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Abstract: Although Extreme Learning Machine (ELM) can learn thousands of times faster than 
traditional slow gradient algorithms for training neural networks, ELM fitting accuracy is limited. This 
paper develops Functional Extreme Learning Machine (FELM), which is a novel regression and 
classifier. It takes functional neurons as the basic computing units and uses functional equation-solving 
theory to guide the modeling process of functional extreme learning machines. The functional neuron 
function of FELM is not fixed, and its learning process refers to the process of estimating or adjusting 
the coefficients. It follows the spirit of extreme learning and solves the generalized inverse of the 
hidden layer neuron output matrix through the principle of minimum error, without iterating to obtain 
the optimal hidden layer coefficients. To verify the performance of the proposed FELM, it is compared 
with ELM, OP-ELM, SVM and LSSVM on several synthetic datasets, XOR problem, benchmark 
regression and classification datasets. The experimental results show that although the proposed FELM 
has the same learning speed as ELM, its generalization performance and stability are better than ELM. 

Keywords: functional neurons; functional extreme learning machine; parameter learning algorithm; 
extreme learning machine 
 

1. Introduction 

Artificial Neural Networks (ANNs) simulate the process of human brain information processing 
through a large number of neurons that are interconnected in a certain way and efficient network 
learning algorithms [1]. Over the past few decades, ANNs have been widely used in various fields of 
human needs due to their powerful nonlinear mapping capabilities and parallel computing capabilities [2]. 

So far, many neural network learning algorithms have been proposed and improved. Jian et al. 
summarized well-known learning algorithms among them [3]. Among them, the backpropagation 
algorithm is one of the most mature neural network learning algorithms, and it is also a famous 
representative of all iterative gradient descent algorithms for supervised learning in neural networks. 
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It was first proposed by Paul Werbos in the 1970s [4] and widely used after it was rediscovered by 
Rumelhart and McClelland in 1986 [5]. However, the BP algorithm is not perfect, and there are still 
inevitable defects, such as easy to fall into a local minimum during the training process, and the 
convergence speed is slow. In response to these shortcomings, researchers have proposed many 
methods to improve the backpropagation technique [6]. For example, genetic algorithm is used to 
optimize the connection weights of BP network [7], add white noise to the weighted sum of BP [8], 
add momentum term, regularization operator and Adaboost integration algorithm [9], and dynamically 
change the learning rate according to the change of mean square error [10]. However, these problems 
of the BP algorithm still restrict its development in many application fields, especially since the 
learning speed cannot meet the actual needs. Recently, Huang et al. proposed extreme learning machine 
(ELM), which is a simple and efficient learning algorithm for single hidden layer feedforward neural 
network (SLFN) [11]. The core idea of the ELM algorithm is that the input weights and hidden layer 
biases of the network are randomly selected and kept unchanged during the training process, and then 
the output weights are directly obtained by Moore-Penrose generalized inverse operation. The advantages 
of ELM are: only the number of hidden layer neurons needs to be optimized, with less human 
intervention; it avoids the process of iterative optimization of parameters in traditional SLFN training 
algorithm, which greatly saves training time; the resulting solution is the only optimal solution, which 
guarantees the generalization performance of the network [12]. Therefore, ELM has been widely used 
in many fields such as disease diagnosis [13–15], traffic sign recognition [16,17], and prediction [18,19]. 

In recent years, the significant advantages of ELM have attracted the attention of a large number 
of researchers in academia and industry, and the research on this algorithm and model has achieved 
fruitful results [20,21]. The learning process of the standard ELM algorithm can be considered to be 
based on empirical risk minimization, which tends to produce overfitted models. In addition, since 
ELM does not consider heteroskedasticity in practical applications, its generalization ability and 
robustness will be greatly affected when there are many outliers in the training samples. To effectively 
overcome the above problems, regularization methods are applied to ELM [22–24]. Lu et al. proposed 
a probabilistic RELM method to reduce the influence of noise data and outliers on the model [25]. 
Yıldırım and Revan Özkale combined the advantages of Liu estimator and Lasso regression method to 
deal with the shortcomings of traditional ELM instability and poor generalization [26]. Huang et al. [27] 
introduced the kernel function into ELM and proposed a general framework-KELM that can be used 
for regression, binary classification and multi-classification problems, which effectively improved the 
problem of generalization and stability degradation caused by random parameters. However, kernel 
selection is an important part of KELM, and it may not always be appropriate to choose empirically. 
Liu and Wang [28] proposed a multiple kernel extreme learning machine (MK-ELM) to solve this 
problem. However, MK-ELM cannot effectively handle large-scale datasets, because it needs to 
optimize more parameters, resulting in high computational complexity of the algorithm. To meet the 
needs of online real-time applications, online sequential extreme learning machine algorithms (OS-
ELM) have been proposed [29], and OS-ELM was improved [30–32]. Online sequential class-specific 
extreme learning machine (OSCSELM) supports online learning techniques of both chunk-by-chunk 
and one-by-one learning modes, which is used to solve the class imbalance problem of small and large 
data sets [33]. Lu et al. used the OS-ELM training method of Kalman filter to improve its stability [34]. 
OS-ELM was extended to solve the problem of increasing classes [35]. 

Before the training starts, the user needs to specify the number of hidden layer neurons for ELM. 
However, how to choose the appropriate number of hidden layer neurons for different applications has 
always been a difficult and hot topic in the field of neural network research. At present, the methods 
used by ELM to adjust the hidden layer structure mainly include swarm intelligence optimization [36–40], 
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incremental method [41–45], pruning [46–50] and adaptive [51–53]. With the advent of the era of big 
data, storing and processing large-scale data has become an urgent need for enterprises, and the 
ensemble and parallelism of ELM have therefore become a research hotspot [54–57]. Lam and Wunsch 
learn features through unsupervised feature learning (UFL) algorithm, and then train features through 
fast radial basis function (RBF) extreme learning machine (ELM), which improves the accuracy and 
speed of the algorithm [58]. Yao and Ge proposed distributed parallel extreme learning machine (dp-
ELM) and hierarchical extreme learning machine [59]. Duan et al. proposed an efficient ELM with 
three parallel sub-algorithms based on the Spark framework (SELM) for big data classification. [60]. 
Many researchers have turned their attention to deep ELM and conducted some innovative research 
works [61,62]. Dai et al. proposed multilayer one-class extreme learning machine (OC-ELM) [63]. 
Zhang et al. proposed multi-layer extreme learning machine (ML-ELM) [64]. Yahia et al. proposed a 
new structure based on extreme learning machine auto-encoder with deep learning structure and a 
composite wavelet activation function for hidden nodes [65].  

The inappropriate initial parameters of the hidden layer (input weights, hidden layer biases and 
the number of nodes) in the original ELM will lead to poor classification results of ELM [21], although 
the improved algorithms mentioned above for the original ELM improve its generalization 
performance, they greatly increase the computational complexity. Therefore, we need a network 
learning algorithm with fast learning speed and higher generalization performance. 

In this paper, we propose a new regression and classification model without iterative optimization 
parameters in the spirit of extreme learning, called functional extreme learning machine (FELM). 
FELM aims to use functional neurons (FNs) model as the basic units, and use functional equation-
solving theory to guide the modeling process of functional extreme learning machine [66–69]. Like 
ELM, the FELM parameter matrix is obtained by solving the generalized inverse of the hidden layer 
neuron output matrix. FELM is a generalization of ELM. Its unique network structure and simple and 
efficient learning algorithm make it not only solve the problems that ELM can solve, but also solve 
many problems that ELM cannot solve. However, FELM is also different from ELM. The activation 
function of ELM is fixed, and ELM has weights and biases. The neuron function of FELM is not fixed, 
and there are no weights and biases, only parameters (coefficients), so it avoids the influence of random 
parameters (input weights, hidden layer biases) on the generalization performance and stability of 
ELM model. Its neuron functions are linear combinations of given basic functions, and the basic 
functions are selected according to the problem to be solved without specifying the number. The 
learning essence of FELM is the learning of parameters, and the parameter learning algorithm proposed 
in this paper does not need iterative calculation and has high accuracy. FELM is compared with other 
popular technologies in terms of generalization performance and training time on several artificial 
datasets, benchmark regression and classification datasets. The results show that FELM is not only 
fast, but also has good generalization performance.  

The rest of this paper is organized as follows: Section 2 provides an overview of FN and ELM. 
In Section 3, the topology of functional extreme learning machine, the theory of structural 
simplification, and the parameter learning algorithm are described. Section 4 presents the performance 
comparison results of FELM, classical ELM, OP-ELM, classical SVM and LSSVM on regression and 
classification problems. Section 5 draws conclusions and discusses future research directions. 

2. Preliminaries 

Functional neuron model and extreme learning machine (ELM) will be briefly discussed in the 
following section. 



3771 

Mathematical Biosciences and Engineering  Volume 20, Issue 2, 3768–3792. 

2.1. Functional neuron model 

Functional neuron was proposed by Enrique Castillo [66]. Figure 1(a) is a functional neuron 
model, Figure 1(b) is its expansion model and Figure 1(c) is the expanded model for the green part of 
Figure 1(b). The mathematical expression of the functional neuron is: 

 𝑂 = 𝑓(𝑋) (1) 

where, 𝑋 = {𝑥ଵ, 𝑥ଶ, . . . , 𝑥௠} , 𝑂 = {𝑜ଵ, 𝑜ଶ, . . . , 𝑜௠} , 𝑓(⋅)  is functional neuron function, 𝑋  and 𝑂 
are the input and output of functional neuron function, respectively. Functional neuron function can 
be expressed by a linear combination of basic functions: 

 𝑓(𝑋) = ∑ 𝑎௜௝𝜑௜௝(𝑋)௡௝ୀଵ = 𝑎௜் 𝜑௜(𝑋) (2) 

where, {𝜑௜(𝑋) = (𝜑௜ଵ(𝑋), 𝜑௜ଶ(𝑋), . . . , 𝜑௜௡(𝑋))|𝑖 = 1,2, . . . , 𝑚} is any given basic function family, 
and different function families can be selected according to specific problems and data. 𝜑ଵ(𝑋), . . . , 𝜑௠(𝑋) are pairwise independent basic function families. Commonly used basic functions 
are the trigonometric function family and the Fourier family. {𝑎௜ = (𝑎௜ଵ, 𝑎௜௡, . . . , 𝑎௜௡)்|𝑖 = 1,2, . . . , 𝑚} 
is a learnable set of parameters. 

        

 

Figure 1. (a) Functional neuron model. (b) Expansion model of functional neuron. (c) The 
expansion of the green part in (b). 

2.2. Extreme learning machine (ELM) 

Based on the generalized inverse matrix theory, Huang et al. proposed a new type of single hidden 
layer feedforward neural network algorithm with excellent performance-extreme learning machine 
(ELM) [11]. The extreme learning machine network structure is shown in Figure 2.  
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Given N  different training samples {𝑥௜, 𝑡௜ ∣ 𝑥௜ ∈ 𝑅஽, 𝑡௜ ∈ 𝑅௠, 𝑖 = 1,2, … , 𝑁} , 𝑥௜ =[𝑥௜ଵ, 𝑥௜ଶ, ⋯ , 𝑥௜஽]் as the input vector, 𝑡௜ = [𝑡௜ଵ,𝑡௜ଶ, ⋯ , 𝑡௜௠]் as the corresponding expected output. 𝑔(𝑥) is an activation function, which is a nonlinear piecewise continuous function that satisfies the 
ELM general approximation ability theorem. The commonly used functions are Sigmoid function, 
Gaussian function, etc. So the mathematical model in Figure 2 is expressed as follows: 

 𝐻𝛽 = 𝑇 (3) 

where, 𝐻 = ൦ℎଵ(𝑥ଵ)⋮ ⋯⋱ ℎ௅(𝑥ଵ)⋮
ℎଵ(𝑥ே) ⋯ ℎ௅(𝑥ே)൪

ே×௅
= ൥𝑔(𝜔ଵ ⋅ 𝑥ଵ + 𝑏ଵ)⋮ ⋯⋱ 𝑔(𝜔௅ ⋅ 𝑥ଵ + 𝑏௅)⋮𝑔(𝜔ଵ ⋅ 𝑥ே + 𝑏ଵ) ⋯ 𝑔(𝜔௅ ⋅ 𝑥ே + 𝑏௅)൩ே×௅. 

In ELM, 𝐻 is called a random feature mapping matrix, 𝜔௜ = [𝜔௜ଵ, 𝜔௜ଶ, . . . , 𝜔௜஽] represents the 
input weight that connects the 𝑖th hidden layer neuron and the input layer neuron, 𝑏௜ represents the 
bias of the 𝑖th hidden layer neuron, and 𝛽 = [𝛽ଵ, … , 𝛽௅]் represents the weight matrix between the 
output layer and the hidden layer. Hidden layer node parameters (𝜔௜, 𝑏௜) are randomly generated and 
remain unchanged. 

Calculate the output weight: 

 𝛽 = 𝐻ା𝑇 (4) 

where, 𝐻ା represents the Moore-Penrose generalized inverse of the hidden layer output matrix 𝐻. 

 

Figure 2. Extreme learning machine network model. 

3. Functional extreme learning machine (FELM)  

3.1. Functional extreme learning machine topology  

According to the example of functional extreme learning machine in Figure 3(a), it can be seen 
that a functional extreme learning machine network consists of the following elements: 

1) Several layers of storage units: One layer of input units ({𝑥ଵ, 𝑥ଶ, 𝑥ଷ}), one layer of output storing 
units ({𝑑}). Several intermediate storage units ({𝐺(𝑥ଵ, 𝑥ଶ), 𝑥ଷ}), they are used to store intermediate 
information produced by functional neurons. Storage units are represented by solid circles with 
corresponding names. 
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2) One or more layers of processing units (i.e., functional neurons): Each functional neuron is a 
computing unit, which processes the input values from input units or the previous layer of functional 
neurons, and provides input data to the next layer of neurons or output units. As in Figure 3(a) {𝐺, 𝐼, 𝐹}. 

3) A set of directed links: They connect the input units to the first layer of processing units, one 
layer of processing units to the next layer of processing units, and the last layer of computing units to 
the output units. The arrows indicate the direction in which information flows. Information flows only 
from the input layer to the output layer. 

All these elements together constitute the network architecture of the functional extreme learning 
machine (FELM). The network architecture corresponds to the functional equation one by one. The 
functional equation is the key to the FELM learning process. Therefore, the network structure is 
determined, and the generalization ability of the FELM is also defined. 

 

 

Figure 3. A functional extreme learning machine network structure. (a) The initial 
structure of the functional extreme learning machine. (b) The equivalent simplified network. 

Note the following differences between standard neural networks and FELM networks: 
1) The functional neuron as shown in Figure 1(a) is the basic computing unit of FELM. It is 

different from the M-P neuron (Figure 4), which has no weights {𝑤௞} and biases, only parameters, 
and can have multiple outputs {𝑂ଵ, 𝑂ଶ, . . . , 𝑂ଷ}. 

2) In standard neural networks, the functions are given and the weights must be learned. In FELM 
networks, the functional neuron functions can be linear combinations of any nonlinear correlation basic 
function families 𝑓(𝑥ଵ, 𝑥ଶ, … , 𝑥௞) = ∑ 𝑎௝𝜑௝(𝑥ଵ, 𝑥ଶ, … , 𝑥௞)௡௝ୀଵ . Where, {𝜑௝(𝑥ଵ, 𝑥ଶ, . . . , 𝑥௞)|𝑗 =1,2, . . . , 𝑛} is a given appropriate basic function family, which means that FELM can choose different 
basic function families for functional neurons depending on the specific problem and data. 𝑛 represents 
the number of basic functions. {𝑎௝|𝑗 = 1,2, . . . , 𝑛} is the learnable parameter set. The following are 
some commonly used function families: Polynomial family {1, 𝑥, 𝑥ଶ, . . . , 𝑥௠} , Fourier family {1, 𝑠𝑖𝑛( 𝑥), 𝑐𝑜𝑠( 𝑥), . . . , , 𝑠𝑖𝑛( 𝑚𝑥), 𝑐𝑜𝑠( 𝑚𝑥)} and exponential family {1, 𝑒௫, 𝑒ି௫, . . . , 𝑒௠௫, 𝑒ି௠௫}. 
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Figure 4. M-P neuron model. 

3.2. Structural simplification and unique expression of FELM  

Structural simplification: Each initial network structure corresponds to a functional equation set, 
then the functional equation set solution method is used to simplify the initial structure to obtain an 
equivalent FELM which is optimal. The functional equation corresponding to Figure 3(a) is: 

 𝑑 = 𝐹(𝐺(𝑥ଵ, 𝑥ଶ), 𝑥ଷ) (5) 

Theorem 1 of [66]: The general solution is continuous on a real rectangle of the functional 
equation 𝐹[𝐺(𝑥, 𝑦), 𝑧] = 𝐾[𝑥, 𝑁(𝑦, 𝑧)] and is 𝐺 invertible in two variables. For a fixed value of the 
second variable, 𝐹 is invertible in the first variable. For a fixed value of the first variable, 𝐾 and 𝑁 
are invertible in the second variable: 

 
𝐹(𝑥, 𝑦) = 𝑘[𝑓(𝑥) + 𝑔(𝑦)]， 𝐺(𝑥, 𝑦) = 𝑓ିଵ[𝑝(𝑥) + 𝑞(𝑦)],𝐾(𝑥, 𝑦) = 𝑘[𝑝(𝑥) + 𝑛(𝑦)]， 𝑁(𝑥, 𝑦) = 𝑛ିଵ[𝑞(𝑥) + 𝑔(𝑦)], (6) 

where, 𝑓, 𝑘, 𝑛, 𝑝, 𝑞  and 𝑔  are arbitrary continuous and strictly monotonic functions. Therefore, 
according to Theorem 1 of [66], the general solution of functional Eq (5) is Eq (7): 

 𝐹(𝑥ଵ, 𝑥ଶ) = 𝑘[𝑓(𝑥ଵ) + 𝑟(𝑥ଶ)]， 𝐺(𝑥ଵ, 𝑥ଶ) = 𝑓ିଵ[𝑝(𝑥ଵ) + 𝑞(𝑥ଶ)] (7) 

According to Eq (7), Eq (5) can be written as: 

 𝑑 = 𝐹(𝐺(𝑥ଵ, 𝑥ଶ), 𝑥ଷ) = 𝑘[𝑝(𝑥ଵ) + 𝑞(𝑥ଶ) + 𝑟(𝑥ଷ)] (8) 

According to Eq (8), the corresponding topology structure can be drawn, as shown in Figure 3(b). 
Figure 3(b),(a) are equivalent, indicating that they get the same output when they have the same input. 
In the initial structure of FELM, the functional neuron function is multi-parameter. In the simplified 
FELM structure, the functional neuron function is a single parameter. 

Expression uniqueness of FELM: After structural simplification, the functional equation 
corresponding to the simplified functional network is 𝑑 = 𝑘[𝑝(𝑥ଵ) + 𝑞(𝑥ଶ) + 𝑟(𝑥ଷ)], but whether the 
expression of the functional equation is unique needs to be verified. The following is the verification 
process, assuming that there are two functional neuron function sets {𝑘ଵ, 𝑝ଵ, 𝑞ଵ, 𝑟ଵ}  and {𝑘ଶ, 𝑝ଶ, 𝑞ଶ, 𝑟ଶ}, such that : 

 𝑘ଵ[𝑝ଵ(𝑥ଵ) + 𝑞ଵ(𝑥ଶ) + 𝑟ଵ(𝑥ଷ)] = 𝑘ଶ[𝑝ଶ(𝑥ଵ) + 𝑞ଶ(𝑥ଶ) + 𝑟ଶ(𝑥ଷ)]. ∀𝑥ଵ, 𝑥ଶ, 𝑥ଷ (9) 

Let 𝑘ଶ(𝑣) = 𝑘ଵ(௩ି௕ି௖ିௗ௔ ) , then 𝑣 = 𝑝ଶ(𝑥ଵ) + 𝑞ଶ(𝑥ଶ) + 𝑟ଶ(𝑥ଷ) , ௩ି௕ି௖ିௗ௔ = 𝑝ଵ(𝑥ଵ) +𝑞ଵ(𝑥ଶ) + 𝑟ଵ(𝑥ଷ) , and 𝑣 = 𝑎𝑝ଵ(𝑥ଵ) + 𝑎𝑞ଵ(𝑥ଶ) + 𝑎𝑟ଵ(𝑥ଷ) + 𝑏 + 𝑐 + 𝑑 . So the solution of the 
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functional equation is: 

 𝑝ଶ(𝑥ଵ) = 𝑎𝑝ଵ(𝑥ଵ) + 𝑏;  𝑞ଶ(𝑥ଶ) = 𝑎𝑞ଵ(𝑥ଶ) + 𝑐;  𝑟ଶ(𝑥ଷ) = 𝑎𝑟ଵ(𝑥ଷ) + 𝑑 (10) 

where 𝑎, 𝑏, 𝑐, 𝑑 are arbitrary constants. Because any values (𝑎, 𝑏, 𝑐, 𝑑), Eq (10) into Eq (7), will get 
the following result: 

 𝐹(𝑥ଵ, 𝑥ଶ) = 𝑘ଶ[𝑎𝑝ଵ(𝑥ଵ) + 𝑎𝑞ଵ(𝑥ଶ) + 𝑎𝑟ଵ(𝑥ଷ) + 𝑏 + 𝑐 + 𝑑] = 𝑘ଵ[𝑝ଵ(𝑥ଵ) + 𝑞ଵ(𝑥ଶ) + 𝑟ଵ(𝑥ଷ)] (11) 

Therefore, the expression of Eq (8) is unique. 

3.3. Functional extreme learning machine learning algorithm  

The FELM in Figure 3(b) is taken as an example to illustrate its parameter learning process. Write 
Eq (8) as follows 

 𝑘ିଵ(𝑥ସ) = 𝑝(𝑥ଵ) + 𝑞(𝑥ଶ) + 𝑟(𝑥ଷ), (12) 

where 𝑥ସ represents 𝑑. 
Each neuron function is a linear combination of given nonlinear correlation basic functions, that is 

 
𝑝(𝑥ଵ) = ∑ 𝑎ଵ௝𝜑ଵ௝(𝑥ଵ)௠భ௝ୀଵ ; 𝑞(𝑥ଶ) = ∑ 𝑎ଶ௝𝜑ଶ௝(𝑥ଶ)௠మ௝ୀଵ ,𝑟(𝑥ଷ) = ∑ 𝑎ଷ௝𝜑ଷ௝(𝑥ଷ)௠య௝ୀଵ ; 𝑘ିଵ(𝑥ସ) = ∑ 𝑎ସ௝𝜑ସ௝(𝑥ସ)௠ర௝ୀଵ , (13) 

where 𝑚ଵ , 𝑚ଶ , 𝑚ଷ  and 𝑚ସ  are the numbers of basic functions of 𝑝 , 𝑞 , 𝑟  and 𝑘  respectively, 
and 𝑎௜௝ is the parameter coefficient of FELM. 

Let 𝑎௜ = ൣ𝑎௜ଵ, 𝑎௜ଶ, … , 𝑎௜௠೔൧, 𝑖 = 1,2,3,4. 𝐴 = [𝑎ଵ, 𝑎ଶ, 𝑎ଷ, 𝑎ସ]் is the parameter to be optimized. 𝑓𝑓௜௥ = ൣ𝜑௜ଵ(𝑥௜௥), 𝜑௜ଶ(𝑥௜௥), … , 𝜑௜௠೔(𝑥௜௥)൧, 𝐹𝑓௥ = [𝑓𝑓ଵ௥, 𝑓𝑓ଶ௥, 𝑓𝑓ଷ௥, 𝑓𝑓ସ௥];  𝑟 = 1,2, … , 𝑛. 𝐹𝑓 =[𝐹𝑓ଵ; 𝐹𝑓ଶ; … ; 𝐹𝑓௡]; 𝐵 = [𝑘ିଵ(𝑥ସଵ), 𝑘ିଵ(𝑥ସଶ), … , 𝑘ିଵ(𝑥ସ௡)]், 𝑛 is the number of observed samples. 
Then Eq (14) is obtained: 

 𝐹𝑓 • 𝐴 = 𝐵 (14) 

The parameters of FELM can be obtained by Eq (15). 

 𝐴 = 𝐹𝑓ା𝐵 (15) 

where 𝐹𝑓ା is the generalized inverse of 𝐹𝑓. 
The above example illustrates the process of model learning. The steps of constructing and 

simplifying the FELM network and then performing parameter learning are as follows: 
Step 1: Based on the characteristics of the problem to be solved, the initial network model is 

established; 
Step 2: Write the functional equation corresponding to the initial network model; 
Step 3: Using the functional equation solving method to solve the functional equation and obtain 

the general solution expression; 
Step 4: Based on the general solution expression, use its one-to-one correspondence with the 

FELM to redraw the corresponding FELM network (simplified FELM); 
Step 5: The FELM learning algorithm is used to obtain the optimal parameters of the model. 

4. Performance evaluation 

In this section, on many benchmark practical problems in the field of function approximation and 
classification, the performance of the proposed FELM learning algorithm is compared with the 
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commonly used network algorithms (ELM, OP-ELM, SVM, LS-SVM) on two artificial datasets, 20 
different datasets (16 for regression, 4 for classification) and XOR classification problem to verify the 
effectiveness and superiority of FELM. Experimental environment description for FELM and 
comparison algorithms: 11th Gen Intel (R) Core (TM) i5-11320H @ 3.20 GHz, 16 GB RAM and 
MATLAB 2019b. ELM source code used in all experiments: http://www.ntu.edu.sg/home/egbhuang/, 
OP-ELM source code: https://research.cs.aalto.fi//aml/software.shtml, SVM source code: 
http://www.csie.ntu.edu.tw/cjlin/libsvm/, and the most popular LS-SVM implementation: 
http://www.esat.kuleuven.ac.be/sista/lssvmlab/. The sigmoidal activation function is used for ELM, 
the Gaussian kernel function is used for OP-ELM, and the radial basis function is used for SVM and 
LS-SVM. The basic functions of our proposed algorithm FELM will be set according to the following 
specific problems to be solved. In Section 3.1 and Section 3.2, FELM adopts the network structure of 
Figure 3(b). 

It is well known that the performance of SVM is sensitive to the combination of (𝐶, 𝛾). Similar 
to SVM, the generalization performance of LS-SVM is also closely dependent on the combination of (𝐶, 𝛾) . Therefore, in order to achieve good generalization performance, it is necessary to select 
appropriate cost parameter 𝐶 and kernel parameter 𝛾 for SVM and LS-SVM in each dataset. We 
tried 17 different values of 𝐶 and 𝛾, that is, for each dataset, we used 17 different 𝐶 values and 17 
different 𝛾 values, a total of 289 pairs (𝐶, 𝛾). Each problem is tested 50 times, and the training data 
set and the test data set are randomly generated from the entire dataset. For each dataset, two-thirds is 
the training set and the rest is the test set. This section gives the simulation results, including average 
training and test accuracy, corresponding standard deviation (Dev), and training time. In experiments, 
all inputs (attributes) and outputs (targets) have been normalized into [-1, 1]. 

4.1. Benchmark regression problems  

4.1.1. Artificial datasets 

To test the performance of FELM on regression problems, we first use the objective function ‘sinc’ 
function, which is defined as: 𝑦 = 𝑆inc(𝑥) = ௦௜௡ ௫௫ , 𝑥 ∈ [−4𝜋, 4𝜋].  

To effectively reflect the performance of our algorithm, some different forms of zero mean 
Gaussian noise pollution are added to the training data points. In particular, we have the following 
training samples (𝑥௜, 𝑦௜), 𝑖 = 1,2, . . . , 𝑙. 

(Type A) 𝑦௜ = ௦௜௡ ௫೔௫೔ + 𝜉௜, 𝑥௜~𝑈[−4𝜋, 4𝜋], 𝜉௜~𝑁(0,0. 1ଶ) 

(Type B) 𝑦௜ = ௦௜௡ ௫೔௫೔ + 𝜉௜, 𝑥௜~𝑈[−4𝜋, 4𝜋], 𝜉௜~𝑁(0,0. 2ଶ) 

Next, we proceed to compare the performance of the proposed FELM with other algorithms using 
the following two synthetic datasets. 𝑔(𝑥) = ቚ௫ିଵସ ቚ + ቚ𝑠𝑖𝑛 ൬𝜋 ቀ1 + ௫ିଵସ ቁ൰ቚ + 1, −10 ≤ 𝑥 ≤ 10.  

Again, all training data points are shifted by adding different forms of Gaussian noise below. 
(Type C) 𝑦௜ = 𝑔(𝑥௜) + 𝜉௜, 𝑥௜~𝑈[−10,10], 𝜉௜~𝑁(0,0. 2ଶ) 

(Type D) 𝑦௜ = 𝑔(𝑥௜) + 𝜉௜, 𝑥௜~𝑈[−10,10], 𝜉௜~𝑁(0,0. 4ଶ) 

where 𝑈[𝑎, 𝑏] and 𝑁(𝑐, 𝑑ଶ) denote the uniform random variable in [𝑎, 𝑏] and the Gaussian random 
variable with mean 𝑐 and variance 𝑑ଶ, respectively. The training set and the test set have 5000 data 
respectively, which are evenly and randomly distributed on the interval [𝑎, 𝑏]. To make the regression 
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problem ‘real’, Types A–D added four different forms of Gaussian noise to all training samples, while 
the test data remained noise-free. 

Table 1. Basic functions given by FELM on 4 synthetic datasets. 

Datasets Basic functions 
Types A and B {1, 𝑥ଶ, 𝑥ସ, 𝑥଺, 𝑥଼, 𝑥ଵ଴, 𝑐𝑜𝑠( 𝑥), 𝑐𝑜𝑠( 3𝑥), 𝑐𝑜𝑠( 5𝑥)}
Type C {𝑥, 𝑥ଶ, 𝑥ଷ, 𝑠𝑖𝑛( ௫ଶ), 𝑐𝑜𝑠( ௫ଶ), 𝑠𝑖𝑛( 𝑥), 𝑐𝑜𝑠( 𝑥), 𝑐𝑜𝑠( 2𝑥), 𝑒యೣ, 𝑒ିయೣ, 𝑒ఱೣ, 𝑐𝑜𝑠( గଶ (1 + 𝑥)), 𝑐𝑜𝑠( 𝜋(1 + 𝑥)), 𝑐𝑜𝑠( 2𝜋(1 + 𝑥)), 𝑐𝑜𝑠( 3𝜋(1 + 𝑥)), 𝑎𝑟𝑐𝑡𝑎𝑛(௫଻) , 𝑎𝑟𝑐𝑡𝑎𝑛( ௫଺), 𝑎𝑟𝑐𝑡𝑎𝑛( ௫ହ), 𝑎𝑟𝑐𝑡𝑎𝑛( ௫ସ), 𝑎𝑟𝑐𝑡𝑎𝑛( ௫ଷ), 𝑎𝑟𝑐𝑡𝑎𝑛( ௫ଶ), 𝑎𝑟𝑐𝑡𝑎𝑛( 𝑥), 𝑎𝑟𝑐𝑡𝑎𝑛( 2𝑥), 𝑎𝑟𝑐𝑡𝑎𝑛( 3𝑥), 𝑎𝑟𝑐𝑡𝑎𝑛( 4𝑥), 𝑎𝑟𝑐𝑡𝑎𝑛( 5𝑥)}
Type D {𝑥, 𝑠𝑖𝑛( ௫ଶ), 𝑐𝑜𝑠( ௫ଶ), 𝑐𝑜𝑠( ௫ଷ), 𝑠𝑖𝑛( 𝑥), 𝑠𝑖𝑛( 2𝑥), 𝑐𝑜𝑠( 𝑥), 𝑐𝑜𝑠( 2𝑥), 𝑐𝑜𝑠( 3𝑥), 𝑒యೣ, 𝑒ିయೣ, 𝑒ఱೣ,𝑐𝑜𝑠( గଶ (1 + 𝑥)), 𝑐𝑜𝑠( 𝜋(1 + 𝑥)), 𝑐𝑜𝑠( 2𝜋(1 + 𝑥)), 𝑐𝑜𝑠( 3𝜋(1 + 𝑥))} 

Table 2. Performance comparison of FELM, ELM, OP-ELM, SVR and LSSVR on four 
datasets with different types of noises. 

Noise Regressor  Time(s) Testing SVs/nodes
 (C, γ) Training Testing RMS DEV  
Type A FELM 0.0024 0.0014 0.0065  0.0006 9 
 ELM 0.0141 0.0047 0.0065 0.0012 20 
 OP-ELM 0.8194 0.0025 0.0060 0.0010 15.50
 SVR (27, 2-2) 2.2711 0.3150 0.0145 0.0020 1613.46 
 LSSVR (28, 20) 2.0607 0.3824 0.0087 0.0010 5000 
Type B FELM 0.0027 0.0014 0.0098  0.0015 9 
 ELM 0.0138 0.0084 0.0127 0.0021 20 
 OP-ELM 0.7905 0.0024 0.0115 0.0024 14.70
 SVR (22, 2-2) 1.7248 0.6016 0.0188 0.0026 3089.38 
 LSSVR (28, 20) 1.9938 0.3710 0.0177 0.0018 5000 
Type C FELM 0.0053 0.0024 0.0290 0.0011 26  
 ELM 0.4159 0.0194 0.0328 0.0012 90 
 OP-ELM 0.8390 0.0031 0.0686 0.0029 19.20
 SVR (28, 2-1) 35.1289 0.5969 0.0283  0.0014 3107.00 
 LSSVR (28, 2-8) 2.2814 0.3572 0.0601 0.0022 5000 
Type D FELM 0.0042 0.0015 0.0384  0.0019  16  
 ELM 0.4656 0.0209 0.0429 0.0032  100 
 OP-ELM 0.7586 0.0027 0.0725 0.0046  18.10
 SVR (27, 2-1) 15.4804 0.8234 0.0434 0.0040  4020.82 
 LSSVR (28, 20) 1.9812 0.3792 0.0396  0.0037  5000 

As shown in Table 1, appropriate basic functions are assigned to our FELM algorithm on four 
different synthetic datasets. The initial node number of ELM algorithm is 5, and the optimal number 
of hidden layer nodes is found by interval 5 nodes in 5–100, and the initial maximum number of 
neurons for OP-ELM is 100. The results of 50 experiments on all algorithms are shown in Table 2, 
where bold indicates optimal test accuracy. Figure 5 plots the one-time fit curves of FELM and other 
regressors on these synthetic datasets with different noise types. It can be seen from Table 2 that the 
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proposed FELM learning algorithm achieves the highest test accuracy (root mean square error, RMS) 
on artificial datasets with noise types A, B and D. On the artificial dataset with noise type C, FELM is 
superior to ELM, OP-ELM and LSSVR, and is only lower than SVR. Table 2 also shows the optimal 
parameter combinations of SVR and LSSVR on these synthetic datasets and the required support 
vectors (SVs), the network complexity (nodes) of FELM, ELM and OP-ELM. In addition, Table 2 also 
compares the training and testing time of these five methods. It can be seen that the proposed FELM 
is the fastest learning method, which is several times or dozens of times faster than ELM, and hundreds 
of times faster than OP-ELM, SVR and LSSVR. This is because compared with ELM, SVR and 
LSSVR, FELM has the smallest network complexity, so it requires less learning time. Compared with 
OP-ELM, FELM does not need to cut out redundant nodes, so it requires less training time. Since the 
number of support vectors required for SVR and the support vectors required for LSSVR are much 
larger than the network complexity of FELM, they all take more test time than FELM, at least 60 times 
more than it does, which means that FELM trained in actual deployment may respond to new external 
unknown data much faster than SVM and LS-SVM. In short, the proposed FELM outperforms the 
other four comparison algorithms in approaching four artificial datasets with different types of noise. 

 

(a) Type A                                     (b) Type B 

 

(c) Type C                                     (d) Type D 

Figure 5. Predictions of different regressors on four synthetic datasets with different forms of noise. 
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4.1.2. Realistic regression problems 

For further evaluation, 16 different regression datasets are selected. These datasets are usually 
used to test machine learning algorithms, mainly from UCI Machine Learning repository [70] and 
StatLib [71]. The different attributes of 16 datasets are summarized in Table 3.  

As shown in Table 4, we assign appropriate basic functions to our FELM algorithm on 16 different 
datasets. It can be seen that these basic functions are relatively short in length, indicating that the 
structural complexity of the networks is low. The initial number of nodes in ELM is 5, and the optimal 
number of hidden layer nodes is found at intervals of 5 nodes within 5–100. The optimal number of 
nodes obtained by ELM on each dataset is shown in Table 5. The table also shows the best parameter 
combination and support vector number of SVR and LSSVR on each dataset, the initial maximum 
number of neurons and the number of neurons after pruning of OP-ELM. 

The results of 50 trials on 16 datasets by the proposed FELM and other comparison algorithms 
are shown in Tables 6–8. The bold body in Table 6 indicates the optimal test accuracy. The comparison 
of FELM and the other four comparison algorithms on testing RMSE is shown in Table 6. The 
minimum test RMSE is obtained on 10 datasets of Autoprice, Balloon, Baskball, Cleveland, Cloud, 
Diabetes, Machine CPU, Servo, Strike and Wisconsin B.C. On other datasets, although the accuracy 
obtained by our algorithm is lower than SVR and LSSVR, it is higher than ELM and OP-ELM. The 
comparison of the five algorithms in training and testing time is shown in Table 7. The table shows 
that our FELM spends similar training and testing time as ELM, but much less than OP-ELM, SVR 
and LSSVR. The comparison results of FELM and other algorithms on the standard deviation of testing 
RMSE are shown in Table 8. According to the table, our FELM is a stable learning method. Figure 6 
shows the test RMSE comparison of FELM and other comparison algorithms running 50 times on four 
datasets (Autoprice, Cleveland, Abalone and Quake). In short, combined with Tables 6–8 and the 
intuitive display of Figure 6, we can know that the proposed method FELM not only has good 
versatility and stability, but also has fast training speed. 

Table 3. Examples of actual regression. 

Datasets #Train #Test #Total #Features 
Abalone 2784 1393 4177 8 
Mpg 261 131 392 7 
Autoprice 106 53 159 15 
Balloon 1334 667 2001 2 
Baskball 64 32 96 4 
Cleveland 202 101 303 13 
Cloud 72 36 108 9 
Concrete CS 686 344 1030 8 
Diabetes 28 15 43 2 
Housing 337 169 506 13 
Machine CPU 139 70 209 6 
Mg 923 462 1385 6 
Quake 1452 726 2178 3 
Servo 111 56 167 4 
Strike 416 209 625 6 
Wisconsin B.C. 129 65 194 32 
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Table 4. Basic functions given by FELM on 16 regression datasets. 

Datasets Basic functions Datasets Basic functions 
Abalone {𝑒ି௫, 𝑒௫} Diabetes {𝑒ି௫, 𝑒௫}
Mpg {1, 𝑒ି௫ଶ, 𝑒ି௫ଷ, 𝑒ି௫ସ} Housing {1, 𝑒ି௫, 𝑒௫} 

Autoprice {1, 𝑒௫ସ} Machine CPU {1, 𝑒ି௫, 𝑒௫} 
Balloon {𝑒ି௫, 𝑒௫, 𝑒ିଶ௫, 𝑒ଶ௫, 1, 𝑥, 𝑥, 𝑥ଶ, 𝑥ଷ} Mg {𝑠𝑖𝑛( 3𝑥), 𝑠𝑖𝑛( 5𝑥), 𝑥ଷ, 𝑒௫ଶ, 𝑒ି௫ଶ, 𝑒௫ହ, 𝑒ି௫ହ}
Baskball {𝑒ି௫ହ, 𝑒ି௫଺} Quake {1, 𝑠𝑖𝑛( 𝑥), 𝑠𝑖𝑛( 3𝑥), 𝑠𝑖𝑛( 5𝑥), 𝑥, 𝑥ଷ, 𝑥ହ,𝑒ି௫, 𝑒௫}
Cleveland {1, 𝑒ି௫ଶ} Servo {1, 𝑒ିଷ௫, 𝑒ଷ௫, 𝑠𝑖𝑛( 𝑥4), 𝑐𝑜𝑠( 𝑥4), 𝑠𝑖𝑛( 𝑥6),𝑐𝑜𝑠( 𝑥6)} 

Cloud {1, 𝑒ି௫ହ} Strike {1, 𝑠𝑖𝑛( 𝑥4)} 

Concrete CS {1, 𝑠𝑖𝑛( 𝑥), 𝑠𝑖𝑛( 3𝑥), 𝑠𝑖𝑛( 5𝑥), 𝑥,𝑥ଶ, 𝑥ଷ, 𝑒ି௫, 𝑒௫} 
Wisconsin B.C. {𝑠𝑖𝑛( 𝑥4), 𝑐𝑜𝑠( 𝑥4)} 

Table 5. Comparison of network complexity. 

Algorithm  SVR LSSVR ELM OP-ELM
  ε  ( , )C γ  # SVs  ( , )C γ # SVs # nodes init final 
Abalone  52−  1 02 , 2（ ） 1051.28 5 12 , 2（ ） 2784 35 100 33  
Mpg  82−  0 12 , 2−（ ） 104.08  2 12 , 2（ ） 261 30 100 36  
Autoprice  62−  3 32 , 2−（ ） 42.66  6 22 ,2（ ） 106 15 100 14  
Balloon  32−  7 22 ,2−（ ） 6  8 -12 ,2（ ） 1334 20 100 41  
Baskball  82−  3 42 ,2−（ ） 44.38  2 22 ,2（ ） 64 10 62 7  
Cleveland  62−  1 72 ,2−（ ） 142.72  4 82 ,2（ ） 198 20 100 9  
Cloud  62−  7 82 ,2−（ ） 20.62  8 62 ,2（ ） 72 15 70 20  
Concrete CS  82−  4 12 ,2−（ ） 174.42  7 -12 ,2（ ） 686 90 100 87  
Diabetes  52−  1 22 ,2−（ ） 21.12  2 02 ,2（ ） 28 5 26 6  
Housing  82−  3 22 ,2−（ ） 123.42  8 22 ,2（ ） 337 80 100 58  
Machine CPU  72−  8 62 ,2−（ ） 8.74  7 32 ,2（ ） 139 30 100 15  
Mg  62−  1 02 ,2（ ） 592.84  1 -22 ,2（ ） 923 70 100 84  
Quake  12−  4 72 , 2−（ ） 493.28  0 82 ,2（ ） 1452 30 100 11  
Servo  72−  5 32 , 2−（ ） 46.36  6 12 ,2（ ） 111 25 100 41  
Strike  72−  8 82 , 2−（ ） 88.74  2 22 , 2−（ ） 416 10 100 11  
Wisconsin B.C.  82−  7 82 ,2−（ ） 14.92  8 62 , 2（ ） 129 75  100 51  
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Table 6. Comparison of testing RMSE. 

Datasets ELM OP-ELM SVR LSSVR FELM
Abalone 0.1566  0.2186 0.1513 0.1501 0.1525 
Mpg 0.1575  0.1568 0.1403 0.1389 0.1415 
Autoprice 0.1927  0.1804 0.1712 0.1669 0.1600  
Balloon 0.0157  0.0175 0.0420 0.0097 0.0072  
Baskball 0.2631  0.2669 0.2623 0.2576 0.2477  
Cleveland 0.4538  0.4359 0.4370 0.4281 0.4204  
Cloud 0.1458  0.1761 0.1240 0.1234 0.1168  
Concrete CS 0.1249  0.1196 0.1008 0.0792 0.1122 
Diabetes 0.3787  0.4635 0.3456 0.3242 0.2938  
Housing 0.1972  0.2305 0.1458  0.1478 0.1754 
Machine CPU 0.0474  0.0933 0.0731 0.0398 0.0395  
Mg 0.2748  0.2722 0.2719 0.2657 0.2678 
Quake 0.3475  0.3466 0.3420  0.3441 0.3436 
Servo 0.2300  0.1979 0.1819 0.1785 0.1694  
Strike 0.1517  0.1614 0.1541 0.1423 0.1320  
Wisconsin B.C. 0.0782  0.0269 0.0670 0.0264 0.0210  

Table 7. Comparison of training and testing time. 

Datasets ELM (s) OP-ELM (s) SVR(s) LSSVR(s) FELM (s)
 Train Test Train Test Train Test Train Test Train Test
Abalone 0.0020 0.0008 0.5504 0.0019 0.3782 0.0756 0.5977 0.0791 0.0021 0.0006
Mpg 0.0004 0.0004 0.0405 0.0008 0.0040 0.0007 0.0066 0.0017 0.0006 0.0002
Autoprice 0.0002 0.0004 0.0248 0.0003 0.0010 0.0002 0.0037 0.0012 0.0007 0.0004
Balloon 0.0006 0.0005 0.1419 0.0014 0.0015 0.0003 0.1311 0.0203 0.0011 0.0003
Baskball 0.0001 0.0004 0.0108 0.0002 0.0006 0.0001 0.0027 0.0012 0.0001 0.0001
Cleveland 0.0003 0.0007 0.0325 0.0003 0.0047 0.0010 0.0052 0.0018 0.0004 0.0002
Cloud 0.0001 0.0004 0.0136 0.0004 0.0005 0.0001 0.0027 0.0011 0.0002 0.0001
Concrete CS 0.0024 0.0008 0.1046 0.0025 0.0427 0.0028 0.0355 0.0077 0.0033 0.0009
Diabetes 0.0001 0.0004 0.0048 0.0002 0.0002 0.0000 0.0024 0.0011 0.0001 0.0000
Housing 0.0013 0.0005 0.0516 0.0015 0.0099 0.0012 0.0073 0.0029 0.0011 0.0003
Machine CPU 0.0003 0.0004 0.0260 0.0004 0.0004 0.0001 0.0038 0.0020 0.0002 0.0001
Mg 0.0016 0.0006 0.1538 0.0029 0.0628 0.0114 0.0634 0.0089 0.0038 0.0016
Quake 0.0010 0.0005 0.2497 0.0005 0.0656 0.0130 0.1651 0.0186 0.0023 0.0006
Servo 0.0002 0.0004 0.0268 0.0008 0.0027 0.0002 0.0035 0.0011 0.0004 0.0002
Strike 0.0002 0.0003 0.0577 0.0003 0.0139 0.0012 0.0125 0.0039 0.0004 0.0001
Wisconsin B.C. 0.0012 0.0004 0.0289 0.0010 0.0007 0.0001 0.0041 0.0019 0.0014 0.0006
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Table 8. Comparison of the standard deviation of testing RMSE. 

Datasets ELM OP-ELM SVR LSSVR FELM
Abalone 0.0068  0.2685 0.0040 0.0043  0.0043 
Mpg 0.0134  0.0176 0.0135 0.0130  0.0123 
Autoprice 0.0340  0.0556 0.0364 0.0397  0.0240 
Balloon 0.0102  0.0121 0.0121 0.0019  0.0005 
Baskball 0.0285  0.0288 0.0293 0.0272  0.0278 
Cleveland 0.0312  0.0356 0.0351 0.0343  0.0316 
Cloud 0.0309  0.0672 0.0444 0.0363  0.0317 
Concrete CS 0.0083  0.0085 0.0085 0.0084  0.0050 
Diabetes 0.1095  0.3457 0.0575 0.0524  0.0443 
Housing 0.0356  0.1718 0.0192 0.0189  0.0197 
Machine CPU 0.0620  0.0623 0.0191 0.0249  0.0221 
Mg 0.0100  0.0088 0.0105 0.0079  0.0083 
Quake 0.0088  0.0093 0.0112 0.0090  0.0085 
Servo 0.0407  0.0442 0.0584 0.0405  0.0423 
Strike 0.0383  0.0312 0.0305 0.0380  0.0331 
Wisconsin B.C. 0.0183  0.0091 0.0097 0.0030  0.0041 

 

(a) Autoprice                                 (b) Cleveland 

 

(c) Abalone                                     (d) Quake 

Figure 6. Comparison of test RMSE of FELM, ELM, OP-ELM, SVR and LSSVR 
running 50 times on four datasets. 
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4.2. Benchmark classification problems 

4.2.1. XOR problem 

The XOR problem dataset randomly generates 1000 samples here, with one class containing 478 
samples and the other containing 522 samples. The binary problem is not linearly separable. On this 
problem, if FELM adopts the structure shown in Figure 3(b), it is not easy to find suitable basic 
function families for its neurons. Therefore, we adopt the multi-input single-output FELM structure 
shown in Figure 7 to achieve better generalization performance by increasing the number of hidden 
layer nodes. FELM sets the number of hidden layer nodes on this problem to be 73, and the node 
functions correspond to the following:  

{ 𝑠𝑖𝑛( 𝑥ଶ) ; 𝑠𝑖𝑛( 3𝑥ଶ) ; 𝑠𝑖𝑛( 5𝑥ଶ) ; 𝑥ଶ ; 𝑒ଶ௫మ ; 𝑠𝑖𝑛( 𝑥ଵ) 𝑠𝑖𝑛( 𝑥ଶ)  ; 𝑠𝑖𝑛( 𝑥ଵ) 𝑠𝑖𝑛( 3𝑥ଶ)  ; 𝑠𝑖𝑛( 𝑥ଵ) 𝑠𝑖𝑛( 5𝑥ଶ) ; 𝑠𝑖𝑛( 𝑥ଵ)𝑥ଶ ; 𝑠𝑖𝑛( 𝑥ଵ)𝑥ଶଷ ; 𝑠𝑖𝑛( 𝑥ଵ)𝑒௫మ ; 𝑠𝑖𝑛( 𝑥ଵ)𝑒௫మ ; 𝑠𝑖𝑛( 3𝑥ଵ) 𝑠𝑖𝑛( 5𝑥ଶ)  ; 𝑠𝑖𝑛( 3𝑥ଵ)𝑥ଶ ; 𝑠𝑖𝑛( 3𝑥ଵ)𝑥ଶଶ ; 𝑠𝑖𝑛( 3𝑥ଵ)𝑒ିଶ௫మ ; 𝑠𝑖𝑛( 3𝑥ଵ)𝑒ଶ௫మ ; 𝑠𝑖𝑛( 5𝑥ଵ) 𝑠𝑖𝑛( 𝑥ଶ) ; 𝑠𝑖𝑛( 5𝑥ଵ) 𝑠𝑖𝑛( 5𝑥ଶ); 𝑠𝑖𝑛( 5𝑥ଵ)𝑥ଶ; 𝑠𝑖𝑛( 5𝑥ଵ)𝑥ଶଶ; 𝑠𝑖𝑛( 5𝑥ଵ)𝑒ି௫మ ; 𝑠𝑖𝑛( 5𝑥ଵ)𝑒ଶ௫మ; 𝑠𝑖𝑛( 5𝑥ଵ)𝑒ଶ௫మ; 𝑥ଵ; 𝑥ଵ 𝑠𝑖𝑛( 𝑥ଶ) ; 1x 𝑠𝑖𝑛( 3𝑥ଶ) ; 𝑥ଵ 𝑠𝑖𝑛( 5𝑥ଶ) ; 𝑥ଵ𝑥ଶ ; 1x 𝑥ଶଶ ; 𝑥ଵ𝑒ିଶ௫మ ; 𝑥ଵଶ ; 𝑥ଵଶ 𝑠𝑖𝑛( 3𝑥ଶ) ; 𝑥ଵଶ𝑥ଶ ; 𝑥ଵଶ𝑥ଶଶ ; 𝑥ଵଶ𝑒ି௫మ ; 𝑥ଵଶ𝑒ଶ௫మ ; 𝑥ଵଶ𝑒ଶ௫మ ; 𝑥ଵଷ 𝑠𝑖𝑛( 𝑥ଶ) ; 𝑥ଵଷ 𝑠𝑖𝑛( 5𝑥ଶ) ; 𝑥ଵଷ𝑥ଶ ; 𝑥ଵଷ𝑥ଶଶ ; 𝑥ଵଷ𝑒ି௫మ ; 𝑥ଵଷ𝑒௫మ ; 𝑥ଵଷ𝑒ଶ௫మ ; 𝑒ି௫భ 𝑠𝑖𝑛( 𝑥ଶ); 𝑒ି௫భ 𝑠𝑖𝑛( 3𝑥ଶ); 𝑒ି௫భ 𝑠𝑖𝑛( 5𝑥ଶ); 𝑒ି௫భ𝑥ଶ; 𝑒ି௫భ𝑥ଶଷ; 𝑒ି௫భ𝑒ି௫మ ; 𝑒ି௫భ𝑒௫మ ; 𝑒ି௫భ𝑒ିଶ௫మ ; 𝑒ି௫భ𝑒ଶ௫మ ; 𝑒௫భ𝑥ଶ ; 𝑒௫భ𝑒௫మ ; 𝑒௫భ𝑒ିଶ௫మ ; 𝑒ିଶ௫భ ; 𝑒ିଶ௫భ 𝑠𝑖𝑛( 𝑥ଶ) ; 𝑒ିଶ௫భ 𝑠𝑖𝑛( 3𝑥ଶ) ; 𝑒ିଶ௫భ 𝑠𝑖𝑛( 5𝑥ଶ) ; 𝑒ିଶ௫భ𝑥ଶ ; 𝑒ିଶ௫భ𝑥ଶଶ ; 𝑒ିଶ௫భ𝑒ି௫మ ; 𝑒ିଶ௫భ𝑒ିଶ௫మ ; 𝑒ିଶ௫భ𝑒ଶ௫మ ; 𝑒ଶ௫భ𝑥ଶ ; 𝑒ଶ௫భ𝑥ଶଶ ; 𝑒ଶ௫భ𝑥ଶଷ ; 𝑒ଶ௫భ𝑒ି௫మ ; 𝑒ଶ௫భ𝑒௫మ; 𝑒ଶ௫భ𝑒ିଶ௫మ; 𝑒ଶ௫భ𝑒ଶ௫మ}. 

 

Figure 7. Multiple-input single-output functional extreme learning machine. 

Table 9. Performance comparison of FELM, ELM, OP-ELM, SVM and LSSVM on ‘XOR’ dataset. 
Regressor (C, γ) Time(s) Testing SVs/nodes
 Training Testing Rate (%) DEV (%)  
FELM 0.0704  0.0017 98.82  0.62  73 
ELM (sig) 0.0054  0.0013 97.29  0.86  155 
ELM (RBF) 0.0020  0.0013 97.38  0.90  75 
OP-ELM 0.0704  0.0015 97.24  1.06  49 
SVM (24, 26) 0.0188  0.0033 97.29  0.87  269.86 
LSSVM (23, 2-4) 0.0219  0.0062 97.89 0.78 666 

•••

𝑥ଵ
𝑥ଶ

𝑓ଵ
𝑓ଶ
•
•
•

𝑓௞ାଵ 𝑢
𝑥௠ 𝑓௞
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(a) FELM                            (b) ELM(sig) 

 

(c) ELM(RBF)                            (d) OP-ELM 

 

(e) SVM                              (f) LSSVM 

Figure 8. Separating boundaries of different classifiers in XOR case. 
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The initial maximum number of neurons for OP-ELM is 100. This section also adds an ELM 
comparison with an activation function of RBF. The initial number of nodes of the ELM is 5, and the 
optimal number of hidden layer nodes is found at intervals of 10 nodes within 5–1000, and the optimal 
number of nodes obtained on each dataset is shown in Table 9. The table also shows the optimal 
parameter combination and support vector number of SVM and LSSVM on the problem, and the final 
number of neurons of OP-ELM.  

The average results of 50 trials conducted by FELM and other models on the XOR dataset are 
shown in Table 9. The data in the table show that the performance of FELM is better than ELM, OP-
ELM, SVM and LSSVM. Figure 8 shows the boundaries of different classifiers on the XOR problem. 
It can be seen that, similar to ELM, OP-ELM, SVM and LS-SVM, FELM can solve the XOR 
problem well. 

4.2.2. Realistic classification problems 

Table 10. Examples of actual classification. WDBC stands for Wisconsin Breast Cancer. 
Diabetes stands for Pima Indians Diabetes. 

Datasets #Train #Test #Total #(Featdures/Classes)
Iris 100 50 150 4/3 
WDBC 379 190 569 30/2 
Diabetes 512 256 768 8/2 
Wine 118 60 178 13/3 

Table 11. Comparison of network complexity. 

Algorithm FELM SVM LSSVM ELM OP-ELM
 basic functions (C,γ) # SVs (C,γ) # SVs # nodes  init final
Iris {1, 𝑒ି௫, 𝑒௫, 𝑒ିଶ௫, 𝑒ଶ௫} (26,2-5) 20.48 (2-4,23) 100 15 90 16.80 
WDBC {1, 𝑒ିଷ௫, 𝑒ିହ௫} (22,2-3) 55.04 (22,25) 379 65 90 32.90 
Diabetes {𝑒ି௫, 𝑒௫} (24,2-5) 281.7 (24,23) 512 15 90 19.90 
Wine {𝑒ି௫, 𝑒ିଶ௫} (2-1,2-2) 63.64 (2-3,23) 118 15 90 33.40 

Table 12. Comparison of testing correct classification Rate. 

Datasets ELM OP-ELM  SVM LSSVM FELM 
Iris 95.36  95.36  96.40  91.32  97.76  
WDBC 95.16  95.83  97.78 95.01  97.81  
Diabetes 76.83  76.89  77.59 73.70  77.85  
Wine 96.03  95.73  97.90 94.50  98.87  

Table 13. Comparison of training and testing time. 

Datasets ELM (s)  OP-ELM (s) SVM (s) LSSVM (s) FELM (s)
 Train Test Train Test Train Test Train Test Train Test
Iris 0.0002 0.0005 0.0217 0.0004 0.0004 0.0001 0.0022 0.0036 0.0002 0.0001
WDBC 0.0013 0.0009 0.0519 0.0010 0.0047 0.0010 0.0079 0.0161 0.0043 0.0010
Diabetes 0.0004 0.0007 0.0716 0.0006 0.0199 0.0044 0.0120 0.0078 0.0005 0.0002
Wine 0.0002 0.0005 0.0255 0.0007 0.0011 0.0003 0.0024 0.0076 0.0004 0.0002
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Table 14. Comparison of the standard deviation of testing correct classification rate. 

Datasets ELM OP-ELM SVM LSSVM FELM
Iris 3.19 2.95 2.62 3.89 1.84 
WDBC 1.63 1.45 0.91 1.56 1.00 
Diabetes 2.21 2.15 2.15 3.15 2.17 
Wine 3.31 2.43 1.64 2.82 1.41 

 

(a) Iris                              (b) WDBC 

 

(c) Diabetes                             (d) Wine 

Figure 9. Comparison of test successful classification rates for FELM, ELM, OP-ELM, 
SVM and LSSVM on four datasets run 50 times. 

The newly proposed FELM algorithm is compared with four other popular algorithms (ELM, OP-
ELM, SVM and LSSVM) on four classification problems: Iris, WDBC, Diabetes and Wine. These four 
datasets are from UCI Machine Learning repository [70], and the number of samples, attributes and 
classes are shown in Table 10. The ELM algorithm sets the initial number of nodes to 5, and finds the 
optimal number of hidden layer nodes at intervals of 10 nodes within 5–1000. As shown in Table 11, 
we assign appropriate basic functions to these datasets for our FELM algorithm, and the optimal 
number of nodes obtained by the ELM algorithm on each dataset. The table also shows the optimal 
parameter combination and support vector number of SVM and LSSVM, the initial maximum number 
of neurons and the number of neurons after pruning of OP-ELM. 
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The performance comparison between all algorithms is shown in Tables 12–14. In the comparison 
of these five algorithms, obviously, better test results are given in bold. In Table 12, our FELM 
compared with four other algorithms on testing correct classification rate, and FELM achieved the 
highest test correct classification rate. The comparison results of the five algorithms for training and 
testing time are shown in Table 13. The learning speed of FELM is similar to the ELM, which is much 
faster than the OP-ELM, SVM and LSSVM. In Table 14, FELM is compared with other comparison 
algorithms on the standard deviation of testing correct classification rate, and the results show that 
FELM has good stability. Figure 9 shows the successful classification rate comparison of FELM and 
the other four algorithms running 50 times on four classification datasets. It can be seen that FELM 
obtains the highest number of higher classification rates. Compared with other algorithms, the curve 
fluctuation is smaller, indicating that its stability is better. In summary, combined with Tables 12–14 
and Figure 9, it can be seen that FELM not only guarantees the learning speed in all cases, but also 
achieves better generalization performance. 

5. Conclusions and future works 

In this paper, we propose a new method for data regression and classification called functional 
extreme learning machine (FELM). Different from the traditional ELM, FELM is problem-driven 
rather than model-driven, without the concept of weight and bias. It uses the functional neuron as the 
basic unit, and uses functional equation solving theory to guide its modeling process. The functional 
neuron of the learning machine is represented by a linear combination of any linearly independent 
basic functions, and infinitely approximates the desired accuracy by adjusting the coefficients of the 
basic functions in the functional neuron. In addition, the parameter fast learning algorithm proposed 
in this paper does not need iteration and has high accuracy. Its learning process is different from the 
ELM used by people at present. It is expected to fundamentally overcome the shortcomings of the 
random initial parameters of the hidden layer (connection weights, bias values, number of nodes) in 
the current ELM theory that significantly affect the classification accuracy of ELM. Like ELM, FELM 
has less human intervention. It only needs to match the appropriate basic functions for the problem, 
and can obtain the optimal parameters according to the parameter learning algorithm without iteration. 
Simulation results show that compared with ELM, FELM has better performance and similar learning 
speed in regression and classification. Compared to SVM and LS-SVM, FELM can run stably with 
faster learning speed (up to several hundred times) while guaranteeing generalization performance. 
The proposed FELM theory provides a new idea for tapping the potential of extreme learning and 
broadening the application of extreme learning, which has important theoretical significance and broad 
application prospects. In the future work, we will use the parameter screening algorithm to further 
improve the generalization ability and stability of FELM and broaden its practical application range. 
These are the author’s next works. 
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