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Abstract: Working memory has been identified as a top-down modulation of the average spiking 
activity in different brain parts. However, such modification has not yet been reported in the middle 
temporal (MT) cortex. A recent study showed that the dimensionality of the spiking activity of MT 
neurons increases after deployment of spatial working memory. This study is devoted to analyzing the 
ability of nonlinear and classical features to capture the content of the working memory from the 
spiking activity of MT neurons. The results suggest that only the Higuchi fractal dimension can be 
considered as a unique indicator of working memory while the Margaos-Sun fractal dimension, 
Shannon entropy, corrected conditional entropy, and skewness are perhaps indicators of other cognitive 
factors such as vigilance, awareness, and arousal as well as working memory. 
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1. Introduction  

The primary function of working memory brain areas is to help store information in one’s mind 
while doing different and complicated tasks in parallel [1]. In fact, in cognitive science, through storing 
information, working memory is assumed to be the basis of high-level activities such as decision-
making and recognition, learning, overt and covert attention, social interactions and oral 
communication [2–4]. In psychology and cognitive science, working memory and attention are 
considered to be heavily interconnected as their malfunction has been widely reported in many 
cognitive disorders [5,6], and also their functional interdependence would lead to appropriate 
psychophysical outcomes [7]. 

Considering the significant role of working memory in the attention process, many studies have 
been performed in order to understand the underlying neural mechanisms of working memory. For 
instance, memory-guided saccade (MGS) task, which is able to activate the working memory process 
in the brain, has been widely used in many and electrophysiological and fMRI studies [8–11]. As 
reported in [8,9,12], working memory can be represented as an increase in spike rates recorded in brain 
areas, including the medial superior temporal, lateral prefrontal cortex, frontal eye field, and lateral 
intraparietal area. In the occipital cortex, studies found that memorizing a visual object (not its spatial 
information) increases the firing rate of V4 neurons [13].  However, there is no sign of spatial working 
memory in the neurons’ spiking activities in the early and mid-level visual areas, such as middle 
temporal (MT) cortex and area V4 [14]. 

In signal processing, different studies have been conducted to identify features characteristic of 
fundamental processes or diseases [15–17]. Fractal-based and entropy-based features are important 
nonlinear features that measure the complexity of data [18] and are widely used in signal processing 
for different purposes. 

Although the spiking activity of MT neurons shows no increase in their average firing rate during 
working memory [14], a recent study claimed that the dimensionality of neurons’ spiking activity 
increases during the deployment of spatial working memory [19]. This paper is devoted to analyzing 
the ability of nonlinear and classical features to detect memory content. The following parts of the 
paper are organized as follows: Section 2 describes the data used in this study and its acquisition 
process. Section 3 introduces the nonlinear (including fractal- and entropy-based) and classical 
(including transform- and statistical-based) features in brief. Section 4 presents the study’s results in 
detail and discusses the most important findings. Finally, Section 5 concludes the paper. 

2. Data 

The data used in this study were gathered from the spiking activity of 131 neurons within area 
MT. To record the firing rate signals, a five- and a seven-year-old male macaque monkeys, which had 
been already trained to perform the MGS task, were employed. The signals were recorded using an 
electrode with 16 arrays (recoding sites) over 11 recording sessions. The recording chambers were 
mounted on the skull of two monkeys’ over area MT during the anesthetized surgical procedures. 
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Before data collection, the site of brain areas within the recording chambers was confirmed through 
single-electrode recordings. As the initial settings before starting the task and data acquisition, the 
monkeys were seated in a custom-built chair 28.5 centimeters away from a monitor of 24 inches and 144 
Hz refresh rate. While their heads were restrained, a syringe pump was set in their mouth to deliver 
juice as a reward (see [8,10] for more details). 

 

Figure 1. a) four phases of the MGS task: the appearance of FP for 1000 ms (fixation 
period), wherein the monkeys should gaze at the FP; the presented visual cue for 1000 ms 
(visual period), wherein the monkey should keep looking at the FP; the disappearance of 
the visual cue for 1000 ms (memory period), wherein the monkeys remained fixated at the 
FP; the disappearance of the FP (saccade period), wherein the monkeys should make a 
saccade toward the memorized location. b) In the visual period, the cue can occur in one 
of the six positions, including five IN conditions (red dots) and one OUT condition (green 
dot). The dashed line indicates the schematic receptive field of a sample neuron. 

Note that the experimental procedures were performed in accordance with the National Institutes 
of Health Guide for the Care and Use of Laboratory Animals, the Society for Neuroscience Guidelines, 
and Policies. The protocols for all experimental, surgical, and behavioral procedures were approved 
by the Montana State University Institutional Animal Care and Use Committee. Figure 1 demonstrates 
the four main stages of the MGS task: 

- Fixation period: This phase starts as soon as a fixation point (FP) appears in the middle of the 
monitor. The monkeys should fixate on the FP on the monitor for one second. 
- Visual period: In this phase, a cue appears either in the same visual hemifield (one of the red 
dots in Figure 1b; IN conditions) or in the opposite one (green dot in Figure 1b; OUT condition), 
while the monkeys are needed to keep gazing at the FP. This phase takes a second, and then the 
cue disappears. 
- Memory period: After the cue goes off, the monkeys are still required to hold their gaze on the 
FP for another one second. Since the process of memorizing the cue’s location occurs during this 
phase, it is called the memory period. 
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- Saccade period: In this phase, the FP goes off, and the monkeys perform a saccade toward the 
recalled cue’s locations within 500 ms. 
During the task, the actual time of the visual cue’s occurrence in the monitor was recorded using 

a photodiode, and the signals were digitalized at a 32 kHz sampling frequency. Moreover, the 
presentation of the cue on the monitor and reward delivery was monitored using the MonkeyLogic 
toolbox in MATLAB software. Electrode arrays were employed to record the spiking activity of 131 
MT neurons while the animals performed the task. Note that the recorded data were digitalized and 
stored at 32 kHz for further analysis. 

 

Figure 2. a) The average response of a sample neuron during the MGS task and b) the 
normalized response averaged over 131 neurons. In both sections, the purple plots are the 
averaged response during IN conditions, and the blue plots are the OUT condition’s response. 

Figure 2a demonstrates the averaged response of a sample neuron’s spiking activity during the 
MGS task, and Figure 2b shows the normalized response of 131 neurons within the area MT. The 
purple signal refers to the IN condition, and the blue one corresponds to the OUT condition. As the 
cue appeared in the visual period, the firing rate of neurons increased transiently. Similarly, another 
transient increase in the spiking activity of MT neurons was observed in response to the disappearance 
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of the visual stimulus. However, no such effect was seen for the OUT condition as the visual stimulus 
was presented outside the neuron’s receptive field. The same scenario is seen in the average normalized 
response of 131 MT neurons. 

3. Methods 

In this paper, we examined the ability of nonlinear and classical features to detect the content of 
working memory from the neural spiking activity of the extrastriate cortex. Therefore, two main 
categories of features, including nonlinear and classical features, were studied. 

3.1. Nonlinear features 

Fractal dimension (FD) and entropy are two main categories of nonlinear features that 
quantitatively measure the complexity of a time series [20,21]. Table 1 demonstrates the definition of 
the six most used algorithms, namely Higuchi FD (HFD), Katz FD, Generalized Hurst exponent (GHE), 
Margaos-Sun FD (MSFD), Leibovich-Toth FD (LTFD), and fractal volatility (FV), to calculate the FD 
of a given time series. 

Table 1. The definition of fractal-based features. 

Feature Definition  

HFD [22] 〈
𝑁 െ 1

𝑘ଶ ቂ𝑁 െ 𝑚
𝑘 ቃ

෍ |𝑥ሺ𝑚 ൅ 𝑖𝑘ሻ െ 𝑥ሺ𝑚 ൅ ሺ𝑖 െ 1ሻ𝑘ሻ|

ቂ
ேି௠

௞ ቃ

௜ୀଵ

〉௞ ∝ 𝑘ି஽ 

𝑓𝑜𝑟 𝑚 ൌ 1,2, … 𝑘 𝑎𝑛𝑑 𝑘 ൌ 1,2, … , 𝑘௠௔௫ ሺ𝑘௠௔௫ ൌ 30ሻ 

(1)

KFD [23] 
𝐷 ൌ

𝑙𝑜𝑔ሺ𝑁ሻ

𝑙𝑜𝑔ሺ𝑁ሻ ൅ 𝑙𝑜𝑔 ቆ
𝑚𝑎𝑥൫𝑑𝑖𝑠𝑡ሺ1, 𝑗ሻ൯

∑ 𝑑𝑖𝑠𝑡ሺ𝑖 െ 1, 𝑖ሻே
௜ୀଵ

ቇ
 

𝑓𝑜𝑟 𝑗 ൌ 1,2, … , 𝑁 

(2)

GHE [24] 
〈|𝑥ሺ𝑡ሻ െ 𝑥ሺ𝑡 െ 𝜏ሻ|௤〉

〈|𝑥ሺ𝑡ሻ|௤〉
~ ቀ

𝜏
𝜐

ቁ
௤஽

 

𝑓𝑜𝑟 1 ൑ 𝜏 ൑ 𝜏௠௔௫ 𝑎𝑛𝑑 𝑞 ൌ 1 

(3)

MSFD [25] 
𝑙𝑛 ൮

∑ ൣ൫𝑥ሺ𝑡ሻ ⊕௦ 𝑏௧
⊕ఢ൯ െ ൫𝑥ሺ𝑡ሻ ⊖௦ 𝑏௧

⊕ఢ൯൧ே
௡ୀଵ

ቀ2𝑘
𝑁 ቁ

ଶ ൲ ∝  𝐷 𝑙𝑛 ቌ
1

2𝑘
𝑁

ቍ 

𝑓𝑜𝑟 𝑆 ൌ 0,1,2, … , 𝑁, 0 ൑ 𝑡 ൑ 𝑇, 𝜖 ൌ 1,2, … , 𝜖௠௔௫, 𝑎𝑛𝑑 𝑘 ൌ 1,2, … , 𝑘௠ 

(4)

LTFD [26] 𝐷 ൌ 𝑙𝑖𝑚
ఢ→଴

𝑙𝑜𝑔൫𝑁௕௖ሺ𝜖ሻ൯

𝑙𝑜𝑔 ቀ1
𝜖ቁ

 (5)

FV [27] 𝐷 ൌ 𝑙𝑖𝑚
ఢ→଴

𝑙𝑜𝑔൫𝑁௕௖ሺ𝜖ሻ൯

𝑙𝑜𝑔 ቀ1
𝜖ቁ

 (6)
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In Table 1, 𝑥ሺ𝑡ሻ is a given time series, 𝑁 is the number of data samples, 𝑚 is the initial time, 
𝑘 is the time interval, 𝑇 is the period of the time series 𝑥ሺ𝑡ሻ, 𝜖 is the considered scale, 𝑘௠ is set 
based on the rules in [25], 𝑏 is the structuring element, and 𝑁௕௖ሺ𝜖ሻ is the number of pieces that covers 
the graph of 𝑥ሺ𝑡ሻ . Also, 〈… 〉  denotes averaging over time, ⊕  and ⊖  respectively refer to the 
erosion and dilation operations. Note that the FV algorithm is a box-counting method, including 
random-walk processes. 

Similarly, Table 2 contains the definitions of six well-known methods of measuring the entropy 
of a time series, including Approximate Entropy (ApEn), Sample Entropy (SampEn), Shannon 
Entropy (ShanEn), Permutation Entropy (PermEn), Fuzzy Entropy (FuzEn), and corrected 
Conditional Entropy (CondEn). 

In Table 2, 𝐶௜
௠ሺ𝑟ሻ is the number of blocks of successive values (with length 𝑚) that are similar 

to a certain block within the resolution 𝑟, 𝐴௜
௠ሺ𝑟ሻ is the model vector, 𝐵௜

௠ሺ𝑟ሻ is the template vectors, 
𝐷௜௝

௠  is the similarity degree of two time series  𝑥௜ሺ𝑡ሻ  and 𝑥௝ሺ𝑡ሻ  (of length 𝑚 ), 𝑝௅  is the joint 
probability, 𝜋௅ is the relative frequency, 𝐿 is the dimension of the phase space, and 𝐸௖ሺ𝐿ሻ is the 
corrective term.  

Table 2. The definition of entropy-based features. 

Feature Definition  

ApEn [28] 𝐸 ൌ 𝑙𝑖𝑚
ே→ஶ

ቆ
∑ 𝑙𝑜𝑔 𝐶௜

௠ሺ𝑟ሻேି௠ାଵ
௜ୀଵ

𝑁 െ 𝑚 ൅ 1
െ

∑ 𝑙𝑜𝑔 𝐶௜
௠ାଵሺ𝑟ሻேି௠ାଵ

௜ୀଵ

𝑁 െ 𝑚 ൅ 1
ቇ (7) 

SampEn [29] 𝐸 ൌ െln
∑ 𝑙𝑜𝑔 𝐴௜

௠ሺ𝑟ሻேି௠
௜ୀଵ

∑ 𝑙𝑜𝑔 𝐵௜
௠ሺ𝑟ሻேି௠

௜ୀଵ
 (8) 

ShanEn [30] 𝐸 ൌ െ ෍ 𝑝௅ 𝑙𝑜𝑔 𝑝௅

௅

 (9) 

PermEn [31] 𝐸 ൌ െ ෍ 𝜋௅ 𝑙𝑜𝑔 𝜋௅

௅

 (10)

FuzEn [32] 𝐸 ൌ ln ൭
1

𝑁 െ 𝑚
෍ ቆ

∑ 𝐷௜௝
௠ேି௠

௝ୀଵ,௝ஷ௜

𝑁 െ 𝑚 െ 1
ቇ

ேି௠

௜ୀଵ

൱ െ ln ൭
1

𝑁 െ 𝑚
෍ ቆ

∑ 𝐷௜௝
௠ାଵேି௠

௝ୀଵ,௝ஷ௜

𝑁 െ 𝑚 െ 1
ቇ

ேି௠

௜ୀଵ

൱ (11)

CondEn [30] 𝐸 ൌ ෍ 𝑝௅ 𝑙𝑜𝑔 𝑝௅

௅

െ ෍ 𝑝௅ିଵ 𝑙𝑜𝑔 𝑝௅ିଵ

௅ିଵ

൅ 𝐸௖ሺ𝐿ሻ (12)

3.2. Classical features 

Transform-based feature extraction is an important technique in signal processing. Therefore, 
such transform-based features, as well as the statistical ones, were considered as the two most used 
groups of classical features [33,34]. Among the famous transform-based features, Discrete Wavelet 
Transform (DWT), Discrete Fourier Transform (DFT), Short-Time Fourier Transform (STFT), 
Discrete Cosine Transform (DCT), Hilbert Transform (HT), and Stockwell Transform (ST) are 
formulated in Table 3. 
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Table 3. The definition of Transform-based features. 

Feature Definition  

DWT [35] 𝑊ሺ𝑘, 𝑙ሻ ൌ
1
𝑠

෍ ෍ 𝑥ሺ𝑚. 𝑛ሻ𝜓 ൬
𝑚 െ 𝑘

𝑠
൰

௠

𝜓 ൬
𝑛 െ 𝑙

𝑠
൰

௡

 (13)

DFT [36]  𝐹ሺ𝑘ሻ ൌ ෍ 𝑥ሺ𝑛ሻ𝑒ି
௝ଶగ

ே ௞௡
ேିଵ

௡ୀ଴

𝑓𝑜𝑟 𝑘 ൌ 0, … , 𝑁 െ 1 (14)

STFT [37] 𝑆𝐹ሺ𝑚, 𝑓ሻ ൌ ෍ 𝑥ሺ𝑛ሻ𝑔ሺ𝑛 െ 𝑤଴ሻ𝑒ି௝ଶగ௙௡

ேିଵ

௡ୀ଴

 (15)

DCT [38] 𝐶ሺ𝑘ሻ ൌ ඨ
2
𝑁

෍
𝑥ሺ𝑛ሻ

ඥ1 ൅ 𝛿௞ଵ

cos ቆ
𝜋

2𝑁
ሺ2𝑛 െ 1ሻሺ𝑘 െ 1ሻቇ

ே

௡ୀଵ

 (16)

HT [39] 𝐻ሺ𝑡ሻ ൌ
1
𝜋

න
𝑥ሺ𝜏ሻ

𝑡 െ 𝜏
𝑑𝜏

ାஶ

ିஶ
 (17)

ST [40] 𝑆 ൬𝑖𝑇௦,
𝑛

𝑁𝑇௦
൰ ൌ ෍ 𝐹 ൬

𝑚 ൅ 𝑛
𝑁𝑇௦

൰ 𝑒ି
ଶగమ௠మ

௡మ 𝑒
௝ଶగ௠௜

ே

ேିଵ

௠ୀ଴

 (18)

Table 4. The definition of statistical-based features. 

Feature Definition  

Mean 𝜇ଵ ൌ
1
𝑁

෍ 𝑥ሺ𝑛ሻ

ே

௡ୀଵ

 (19)

Variance 𝜇ଶ ൌ
1
𝑁

෍ሺ𝑥ሺ𝑛ሻ െ 𝜇ଵሻଶ

ே

௡ୀଵ

 (20)

Skewness 𝜇ଷ ൌ
1

𝑁. 𝜇ଶ

ଷ
ଶ

෍ሺ𝑥ሺ𝑛ሻ െ 𝜇ଵሻଷ

ே

௡ୀଵ

 (21)

Kurtosis 𝜇ସ ൌ
1

𝑁. 𝜇ଶ
ଶ ෍ሺ𝑥ሺ𝑛ሻ െ 𝜇ଵሻସ

ே

௡ୀଵ

. (22)

Median 𝑚𝑒𝑑 ൌ

⎩
⎨

⎧𝑥 ቀ
𝑛
2

ቁ     𝑓𝑜𝑟 𝑜𝑑𝑑 𝑛

1
2

ቆ𝑥 ൬
𝑛 െ 1

2
൰ ൅ 𝑥 ൬

𝑛 ൅ 1
2

൰ቇ 𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 𝑛
 (23)

Mode 
𝑚𝑜𝑑 ൌ maxሺ𝑓௜ሻ 

𝑓𝑜𝑟 𝑖 ൌ 1, … , 𝑁 
(24)
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In Table 3, 𝜓 is the mother Wavelet function, 𝑘 and 𝑙 are the positions of the wavelet 𝜓 with 
the scale of 𝑠, 𝑔ሺ𝑀ሻ is the window function of length 𝑀 and the center of 𝑤଴, 𝑓 is the frequency, 
𝛿௞ଵ is Kronecker delta, and 𝑇௦ is the time sampling interval.  

Table 4 describes six statistical measures as the classical and primary features of a given time 
series, i.e., mean, variance, skewness, kurtosis, median, and mode. In Table 4, 𝑓௜ is the frequency of 
data value, and 𝑁 is the total of data points. 

4. Results and discussion 

Before applying the methods, briefly described in Tables 1–4, the spiking activity of each MT 
neuron was averaged across trials for IN and OUT conditions. Then the averaged spiking activity in 
IN conditions as well as the OUT condition were used for feature extraction. Note that the first 400 ms 
of the memory period were excluded from any further analysis to prevent any data contamination 
caused by the disappearance of the visual target (see Figure 2a). In the next step, a total of 24 features, 
including fractal- and entropy-based features as the nonlinear features and transform- and statistical-
based features, were extracted from the IN and OUT conditions in both fixation and memory periods 
by applying the algorithms summarized in Tables 1–4. An indicator of the memory content is expected 
to make a significant difference between the IN and OUT conditions during the memory period while 
showing no difference between the conditions during the fixation period. Therefore, using the 
Wilcoxon signed-rank test, the features of IN conditions were compared to the corresponding values 
of the OUT condition in both memory and fixation periods. Tables 5–8 express the results (p-values) 
of the examination for each class of nonlinear and classical features. 

Table 5. The comparison of the fractal-based features to detect the memory content from 
the average spiking activity of MT neurons in fixation and memory periods (between IN 
and OUT conditions). 

Index 
p-value 

Fixation Period Memory Period 

HFD 𝟎. 𝟒𝟔𝟑𝟕 ൏ 𝟎. 𝟎𝟎𝟏 

KFD ൏ 0.001 ൏ 0.001 

GHE ൏ 0.001 ൏ 0.001 

MSFD 𝟎. 𝟏𝟐𝟗𝟓 ൏ 𝟎. 𝟎𝟎𝟏 

LTFD ൏ 0.001 ൏ 0.001 

FV ൏ 0.001 ൏ 0.001 

Looking more closely at Table 5, it can be noticed that the HFD (Figure 3a,b) and MSFD 
(Figure 4a,b) may show a difference in memory period (𝑝ுி஽ 𝑎𝑛𝑑 𝑝ெௌி஽ ൏ 0.001) while no difference 
was detected in the fixation period (𝑝ுி஽ ൌ 0.4637 and 𝑝ெௌி஽ ൌ 0.1295). Based on Table 6, the same 
effect was also observed for the ShanEn (Figure 5a,b; fixation period: 𝑝ௌ௛௔௡ா௡ ൌ 0.5488 ; memory 
period: 𝑝ௌ௛௔௡ா௡ ൏ 0.001 ) and CondEn (Figure 6a,b; fixation period: 𝑝஼௢௡ௗா௡ ൌ 0.2974 ; memory 



3757 

Mathematical Biosciences and Engineering  Volume 20, Issue 2, 3749–3767. 

period: 𝑝஼௢௡ௗா௡ ൏ 0.001 ). Although four nonlinear features showed an effect (in memory period) 
compared to their baseline (fixation period), none of the transform-based features depicted such an 
effect (see Table 7). On the other hand, one of the statistical-based features, skewness in Table 8, 
showed a slight difference between IN and OUT conditions in the memory period (𝑝௦௞௘௪௡௘௦௦ ൌ 0.0706) 
compared to the fixation period (𝑝௦௞௘௪௡௘௦௦ ൏ 0.001).  

Table 6. The comparison of the entropy-based features to detect the memory content from 
the average spiking activity of MT neurons in fixation and memory periods (between IN 
and OUT conditions). 

Index 
p-value 

Fixation Period Memory Period 

ApEn ൏ 0.001 0.1827 

SampEn ൏ 0.001 0.0114 

ShanEn 𝟎. 𝟓𝟒𝟖𝟖 ൏ 𝟎. 𝟎𝟎𝟏 

PermEn ൏ 0.001 ൏ 0.001 

FuzEn ൏ 0.001 0.0022 

CondEn 𝟎. 𝟐𝟗𝟐𝟕 ൏ 𝟎. 𝟎𝟎𝟏 

Table 7. The comparison of the transform-based features to detect the memory content 
from the average spiking activity of MT neurons in fixation and memory periods (between 
IN and OUT conditions). 

Index 
p-value 

Fixation Period Memory Period 

DWT  0.0449 0.6004 

DFT ൏ 0.001 ൏ 0.001 

STFT ൏ 0.001 ൏ 0.001 

DCT ൏ 0.001 ൏ 0.001 

HT 0.0069 0.0006 

ST ൏ 0.001 ൏ 0.001 
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Table 8. The comparison of the statistical-based features to detect the memory content 
from the average spiking activity of MT neurons in fixation and memory periods (between 
IN and OUT conditions). 

Index 
p-value 

Fixation Period Memory Period 

Mean 0.0301 0.6165 

Variance ൏ 0.001 ൏ 0.001 

Skewness 𝟎. 𝟎𝟕𝟎𝟔 ൏ 𝟎. 𝟎𝟎𝟏 

Kurtosis 0.2252 0.2377 

Median 0.0007 0.2856 

Mode ൏ 0.001 0.1814 

The above analysis suggests that the HFD, MSFD, ShanEn, CondEn, and skewness could detect 
the presence of the working memory since they could perfectly distinguish IN condition from the OUT 
condition in the memory period, while no difference was detected in the fixation period. However, the 
desired indicator of the working memory should be sensitive to the presence of memory modulation 
as well. Therefore, we performed further analysis to identify whether these features can detect the 
presence of working memory or not. In other words, the same effect mentioned above should be 
noticed between the fixation (when no memory is present) and memory periods of IN condition. The 
comparison of HFD values of memory IN versus fixation IN and memory OUT versus fixation OUT 
(Figure 3c,d) revealed that HFD could capture the presence of working memory since it made a 
difference between memory IN and fixation IN (𝑝ுி஽ ൏ 0.001), while it showed no difference between 
memory OUT and fixation OUT (𝑝ுி஽ ൌ 0.4735). Furthermore, it can be seen that the value of HFD 
increases in the presence of working memory ( ∆𝐻𝐹𝐷௠௘௠௢௥௬ ூேି௠௘௠௢௥௬ ை௎் ൌ 0.0708  and 
∆𝐻𝐹𝐷௠௘௠௢௥௬ ூேି௙௜௫௔௧௜௢௡ ூே ൌ 0.0710), indicating that the spiking activity of MT neurons becomes more 
complex as the monkey maintains the spatial information. The same analysis was performed on MSFD 
(Figure 4c,d), ShanEn (Figure 5c,d), CondEn (Figure 6c,d), and skewness (Figure 7c,d). However, a 
significant difference was observed in the comparison of memory IN versus fixation IN (𝑝 ൏ 0.001) 
and memory OUT versus fixation OUT (𝑝 ൏ 0.001). Thus, it can be concluded that the MSFD, ShanEn, 
CondEn, and skewness perhaps are also sensitive to other cognitive factors such as vigilance, arousal 
and awareness as well as working memory. In any case, they cannot be considered as indicators unique 
to working memory. 
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Figure 3. First row: The HFD values of IN versus OUT conditions during a) fixation and 
b) memory periods. Second row: The HFD values during fixation versus memory periods 
of c) IN and d) OUT conditions. Three asterisks show 𝑝 ൏ 0.001  and 𝑛. 𝑠.  indicates 
𝑝 ൐ 0.05. 
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Figure 4. First row: The MSFD values of IN versus OUT conditions during a) fixation and 
b) memory periods. Second row: The MSFD values during fixation versus memory periods 
of c) IN and d) OUT conditions. Three asterisks show 𝑝 ൏ 0.001  and 𝑛. 𝑠.  indicates 
𝑝 ൐ 0.05. 
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Figure 5. First row: The ShanEn values of IN versus OUT conditions during a) fixation 
and b) memory periods. Second row: The ShanEn values during fixation versus memory 
periods of c) IN and d) OUT conditions. Three asterisks show 𝑝 ൏ 0.001  and 𝑛. 𝑠. 
indicates 𝑝 ൐ 0.05. 
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Figure 6. First row: The CondEn values of IN versus OUT conditions during a) fixation 
and b) memory periods. Second row: The CondEn values during fixation versus memory 
periods of c) IN and d) OUT conditions. Three asterisks show 𝑝 ൏ 0.001  and 𝑛. 𝑠. 
indicates 𝑝 ൐ 0.05. 
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Figure 7. First row: The Skewness values of IN versus OUT conditions during a) fixation 
and b) memory periods. Second row: The Skewness values during fixation versus memory 
periods of c) IN and d) OUT conditions. Three asterisks show 𝑝 ൏ 0.001  and 𝑛. 𝑠. 
indicates 𝑝 ൐ 0.05. 

5. Conclusions 

In this paper, a comprehensive analysis was performed to examine the ability of the nonlinear 
features, including fractal- and entropy-based features, and classical ones, such as transform- and 
statistical-based features. Six fractal-based (HFD, KFDm GHE, MSFD, LTFD, and Fv), six entropy-
based (ApEn, SampEn, ShanEn, PermEn, FuzEn, and CondEn), six transform-based (the average value 
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of DWT, DFT, STFT, DCT, HT, and ST) and six statistical-based (mean, variance, skewness, kurtosis, 
median, and mode) features were extracted from the spiking activity of MT neurons. Using the 
Wilcoxon signed-rank test, values of each feature in IN and OUT conditions were compared during 
the memory and fixation period. As a result, HFD and MSFD from the fractal-based features, ShanEn 
and CondEn from the entropy-based features, and skewness from the statistical-based features were 
found to be capable of capturing the memory content. However, more investigations revealed that 
among the five mentioned features, HFD was the only indicator that was unique to the working 
memory since it shows a significate difference in the comparison of memory IN versus memory OUT 
and memory IN versus fixation IN while showing no difference between fixation IN and fixation OUT 
as well as memory OUT and fixation OUT. Such effect was not observed for any of the other four 
mentioned features. In addition, our results were consistent with the ones declared in [19]. Although 
the rest of mentioned features, in fact, captured the working memory, they could also detect other 
cognitive factors (such as vigilance and arousal), which make them not unique to working memory. 
As four out of five features were nonlinear, it can be concluded that the working memory alters the 
nonlinearity of visual responses in area MT that cannot be detected using simple statistical measures 
or powerful transform-based features. 

Since the brain is a complex structure, it exhibits complex behavior reflected in biological signals 
such as neural activities. Thus, it is not far-fetched that this complexity can be captured by the nonlinear 
features measuring the complexity of nonlinear and nonstationary signals, such as the fractal 
dimension. Previously, we showed that although no signs of spatial working memory could be 
observed directly in the average spiking activity of neurons in the area MT, the nonlinear properties of 
spiking patterns were significantly changed under the influence of working memory captured by HFD. 
In this study, we examined the hypothesis that the effect of working memory can be noticed in the 
other feature domains, such as time, frequency, time-frequency, and entropy. However, the results 
revealed that linear features are not qualified to capture the content of working memory in the activity 
of individual neurons in the area MT. On the other hand, we found other criteria (except for the HFD) 
sensitive to the visual information in the memory period, whilst they were not unique to the working 
memory. Moreover, our results confirm that maintaining visual information increases the complexity 
or the dimensionality of the neural spiking activity. Overall, our results shed more light on the 
underlying neural mechanisms of spatial working memory and may yield insights regarding the neural 
substrates of other cognitive functions, such as attention in future studies. 
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