively. The node and bond set of the Podophylb toxin

drug structure is shown below. Furthermore, Figure 3 depicts the molecular graph of Podophylb toxinl
and labeling employed in our findings.

V
(
GPodophylb toxin

)
={vi : i = 1, 2, . . . , 30},

E
(
GPodophylb toxin

)
={vivi+1 : i = 1, 2, . . . , 15, 19, 20, . . . , 23} ∪ {v4v18, v1v16,

v19v24, v21v30, v29v30, v22v28, v27v28, v23v26, v25v26, v3v15, v5v13, v7v11}.

Figure 2. Chemical structure of Podophylb toxin drug.
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Figure 3. Graph of Podophylb toxin drug structure shown in the Figure 2.
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Theorem 2.1. Let G be a graph of Podophylb toxin drug structure. Then the partition dimension of G
is 3.

Proof. The graph’s partition dimension of Podophylb toxin drug structure is 2. To demonstrate this
point, we picked a partition locating set of cardinality 3 and stated as R (G) = {R1,R2,R3}, where
R1 = {v1}, R2 = {v25} and R3 = V(G)\{v1, v25}. To demonstrate this statement true, we have included
representations of each node of the Podophylb toxin drug structure except v1 and v25 in Table 1.

Table 1. Representations of the nodes w.r.t. R.

r(vi|R) R1 R2 R3 Range of i
vi i − 1 8 0 i = 1, 4
vi i − 1 11 − i 0 i = 2
vi i − 1 10 − i 0 i = 3
vi i − 1 i + 2 0 i = 5, ..., 8
vi i − 1 19 − i 0 i = 9
vi 17 − i 19 − i 0 i = 10, ..., 14
vi 17 − i i − 9 0 i = 15, 16
vi 19 − i i − 9 0 i = 17
vi i − 15 i − 15 0 i = 19, 20
vi i − 15 25 − i 0 i = 21, 22
vi 29 − i i − 21 0 i = 23, 24
vi 33 − i 27 − i 0 i = 26
vi 35 − i 32 − i 0 i = 27
vi 36 − i 32 − i 0 i = 28
vi 37 − i 35 − i 0 i = 29, 30

Each node of graph of the Podophylb toxin medication structure’s given positions is unique and
meets the specifications of the partition locating set. This demonstrated that the partition locating
number is correct.

Hence, proved that pd
(
GPodophylb toxin

)
≤ 3. To verify this statement, we must demonstrate that

pd
(
GPodophylb toxin

)
≥ 3, and then by contradiction, we will have pd

(
GPodophylb toxin

)
= 2.This is not

correct because this assertion is only applicable to path graphs.
Hence, proved that pd

(
GPodophylb toxin

)
= 3.

Pterocellin structure’s order and size are |V (GPterocellin)| = 24, |E (GPterocellin )| = 27, respectively. The
node and bond set of the Pterocellin drug structure are shown below. Furthermore, Figure 5 depicts the
molecular graph of Pterocellin and labeling employed in our findings.

V (GPterocellin) ={vi : i = 1, 2, . . . , 24},
E (GPterocellin) ={vivi+1 : i = 1, 2, . . . , 14, 18, 19 . . . , 23} ∪ {v1v13, v1v16,

v3v11, v5v10, v9v18, v19v24, , v4v17}.
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Figure 4. Chemical structure of Pterocellin toxin drug.
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Figure 5. Graph of Pterocellin toxin drug structure shown in the Figure 4.

Theorem 2.2. Let G be a graph of Pterocellin drug structure. Then the partition locating number of
G is 3.

Proof. The graph’s partition dimension of Pterocellin drug structure is 3. To demonstrate this point,
we picked a partition set of cardinality 3 and stated as R (G) = {R1,R2,R3}, where R1 = {v2}, R2 = {v20}

and R3 = V(G)\{v2, v20}. To demonstrate this statement true, we have included representations of each
node of the Pterocellin drug structure except v2 and v20 in Table 2.
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Table 2. Representations of the vertices with respect to R.

r(vi|R) R1 R2 R3 Range of i
vi i i + 5 0 i = 1
vi i − 2 i + 5 0 i = 2, 3
vi i − 2 10 − i 0 i = 4, 5
vi i − 2 12 − i 0 i = 6, 7
vi 13 − i 12 − i 0 i = 8
vi 13 − i i − 6 0 i = 9, 10, 11
vi i − 11 i − 6 0 i = 12, ..., 15
vi i − 14 25 − i 0 i = 16
vi i − 14 24 − i 0 i = 17
vi i − 13 |20 − i| 0 i = 18, ..., 22
vi 31 − i 26 − i 0 i = 23, 24

Each node of graph of the Pterocellin medication structure’s given positions is unique and meets
the specifications of the partition locating set. This demonstrated that the partition locating number is
correct.

Hence, proved that pd (GPterocellin) ≤ 3. To verify this statement, we must demonstrate that
pd (GPterocellin) ≥ 2, and then by contradiction, we will have pd (GPterocellin) = 2. This is not correct
because this assertion is only applicable to path graphs.

Hence, proved that pd (GPterocellin) = 3.
Daunorubicin structure’s order and size are |V (GDaunorubicin)| = 38, |E (GDaunorubicin )| = 42, respec-

tively. The node and bond set of the Daunorubicin drug structure are shown below. Furthermore,
Figure 7 depicts the molecular graph of Daunorubicin and labeling employed in our findings.

V (GDaunorubicin) ={vi : i = 1, 2, . . . , 38},
E (GDaunorubicin) ={vivi+1 : i = 1, 2, . . . , 17, 29, 30 . . . , 34} ∪ {v1v18, v3v16,

v5v14, v7v12, v13v28, v15v27, v17v26, v25v26, v11v29, v32v36,

v33v37, v34v38, v30v35, v9v23, v22v23, v21v23, v4v19, v6v20, v9v24}.

Figure 6. Chemical structure of daunorubicin drug.
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Figure 7. Graph of daunorubicin drug structure shown in the Figure 6.

Theorem 2.3. Let G be a graph of Daunorubicin drug structure. Then the partition locating number
of G is less than equal to 4.

Proof. The graph’s partition dimension or locating number of Daunorubicin drug structure is 4. To
demonstrate this point, we picked a partition set of cardinality 4 and stated as R (G) = {R1,R2,R3,R4},

where R1 = {v1}, R2 = {v21}, R3 = {v36} and R4 = V(G)\{v1, v21, v36}.To demonstrate this statement true,
we have included representations of each node of the Daunorubicin drug structure except v1, v21 and ,
v36 in Table 3.

Table 3. Representations of the nodes with respect to R.

r(vi|χ) R1 R2 R3 R4 Range of i
vi i − 1 i − 2 16 − i 0 i = 2, .., 10
vi 19 − i 20 − i i − 6 0 i = 11, ..., 18
vi 23 − i 22 − i 32 − i 0 i = 19
vi 26 − i 25 − i 31 − i 0 i = 20
vi 31 − i 31 − i 30 − i 0 i = 21
vi 32 − i 32 − i 31 − i 0 i = 22
vi 29 − i 30 − i 38 − i 0 i = 25, 26
vi 32 − i 33 − i 37 − i 0 i = 27
vi 35 − i 36 − i 36 − i 0 i = 28
vi i − 20 i − 19 33 − i 0 i = 29, ..., 32
vi i − 22 47 − i i − 31 0 i = 33, ..., 35
vi 51 − i 52 − i 41 − i 0 i = 37
vi 51 − i 52 − i 43 − i 0 i = 38

Each node of graph of the Daunorubicin medication structure’s given positions is unique and meets

Mathematical Biosciences and Engineering Volume 20, Issue 2, 3838–3853.
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the specifications of the partition locating set. This demonstrated that the partition locating number
was correct.

Hence, proved that pd (GDaunorubicin) ≤ 4.

Deguolin structure’s order and size are
∣∣∣∣V (GDeguolin

)∣∣∣∣ = 38,
∣∣∣∣E (GDeguolin

)∣∣∣∣ = 35, respectively. The
node and bond set of the Deguolin drug structure are shown below. Furthermore, Figure 8 depicts the
molecular graph of Deguolin and labeling employed in our findings.

V
(
GDeguolin

)
={vi : i = 1, 2, . . . , 38},

E
(
GDeguolin

)
={vivi+1 : i = 1, 2, . . . , 21} ∪ {v1v22, v3v20,

v6v19, v8v17, v14v9, v12v28, v12v29, v18v30,

v19v31, v22v26, v25v26, v1v24, v23v24, v6v27}.
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Figure 8. Deguolin drug structure.

Theorem 2.4. Let G be a graph of Deguolin drug structure. Then the partition locating number of G
is less than equal to 4.

Proof. The graph’s partition dimension or locating number of Deguolin drug structure is 4. To demon-
strate this point, we picked a partition locating set of cardinality 4 and stated as

R (G) = {R1,R2,R3,R4}, where R1 = {v2}, R2 = {v15}, R3 = {v28} and R4 = V(G)\{v2, v15, v28}.To
demonstrate this statement true, we have included representations of each node of the Deguolin drug
structure except v2, v15 and v28 in Table 4.
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Table 4. Representations of the vertices with respect to R.

r(vi|R) R1 R2 R3 R4 Range of i
vi i − 2 11 − i 13 − i 0 i = 4, .., 8
vi i − 2 i − 7 13 − i 0 i = 9, 10
vi i − 2 15 − i 13 − i 0 i = 11
vi 22 − i 15 − i 13 − i 0 i = 12
vi 22 − i i − 15 i − 11 0 i = 16, ..., 20
vi 24 − i i − 15 i − 11 0 i = 21, 22
vi 26 − i 33 − i 36 − i 0 i = 23, 24
vi 29 − i 34 − i 38 − i 0 i = 25, 26
vi 32 − i 33 − i 35 − i 0 i = 27
vi 39 − i 28 − i 31 − i 0 i = 29
vi 35 − i 34 − i 38 − i 0 i = 30

Each node of graph of the Deguolin medication structure’s given positions is unique and meets the
specifications of the partition locating set. This demonstrated that the partition locating number was
correct.

Hence, proved that pd
(
GDeguolin

)
≤ 4.

The node and bond set of the Minocyline drug structure are shown below. This Minocyline struc-
ture’s order and size are

∣∣∣∣V (GMinocyline

)∣∣∣∣ = 35,
∣∣∣∣E (GMinocyline

)∣∣∣∣ = 38, respectively. Furthermore, Figure
10 depicts the molecular graph of Minocyline and labeling employed in our findings.

V
(
GMinocyline

)
={vi : i = 1, 2, . . . , 35},

E
(
GMinocyline

)
={vivi+1 : i = 1, 2, . . . , 18} ∪ {v1v18, v3v16, v5v14, v7v12,

v2v23, v3v24, v4v25, v6v26, v8v27, v1v21, v21v22, v20v21, v11v29,

v28v29, v29v30, v14v31, v16v32, v17v34, v33v34, v34v35}.

Figure 9. Chemical structure of Minocyline drug.
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Figure 10. Graph Minocyline drug structure shown in the Figure 9.

Theorem 2.5. Let G be a graph of Minocyline drug structure. Then the partition locating number of
G is less than equal to 4.

Proof. The graph’s partition dimension of Minocyline drug structure less than equal to 4. To demon-
strate this point, we picked a set of cardinality 4 and stated as R (G) = {R1,R2,R3,R4},where R1 = {v20},

R2 = {v28}, R3 = {v33} and R4 = V(G)\{v20, v28, v33}. To demonstrate this statement true, we have in-
cluded representations of each node of the Minocyline drug structure except v20, v28 and v33 in Table 5.

Table 5. Representations of the vertices with respect to R.

r(vi|R) R1 R2 R3 R4 Range of i
vi i + 1 11 − i i + 2 0 i = 1, 2
vi i + 1 11 − i i + 1 0 i = 3, ..., 7
vi i + 1 13 − i i + 1 0 i = 8, 9
vi i + 1 13 − i 19 − i 0 i = 10
vi 21 − i i − 9 19 − i 0 i = 11, ..., 17
vi i − 15 i − 9 i − 27 0 i = 18, 19
vi i − 20 i − 10 i − 16 0 i = 21, 22
vi i − 19 33 − i 29 − i 0 i = 23, 24
vi 31 − i 33 − i 31 − i 0 i = 25
vi 34 − i 31 − i 34 − i 0 i = 26
vi 37 − 1 33 − i 37 − i 0 i = 27
vi i − 18 i − 28 i − 20 0 i = 29, 30
vi 40 − i 37 − i 37 − i 0 i = 31
vi 38 − 1 40 − i 36 − i 0 i = 32
vi 39 − i 43 − i 35 − i 0 i = 34
vi 41 − i 45 − i 37 − i 0 i = 35

Each node of graph of the Minocyline medication structure’s given positions is unique and meets
the specifications of the partition locating set. This demonstrated that the partition locating number is
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correct.
Hence, proved that pd

(
GMinocyline

)
≤ 4.

Raloxifene structure’s order and size are |V (GRaloxifene)| = 34, |E (GRaloxifene )| = 38, respectively.The
node and bond set of the Raloxifene drug structure are shown below. Furthermore, Figure 12 depicts
the molecular graph of Raloxifene and labeling employed in our findings.

V (GRaloxifene) ={vi : i = 1, 2, . . . , 34},
E (GRaloxifene) ={vivi+1 : i = 1, 2, . . . , 14, 18, . . . , 31} ∪ {v1v6, v10v15,

v13v16, v16v17, v16v18, v18v26, v19v24, v22v34, v27v32, v18v26, v30v33}.

Figure 11. Chemical structure of Raloxifene drug.
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Figure 12. Graph of Raloxifene drug structure shown in the Figure 11.
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Theorem 2.6. Let G be a graph of Raloxifene drug structure. Then the partition locating number of G
is less than equal to 4.

Proof. The graph’s partition dimension of Raloxifene drug structure is 4. To demonstrate this point, we
picked a set of cardinality 4 and stated as R (G) = {R1,R2,R3,R4}, where R1 = {v20}, R2 = {v28}, R3 =

{v33} and R4 = V(G)\{v20, v28, v33} .To demonstrate this statement true, we have included representations
of each node of the Raloxifene drug structure except v20, v28 and v33 in Table 6.

Table 6. Representations of the vertices w.r.t. R.

r(vi|R) R1 R2 R3 R4 Range of i
vi i − 1 i + 5 14 − i 0 i = 1, 2
vi i − 1 11 − i 18 − i 0 i = 3, 4
vi i − 4 11 − i 18 − i 0 i = 5
vi i − 5 11 − i 18 − i 0 i = 6, ..., 10
vi i − 5 i − 11 18 − i 0 i = 12, 13
vi 21 − i 17 − i i − 8 0 i = 14, 15
vi i − 7 i − 13 i − 12 0 i = 16, 17
vi i − 8 i − 14 i − 15 0 i = 18, 19, 21, 22
vi 36 − i 30 − i 28 − i 0 i = 23, 24
vi i − 15 i − 21 |28 − i| 0 i = 26, 27, 29, 30
vi 45 − i 39 − i 34 − i 0 i = 31, 32
vi 49 − i 43 − i i − 30 0 i = 34

Each node of graph of the Raloxifene medication structure’s given positions is unique and meets
the specifications of the partition locating set. This demonstrated that the metric locating number is
correct.

Hence, proved that pd (GRaloxifene) ≤ 4.

3. Conclusions

Breast cancer is one of the primary causes of cancer worldwide and the second biggest cause of
cancer-related deaths in women (BC). Metastasis development is primarily linked to mortality. There-
fore, it is crucial for public health that the mechanisms involved in metastasis formation are identified.
Pollution and the chemical environment are among the risk factors that are being indicated as impact-
ing the signaling pathways involved in the formation and growth of metastatic tumor cells. In this
research, we consider various cancer drugs structures, computed the partition dimension, and proved
that the partition dimension of Podophylb toxin and Pterocellin is 3 and the upper bound of the par-
tition dimension of Daunorubicin, Deguolin, Minocycline, and Raloxifene is 4 as shown in our main
findings section. This can help to understand the chemical structure of these various cancer drugs or
formulas more deeply.
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