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Abstract: Aggregation is a very efficient indispensable tool in which several input values are
transformed into a single output value that further supports dealing with different decision-making
situations. Additionally, note that the theory of m-polar fuzzy (mF) sets is proposed to tackle
multipolar information in decision-making problems. To date, several aggregation tools have been
widely investigated to tackle multiple criteria decision-making (MCDM) problems in an m-polar
fuzzy environment, including m-polar fuzzy Dombi and Hamacher aggregation operators (AOs).
However, the aggregation tool to deal with m-polar information under Yager’s operations (that is,
Yager’s t-norm and t-conorm) is missing in the literature. Due to these reasons, this study is devoted
to investigating some novel averaging and geometric AOs in an mF information environment through
the use of Yager’s operations. Our proposed AOs are named as the mF Yager weighted averaging
(mFYWA) operator, mF Yager ordered weighted averaging operator, mF Yager hybrid averaging
operator, mF Yager weighted geometric (mFYWG) operator, mF Yager ordered weighted geometric
operator and mF Yager hybrid geometric operator. The initiated averaging and geometric AOs are
explained via illustrative examples and some of their basic properties, including boundedness,
monotonicity, idempotency and commutativity are also studied. Further, to deal with different MCDM
situations containing mF information, an innovative algorithm for MCDM is established under the
under the condition of mFYWA and mFYWG operators. After that, a real-life application (that is,
selecting a suitable site for an oil refinery) is explored under the conditions of developed AOs.
Moreover, the initiated mF Yager AOs are compared with existing mF Hamacher and Dombi AOs
through a numerical example. Finally, the effectiveness and reliability of the presented AOs are
checked with the help of some existing validity tests.
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1. Introduction

Multi-criteria decision-making (MCDM) is an essential mathematical tool for solving various
daily-life problems involving multiple parameters or attributes, and it is playing a vital role in several
areas, including engineering, medical, economics, etc. Inspection of the past two decades show that
the aggregation operator (AO) based MCDM methodologies are playing a significant role in solving
several real-life problems by converting the raw data into a valuable piece of information. For the
classification of alternatives in various daily-life scenarios, the experts or scientists used different
types of traditional evaluation tools like crisp set theory. In different decision-making problems due to
increasing uncertainties of datasets, it was difficult for the experts to tackle those situations with the
help of exact numerical values. To remove this difficulty, Zadeh [1] originally launched the theory of
fuzzy sets by proposing a membership function whose codomain is [0, 1]. Thus, crisp set theory is a
particular case of fuzzy set theory. After that, many experts from all over the globe have been
attracted to the powerful idea of fuzzy sets and solved different decision-making problems comprising
vagueness and imprecision in their data-sets more accurately than crisp sets, e.g., [2–4]. Several AOs
in a fuzzy information environment have been explored to deal with different decision-making
situations. For instance, Song et al. [5] proposed some parameterized AOs under fuzzy information
and studied their basic properties. Merigo and Gil-Lafuente [6] investigated fuzzy induced
generalized AOs and applied them to solve decision-making problems.

As a direct extension of fuzzy sets, Atanassov [7] initiated the notion of intuitionistic fuzzy sets
(IFSs) by adding a non-membership function with the membership function in the fuzzy set theory
whose functional values sum should be bounded by 1. After the production of an IFS model, the
experts moved their attraction to tackle decision-making situations using IFS theory. For example,
Xu [8] investigated some IFS-based AOs, namely, IF weighted, ordered weighted, and hybrid
weighted averaging AOs (see also [9, 10] for IFS-based power AOs and IFS-based ordered weighted
distance AOs). In addition, Xu and Yager [11] proposed some IFS-based geometric AOs. Wei [12]
introduced different induced geometric and generalized IFS-based AOs with the solution of a
decision-making application. Tan et al. [13] proposed IFS-based generalized geometric AOs and
studied their applications to MCDM. After the invention of Pythagorean fuzzy sets (PFSs) by
Yager [14], Peng and Yang [15] studied some fundamental notions of PFS-based AOs in an
interval-valued environment. Garg and Kumar [16] proposed some power geometric AOs based on
the connection number in intuitionistic fuzzy format. Shahzadi et al. [17] developed some novel AOs
under Pythagorean fuzzy Yager operations. Ali et al. [18] introduced some novel arithmetic and
geometric AOs by using complex T -spherical fuzzy sets and studied their application in an investment
problem. Ashraf et al. [19] submitted certain spherical fuzzy Dombi AOs and explored their
application to multiple attribute group decision-making. In recent years, several studies have been
completed which directly involve the aggregation of bipolar data with the help of existing operations,
that is, Dombi and Hamacher t-norms and t-conorms. For example, Wei et al. [20] presented bipolar
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data-based Hamacher AOs with their MCDM applications. Afterwards, Jana et al. [21] proposed
bipolar data-based Dombi AOs and solved a daily-life problem. In addition, Jana et al. [22]
introduced bipolar fuzzy Dombi prioritized AOs.

Many daily life situations involve datasets from m different agents or sources (m ≥ 2), which
means the multipolar information emerges that cannot be portrayed mathematically through the
traditional tools of crisp set theory, fuzzy set theory, IFS theory and PFS theory. The main goal of the
work offered in this article is to tackle the shortcomings of mathematical tools considering multipolar,
multi-attribute and multi-index information. These days, research scholars think that this world is
nearing the concepts of multipolarity because multipolarity in information and data plays a substantial
role in numerous disciplines ranging from arts to sciences. For example, a noisy communication
channel may have different latency, bandwidth, radio frequency and network range. Concerning
information technology, multipolar technology can be employed to analyze larger information
systems. Concerning neurobiology, neurons in the brain collect data from other multiple neurons.
Concerning a social network, the efficacy rate of distinct people may be distinct regarding trading
relationships, proactiveness, and socialism. All of these multipolar scenarios contain fuzzy data. To
deal with such multipolar situations, we need more innovative theoretical and mathematical models.
In summary, the prevailing theories of fuzzy sets, IFSs and PFSs are very efficient mathematical tools
to deal with vagueness and uncertainties; but they are inefficient in some scenarios, e.g., when the
under-consideration datasets are multi-dimensional. To solve this difficulty in the implementation of
fuzzy sets and their extensions, Chen et al. [23] generalized the theory of fuzzy sets and proposed the
theory of m-polar fuzzy (mF) sets, which have the ability to deal with multipolarity in datasets of
different domains of modern sciences. To date, some studies have focused on the aggregation of mF
information by using different AOs. For example, Waseem et al. [24] launched mF Hamacher AOs
and solved two MCDM problems. Khameneh and Kilicman [25] presented the ideas of mF soft
weighted AOs and implemented them to solve MCDM problems. Additionally, Akram et al. [26]
initiated the notions of mF Dombi AOs and explored some of their MCDM applications. Recently,
Naz et al. [27] proposed some novel 2−tuple linguistic bipolar fuzzy Heronian mean AOs for group
decision-making.

In the early 1980s, Yager proposed a t-norm (TN) and t-conorm (TCoN), which are more universal
operators than the Lukasiewicz TN and TCoN, respectively. Recently, a number of researchers have
been attracted toward these and introduced several new results in the area of MCDM. For example,
Garg et al. [28] introduced Fermatean fuzzy Yager AOs and studied their application to COVID-19
testing facility. In addition, Liu et al. [29] presented some certain kinds of q-rung picture fuzzy Yager
AOs for decision-making. Later, Akram et al. [30] launched the theory of complex Pythagorean fuzzy
Yager AOs and illustrated their validity through an MCDM problem-solving method. All of these
models do not consider the aggregation of mF information under Yager’s TN and TCoN. We take
Yager’s operations due to their simple implementation compared to other TNs and TCoNs like Dombi,
Hamacher and Frank. And, Yager’s operations also consider a strong correlation between different
estimated results compared to other operators. Therefore, in this article, we propose some other novel
types of Yager AOs for the aggregation of mF information. For more related useful basic terminologies,
the readers are referred to [31–42].

The following reasons motivate us to develop the mF Yager AOs.
1) The theory of mF sets being a generalized fruitful tool is playing a vital role in the execution
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procedure of uncertain decision-making problems involving multipolar information.
2) The theory of fuzzy sets is only able to handle datasets in one dimension, and thus a loss of

information may occur. This is because, in many practical situations, multiple attributes and all of their
possible features can only be handled with mF set theory and its hybrid models.

3) Until today, several results on the aggregation of complex real-world problems involving mF
datasets have been presented under different MCDM-AOs (i.e., mF Hamacher and Dombi AOs), but
the aggregation of mF information with the help of Yager’s operations (that is, Yager’s TN and TCoN)
has not been elucidated.

4) The mF Yager AOs provide an alternative approach for dealing with several MCDM problems
like some existing mF AOs.

To sum up, from the aforementioned discussion, we notice that the work on the aggregation of mF
information under Yager’s operations is not present in the existing literature. Due to these
shortcomings, in this article, we have presented mF Yager AOs and operated them to solve a practical
MCDM problem. This article mainly contributes the following:

1) The concepts of some mF Yager arithmetic and geometric AOs are proposed along with their
basic properties, including monotonicity, idempotency, boundedness and commutativity.

2) An algorithm is designed step-by-step for dealing with daily-life MCDM problems in an mF
information environment.

3) A number of site selection problems have been explored in the literature via different fuzzy
set-based hybrid models [43, 44]. Thus, to verify the applicability of the initiated mF Yager AOs in
practical scenarios, an application is presented which deals with the selection of an appropriate site for
an oil refinery.

4) To prove the feasibility and authenticity of the initiated mF Yager AOs, a comparison of these
mF Yager AOs is investigated with existing mF Hamacher AOs [24], and mF Dombi AOs [26].

Table 1. Nomenclature of the research work.

Acronyms and Notations Description
mF m-polar fuzzy
mFYOWG mF Yager ordered weighted geometric
mFDWA mF Dombi weighted averaging
mFHWA mF Hamacher weighted averaging
mFHWG mF Hamacher weighted geometric
COVID-19 Corona-virus disease 2019
S(η̃) Accuracy function of mF number η̃
A(η̃) Score function of mF number η̃
η̃ = (p1 ◦ η, . . . , pm ◦ η) mF number
Υ = (Υ1,Υ2, . . . ,Υn)T weight-vector
S = {S1,S2, . . . ,Sk} Universal set
{E1,E2, . . . ,En} Universal set of parameters
M̃ = (d̃it)k×n mF decision matrix
d̃r Preference values

This article is structured as follows: Section 2 first reviews basic definitions and properties
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associated with mF numbers and then introduces the mF Yager weighted averaging (mFYWA)
operator, mF Yager ordered weighted averaging (mFYOWA) operator, mF Yager hybrid averaging
(mFYHA) operator, mF Yager weighted geometric (mFYWG) operator, mF Yager ordered weighted
geometric operator (mFYOWG) and mF Yager hybrid geometric (mFYHG) operator. Section 3 first
develops a MCDM method under initiated mF Yager AOs to solve real-life problems containing
complicated mF information and then explores an MCDM application in which the selection of a
suitable site for an oil refinery is investigated. Section 4 provides a comparison of the developed
methodology for mF Yager AOs with mF Hamacher [24] and Dombi [26] AOs. Section 5 concludes
our work by providing advantages, disadvantages and some further future directions.

The notations and abbreviations are provided in Table 1.

2. mF Yager AOs

This section first reviews the definition of mF sets and some operations of mF numbers; it then
presents some essential Yager operations for mF numbers by using Yager’s TCoN and Yager’s TN and
establishes mF Yager arithmetic and geometric AOs together with illustrative numerical examples.

Definition 2.1. [23] An mF set or mF set on a universal set S is a mapping η : S → [0, 1]m. The
belongingness degree of each alternative is expressed as η(s) = (p1 ◦η(s), p2 ◦η(s), . . . , pm ◦η(s)) where
s ∈ S, and for ( j = 1, 2, . . . ,m), p j ◦ η : [0, 1]m → [0, 1] is the j-th projection mapping.

For an mF number η̃ = (p1 ◦ η, . . . , pm ◦ η), where p j ◦ η ∈ [0, 1], for all j = 1, 2, . . . ,m, the score
and accuracy functions of mF number η̃ are respectively given as follows:

Definition 2.2. [24] For an mF number η̃ = (p1 ◦ η, . . . , pm ◦ η), its score S and accuracy A functions
are provided by

S(η̃) =
1
m

( m∑
t=1

(pt ◦ η)
)
, S(η̃) ∈ [0, 1],

A(η̃) =
1
m

( m∑
t=1

(−1)t+1(pt ◦ η − 1)
)
, A(η̃) ∈ [−1, 1].

Clearly, the above Definition 2.2 provides us an ordered relation criterion for mF numbers, which is
given as follows:

Definition 2.3. [24] For any two mF numbers η̃1 = (p1 ◦η1, . . . , pm ◦η1), and η̃2 = (p1 ◦η2, . . . , pm ◦η2),
we have

1) η̃1 < η̃2, if S(η̃1) < S(η̃2),
2) η̃1 > η̃2, if S(η̃1) > S(η̃2),
3) If S(η̃1) = S(η̃2) then

• η̃1 < η̃2, if A(η̃1) < A(η̃2),
• η̃1 > η̃2, if A(η̃1) > A(η̃2),
• η̃1 = η̃2, if A(η̃1) = A(η̃2).

Some useful fundamental properties of mF numbers are given as below [24]:
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1) η̃1 ⊞ η̃2 =
(
p1 ◦ η1 + p1 ◦ η2 − p1 ◦ η1.p1 ◦ η2, . . . , pm ◦ η1 + pm ◦ η2 − pm ◦ η1.pm ◦ η2

)
,

2) η̃1 ⊠ η̃2 =
(
p1 ◦ η1.p1 ◦ η2, . . . , pm ◦ η1.pm ◦ η2

)
,

3) ςη̃ =
(
1 − (1 − p1 ◦ η)ς), . . . , 1 − (1 − pm ◦ η)ς

)
, ς > 0,

4) (η̃)ς =
(
(p1 ◦ η)ς, . . . , (pm ◦ η)ς

)
, ς > 0,

5) η̃c =
(
1 − p1 ◦ η, . . . , 1 − pm ◦ η

)
,

6) η̃1 ⊆ η̃2, if and only if p1 ◦ η1 ≤ p1 ◦ η2, . . . , pm ◦ η1 ≤ pm ◦ η2,

7) η̃1 ∪ η̃2 =
(

max(p1 ◦ η1, p1 ◦ η2), . . . ,max(pm ◦ η1, pm ◦ η2)
)
,

8) η̃1 ∩ η̃2 =
(

min(p1 ◦ η1, p1 ◦ η2), . . . ,min(pm ◦ η1, pm ◦ η2)
)
.

Theorem 2.1. [24] Let η̃1 = (p1 ◦ η1, . . . , pm ◦ η1) and η̃2 = (p1 ◦ η2, . . . , pm ◦ η2) be mF numbers and
ς, ς1, ς2 > 0, then, we have

1) η̃1 ⊞ η̃2 = η̃2 ⊞ η̃1,
2) η̃1 ⊠ η̃2 = η̃2 ⊠ η̃1,
3) ς(η̃1 ⊞ η̃2) = ς(η̃1) ⊞ ς(η̃2),
4) (η̃1 ⊠ η̃2)ς = (η̃1)ς ⊞ (η̃2)ς,
5) ς1η̃1 ⊞ ς2η̃1 = (ς1 + ς2)η̃1,
6) (η̃1)ς1 ⊠ (η̃2)ς2 = (η̃1)ς1+ς2 ,
7)

(
(η̃1)ς1

)ς2 = (η̃1)ς1ς2 .

Yager [41] initiated a useful TN (Yager product ⊗) and TCoN (Yager sum ⊕), which are respectively
given by

Y(s1, s2) = s1 ⊗ s2 = 1 −min
(
1,

(
(1 − s1)σ + (1 − s2)σ

) 1
σ

)
, (2.1)

Y∗(s1, s2) = s1 ⊕ s2 = min
(
1,

(
(s1)σ + (s2)σ

) 1
σ

)
, (2.2)

where σ ≥ 0 and s1, s2 ∈ R (set of real numbers).
We are now ready to present some essential Yager operations for mF numbers by using Yager’s

TCoN and Yager’s TN. For two mF numbers η̃1 = (p1 ◦ η1, . . . , pm ◦ η1) and η̃2 = (p1 ◦ η2, . . . , pm ◦ η2)
and ς > 0, we provide certain operations of mF numbers with Yager’s TN and TCoN as below:

• η̃1 ⊕ η̃2 =

(√
min

(
1,

(
(p1 ◦ η1)2σ + (p1 ◦ η2)2σ) 1

σ

)
, . . . ,

√
min

(
1,

(
(pm ◦ η1)2σ + (pm ◦ η2)2σ) 1

σ

) )
,

• η̃1 ⊗ η̃2 =

(√
1 −min

(
1,

(
(1 − (p1 ◦ η1)2)σ + (1 − (p1 ◦ η2)2)σ

) 1
σ

)
, . . . ,√

1 −min
(
1,

(
(1 − (pm ◦ η1)2)σ + (1 − (pm ◦ η2)2)σ

) 1
σ

))
,

• ςη̃1 =

(√
min

(
1,

(
ς(p1 ◦ η1)2σ) 1

σ

)
, . . . ,

√
min

(
1,

(
ς(pm ◦ η1)2σ) 1

σ

) )
,

• (η̃1)ς =
(√

1 −min
(
1,

(
ς(1 − (p1 ◦ η1)2)σ

) 1
σ

)
, . . . ,

√
1 −min

(
1,

(
ς(1 − (pm ◦ η1)2)σ

) 1
σ

))
.

2.1. mF Yager arithmetic AOs

In this subsection, we introduce some novel mF Yager arithmetic AOs with their useful properties:
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Definition 2.4. Let η̃t = (p1 ◦ ηt, . . . , pm ◦ ηt) with t = 1, 2, . . . , n be a finite set of mF numbers; then, a
function mFYWAΥ : η̃n → η̃ is called an mF Yager weighted average operator, which is given as

mFYWAΥ(η̃1, η̃2, . . . , η̃n) =
n⊕

t=1

(Υtη̃t), (2.3)

where Υ = (Υ1,Υ2, . . . ,Υn)T represents the weights for η̃t, ∀ t = 1, . . . , n and Υt > 0 with
n∑

t=1
Υt = 1.

Now we provide the main result to aggregate mF information with the proposed mF Yager
operations.

Theorem 2.2. Let η̃t = (p1 ◦ηt, . . . , pm ◦ηt) be a finite collection of mF numbers, that is, t = 1, 2, . . . , n;
then, an aggregated value of these mF numbers using the mF Yager weighted average operator is
given by

mFYWAΥ(η̃1, η̃2, . . . , η̃n) =
n⊕

t=1

(Υtη̃t),

=

(√√
min

(
1,

( n∑
t=1

Υt(p1 ◦ ηt)2σ) 1
σ

)
, . . . ,

√√
min

(
1,

( n∑
t=1

Υt(pm ◦ ηt)2σ) 1
σ

) )
. (2.4)

The proof of this theorem is given in Appendix A.

Example 2.1. Let η̃1 = (0.5, 0.4, 0.7), η̃2 = (0.2, 0.4, 0.3), η̃3 = (0.8, 0.9, 0.6) and η̃4 = (0.7, 0.5, 0.3) be
3-polar fuzzy (3F) numbers and Υ = (0.3, 0.1, 0.4, 0.2)T be weights associated with these 3F numbers.
Then, for σ = 5,

mFYWAΥ(η̃1, η̃2, η̃3, η̃4) =
4⊕

t=1

(Υtη̃t)

=

(√√
min

(
1,

( 4∑
t=1

Υt(p1 ◦ ηt)2σ) 1
σ

)
, . . . ,

√√
min

(
1,

( 4∑
t=1

Υt(p3 ◦ ηt)2σ) 1
σ

) )
,

=

(√
min

(
1,

(
0.3 ×

(
0.5

)10
+ 0.1 ×

(
0.2

)10
+ 0.4 ×

(
0.8

)10
+ 0.2 ×

(
0.7

)10)1/5
)
,√

min
(
1,

(
0.3 ×

(
0.4

)10
+ 0.1 ×

(
0.4

)10
+ 0.4 ×

(
0.9

)10
+ 0.2 ×

(
0.5

)10)1/5
)
,√

min
(
1,

(
0.3 ×

(
0.7

)10
+ 0.1 ×

(
0.3

)10
+ 0.4 ×

(
0.6

)10
+ 0.2 ×

(
0.3

)10)1/5
))
,

= (0.7395, 0.8213, 0.6364).

In what follows, some essential properties of mFYWA operators are explored.

Theorem 2.3. (Monotonicity) For two sets of mF numbers η̃t and η̃′t , with t ∈ {1, 2, . . . , n}, if each
η̃t ≤ η̃

′
t , then

mFYWAΥ(η̃1, η̃2, . . . , η̃n) ≤ mFYWAΥ(η̃′1, η̃
′
2, . . . , η̃

′
n). (2.5)
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Proof. It is straightforward by Definition 2.4 and Theorem 2.2. □

Theorem 2.4. (Idempotency) For a collection of mF numbers which are ‘n’ in number given as η̃t =

(p1 ◦ ηt, . . . , pm ◦ ηt) such that η̃t = η̃, we get

mFYWAΥ(η̃1, η̃2, . . . , η̃n) = η̃. (2.6)

The proof of this theorem is provided in Appendix B.

Theorem 2.5. (Boundedness) For a set of ‘n’ mF numbers η̃t = (p1 ◦ ηt, . . . , pm ◦ ηt), if η̃l =
⋂n

t=1(ηt)
and η̃u =

⋃n
t=1(ηt), then

η̃l ≤ mFYWAΥ(η̃1, η̃2, . . . , η̃n) ≤ η̃u. (2.7)

Proof. Its proof is easily followed by Definition 2.4 and Theorem 2.2. □

Now we discuss the notion of mFYOWA operators with some basic results.

Definition 2.5. For a collection of mF numbers η̃t = (p1 ◦ ηt, . . . , pm ◦ ηt), t = 1, 2, . . . , n, an mFYOWA
operator is a function mFYOWAΥ : η̃n → η̃, which is given by

mFYOWAΥ(η̃1, η̃2, . . . , η̃n) =
n⊕

t=1

(Υtη̃ς(t)), (2.8)

where Υ = (Υ1,Υ2, . . . ,Υn)T is the weight-vector and Υt ∈ (0, 1] with
n∑

t=1
Υt = 1. ς(t), (t = 1, 2, . . . , n)

represents the permutation, for which η̃ς(t−1) ≥ η̃ς(t).

Theorem 2.6. For a set of mF numbers η̃t = (p1 ◦ ηt, . . . , pm ◦ ηt) with t = 1, 2, . . . , n, an accumulated
value of these mF numbers by utilizing the mFYOWA operator is provided by

mFYOWAΥ(η̃1, η̃2, . . . , η̃n) =
n⊕

t=1

(Υtη̃ς(t))

=

(√√
min

(
1,

( n∑
t=1

Υt(p1 ◦ ης(t))2σ) 1
σ

)
, . . . ,

√√
min

(
1,

( n∑
t=1

Υt(pm ◦ ης(t))2σ) 1
σ

) )
. (2.9)

Proof. It is similar to the proof of Theorem 2.2. □

Example 2.2. Let η̃1 = (0.5, 0.4, 0.7, 0.6, 0.2), η̃2 = (0.1, 0.5, 0.4, 0.3, 0.6) and
η̃3 = (0.6, 0.2, 0.4, 0.3, 0.7) be three 5-polar fuzzy numbers with weights Υ = (0.5, 0.3, 0.2)T . Then,
for σ = 4, by Definition 2.2, we calculate the scores as below:

S(η̃1) =
0.5 + 0.4 + 0.7 + 0.6 + 0.2

5
= 0.48, S(η̃2) =

0.1 + 0.5 + 0.4 + 0.3 + 0.6
5

= 0.38,

S(η̃3) =
0.6 + 0.2 + 0.4 + 0.3 + 0.7

5
= 0.44.
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This implies S(η̃3) > S(η̃1) > S(η̃2); therefore,

η̃ς(1) = η̃1 = (0.5, 0.4, 0.7, 0.6, 0.2), η̃ς(2) = η̃3 = (0.6, 0.2, 0.4, 0.3, 0.7),
η̃ς(3) = η̃2 = (0.1, 0.5, 0.4, 0.3, 0.6).

Then, from Definition 2.5,

mFYOWAΥ(η̃1, η̃2, η̃3) =
3⊕

t=1

(Υtη̃ς(t)),

=

(√√
min

(
1,

( 3∑
t=1

Υt(p1 ◦ ης(t))2σ) 1
σ

)
, . . . ,

√√
min

(
1,

( 3∑
t=1

Υt(p5 ◦ ης(t))2σ) 1
σ

) )
,

=

(√
min

(
1,

(
0.5 ×

(
0.5

)8
+ 0.3 ×

(
0.6

)8
+ 0.2 ×

(
0.1

)8
)
,√

min
(
1,

(
0.5 ×

(
0.4

)8
+ 0.3 ×

(
0.2

)8
+ 0.2 ×

(
0.5

)8
)
,√

min
(
1,

(
0.5 ×

(
0.7

)8
+ 0.3 ×

(
0.4

)8
+ 0.2 ×

(
0.4

)8
)
,√

min
(
1,

(
0.5 ×

(
0.6

)8
+ 0.3 ×

(
0.3

)8
+ 0.2 ×

(
0.3

)8
)
,√

min
(
1,

(
0.5 ×

(
0.2

)8
+ 0.3 ×

(
0.7

)8
+ 0.2 ×

(
0.6

)8
))
,

= (0.5377, 0.4272, 0.6428, 0.5505, 0.6157).

Remark 2.1. The mFYOWA operators verify different basic laws such as monotonicity, idempotency
and boundedness as given by Theorems 2.3–2.5.

Theorem 2.7. (Abelian Property) For every two sets of mF numbers η̃t and η̃′t with t ∈ {1, 2, . . . , n}, we
have

mFYOWAΥ(η̃1, η̃2, . . . , η̃n) = mFYOWηΥ(η̃′1, η̃
′
2, . . . , η̃

′
n); (2.10)

here η̃′t serves as an arbitrary permutation of η̃t.

Proof. Its proof is straightforward by Definition 2.5 and Theorem 2.6. □

From the above theory of arithmetic AOs (mFYWA and mFYOWA operators), we deduce that they
efficiently aggregate mF numbers, but the first type of AOs do not consider ordering while the second
type of AOs consider the ordering of mF numbers. In what follows, we provide a new kind of AOs,
namely, the mFYHA operator, which keeps the characteristics of mFYWA and mFYOWA operators.

Definition 2.6. For a set of mF numbers η̃t = (p1 ◦ ηt, p2 ◦ ηt, . . . , pm ◦ ηt) where t ∈ {1, 2, . . . , n}, an
mFYHA operator is provided by

mFYHAΥ,Ω(η̃1, η̃2, . . . , η̃n) =
n⊕

t=1

(Υt ˜̃ης(t)), (2.11)
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where Υ = (Υ1,Υ2, . . . ,Υn)T is the weight-vector corresponding to the mF numbers η̃t with the

following conditions: Υt ∈ (0, 1],
n∑

t=1
Υt = 1 and ˜̃ης(t) represents the jth biggest mF numbers such that

˜̃ης(t) = (nΩt)η̃t, t ∈ {1, 2, . . . , n}, where Ω = (Ω1,Ω2, . . . ,Ωn)T is another weight-vector with

Ωt ∈ (0, 1],
n∑

t=1
Ωt = 1.

Notice that, when Υ = ( 1
n ,

1
n , . . . ,

1
n ), the mFYHA operator converts into the mFYWA operator. If

Ω = ( 1
n ,

1
n , . . . ,

1
n ), then the mFYHA operator becomes the mFYOWA operator. Thus, mFYHA

operators investigate the mF degrees and ordering of mF numbers as an extension of both AOs, i.e.,
the mFYWA and mFYOWA operators.

Theorem 2.8. For a set of mF numbers η̃t = (p1 ◦ ηt, . . . , pm ◦ ηt) with t ∈ {1, 2, . . . , n}, an accumulated
value of these mF numbers with the help of mFYHA operators is given by

mFYHAΥ,Ω(η̃1, η̃2, . . . , η̃n) =
n⊕

t=1

(Υt ˜̃ης(t))

=

(√√
min

(
1,

( n∑
t=1

Υt(p1 ◦ ˜̃ης(t))2σ) 1
σ

)
, . . . ,

√√
min

(
1,

( n∑
t=1

Υt(pm ◦ ˜̃ης(t))2σ) 1
σ

) )
. (2.12)

Proof. It is similar to the proof of Theorem 2.2. □

Example 2.3. Let η̃1 = (0.4, 0.7, 0.3, 0.5), η̃2 = (0.3, 0.4, 0.2, 0.6), η̃3 = (0.7, 0.3, 0.4, 0.1) and
η̃4 = (0.5, 0.6, 0.8, 0.7) be 4-polar fuzzy (4F) numbers with Υ = (0.4, 0.1, 0.2, 0.3)T , a weight-vector
corresponding to these available 4F numbers and another weight-vector Ω = (0.2, 0.1, 0.3, 0.4)T .
Then, using Definition 2.6, when σ = 4,

˜̃η1 =

(√
min

(
1,

(
nΩ1(p1 ◦ η1)2σ) 1

σ

)
, . . . ,

√
min

(
1,

(
nΩ1(p4 ◦ η1)2σ) 1

σ

) )
,

=

(√
min

(
1,

(
4 × 0.2 ×

(
0.4

)8)1/4
)
,

√
min

(
1,

(
4 × 0.2 ×

(
0.7

)8)1/4
)
,√

min
(
1,

(
4 × 0.2 ×

(
0.3

)8)1/4
)
,

√
min

(
1,

(
4 × 0.2 ×

(
0.5

)8)1/4
))
,

= (0.3890, 0.6807, 0.2917, 0.4862).

Similarly,

˜̃η2 =

(√
min

(
1,

(
4 × 0.1 ×

(
0.3

)8)1/4
)
,

√
min

(
1,

(
4 × 0.1 ×

(
0.4

)8)1/4
)
,√

min
(
1,

(
4 × 0.1 ×

(
0.2

)8)1/4
)
,

√
min

(
1,

(
4 × 0.1 ×

(
0.6

)8)1/4
))
,

= (0.2675, 0.3567, 0.1784, 0.5351),
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˜̃η3 =

(√
min

(
1,

(
4 × 0.3 ×

(
0.7

)8)1/4
)
,

√
min

(
1,

(
4 × 0.3 ×

(
0.3

)8)1/4
)
,√

min
(
1,

(
4 × 0.3 ×

(
0.4

)8)1/4
)
,

√
min

(
1,

(
4 × 0.3 ×

(
0.1

)8)1/4
))
,

= (0.7161, 0.3069, 0.4092, 0.1023),

and

˜̃η4 =

(√
min

(
1,

(
4 × 0.4 ×

(
0.5

)8)1/4
)
,

√
min

(
1,

(
4 × 0.4 ×

(
0.6

)8)1/4
)
,√

min
(
1,

(
4 × 0.4 ×

(
0.8

)8)1/4
)
,

√
min

(
1,

(
4 × 0.4 ×

(
0.7

)8)1/4
))
,

= (0.5303, 0.6363, 0.8484, 0.7424).

Now the scores of mF numbers for σ = 4 are determined by

S( ˜̃η1) =
0.3890 + 0.6807 + 0.2917 + 0.4862

4
= 0.4619,

S( ˜̃η2) =
0.2675 + 0.3567 + 0.1784 + 0.5351

4
= 0.3344,

S( ˜̃η3) =
0.7161 + 0.3069 + 0.4092 + 0.1023

4
= 0.3836,

S( ˜̃η4) =
0.5303 + 0.6363 + 0.8484 + 0.7424

4
= 0.6893.

Since, S( ˜̃η4) > S( ˜̃η1) > S( ˜̃η3) > S( ˜̃η2), thus

˜̃ης(1) = ˜̃η4 = (0.5303, 0.6363, 0.8484, 0.7424), ˜̃ης(2) = ˜̃η1 = (0.3890, 0.6807, 0.2917, 0.4862),
˜̃ης(3) = ˜̃η3 = (0.7161, 0.3069, 0.4092, 0.1023), ˜̃ης(4) = ˜̃η2 = (0.2675, 0.3567, 0.1784, 0.5351).

Then, from Theorem 2.8,

mFYHAΥ,Ω(η̃1, η̃2, η̃3, η̃4) =
4⊕

t=1

(Υt ˜̃ης(t))

=

(√√
min

(
1,

( 4∑
t=1

Υt(p1 ◦ ˜̃ης(t))2σ) 1
σ

)
, . . . ,

√√
min

(
1,

( 4∑
t=1

Υt(p4 ◦ ˜̃ης(t))2σ) 1
σ

) )
,

=

(√
min

(
1,

(
0.4 ×

(
0.5303

)8
+ 0.1 ×

(
0.3890

)8
+ 0.2 ×

(
0.7161

)8
+ 0.3 ×

(
0.2675

)8)1/4
)
,√

min
(
1,

(
0.4 ×

(
0.6363

)8
+ 0.1 ×

(
0.6807

)8
+ 0.2 ×

(
0.3069

)8
+ 0.3 ×

(
0.3567

)8)1/4
)
,√

min
(
1,

(
0.4 ×

(
0.8484

)8
+ 0.1 ×

(
0.2917

)8
+ 0.2 ×

(
0.4092

)8
+ 0.3 ×

(
0.1784

)8)1/4
)
,√

min
(
1,

(
0.4 ×

(
0.7424

)8
+ 0.1 ×

(
0.4862

)8
+ 0.2 ×

(
0.1023

)8
+ 0.3 ×

(
0.5351

)8)1/4
))
,

= (0.5982, 0.5938, 0.7567, 0.6671).
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2.2. mF Yager geometric AOs

In what follows, some other kinds of geometric AOs are presented under the conditions of Yager’s
operations on mF information, and they are mFYWG, mFYOWG and mFYHG operators.

Definition 2.7. For a set of mF numbers η̃t = (p1 ◦ ηt, p2 ◦ ηt, . . . , pm ◦ ηt), t = 1, 2, . . . , n, a mapping
mFYWG : η̃n → η̃ is called the mFYWG operator, which is given by

mFYWGΥ(η̃1, η̃2, . . . , η̃n) =
n⊗

t=1

(η̃ j)Υt , (2.13)

where Υ = (Υ1,Υ2, . . . ,Υn)T is the weight-vector, with
n∑

t=1
Υt = 1, Υt ∈ (0, 1].

Theorem 2.9. For a set of mF numbers η̃t = (p1 ◦ ηt, . . . , pm ◦ ηt) with t ∈ {1, 2, . . . , n}, an accumulated
value of the given mF numbers with the help of mFYWG operators is provided by

mFYWGΥ(η̃1, η̃2, . . . , η̃n) =
n⊗

t=1

(η̃t)Υt ,

=

(√√
1 −min

(
1,

( n∑
t=1

(
Υt(1 − (p1 ◦ ηt)2)σ

)) 1
σ
)
, . . . ,

√√
1 −min

(
1,

( n∑
t=1

(
Υt(1 − (pm ◦ ηt)2)σ

)) 1
σ
) )
.

(2.14)

Proof. It is similar to the proof of Theorem 2.2. □

Example 2.4. Suppose that η̃1 = (0.3, 0.7, 0.5), η̃2 = (0.8, 0.9, 0.6), η̃3 = (0.4, 0.3, 0.1) and η̃4 =

(0.5, 0.4, 0.8) be 3F numbers with the weight-vector Υ = (0.2, 0.4, 0.1, 0.3)T . For σ = 4, we get

mFYWGΥ(η̃1, η̃2, η̃3) =
4⊗

t=1

(η̃t)Υt ,

=

(√√
1 −min

(
1,

( 4∑
t=1

(
Υt(1 − (p1 ◦ ηt)2)σ

)) 1
σ
)
, . . . ,

√√
1 −min

(
1,

( 4∑
t=1

(
Υt(1 − (p3 ◦ ηt)2)σ

)) 1
σ
) )
,

=

(√
1 −min

(
1,

(
0.2 ×

(
1 − (0.3)2)4

+ 0.4 ×
(
1 − (0.8)2)4

+ 0.1 ×
(
1 − (0.4)2)4

+ 0.3 ×
(
1 − (0.5)2)4)1/4

)
,√

1 −min
(
1,

(
0.2 ×

(
1 − (0.7)2)4

+ 0.4 ×
(
1 − (0.9)2)4

+ 0.1 ×
(
1 − (0.3)2)4

+ 0.3 ×
(
1 − (0.4)2)4)1/4

)
,√

1 −min
(
1,

(
0.2 ×

(
1 − (0.5)2)4

+ 0.4 ×
(
1 − (0.6)2)4

+ 0.1 ×
(
1 − (0.1)2)4

+ 0.3 ×
(
1 − (0.8)2)4)1/4

))
,

= (0.5168, 0.5532, 0.5535).

One can easily prove from the above discussion that the mFYWG operators hold the following
properties. So, we omit their proofs.

Theorem 2.10. (Idempotent Property) Let η̃t = (p1 ◦ ηt, . . . , pm ◦ ηt) be a set of ‘n’ equal mF numbers,
that is, η̃t = η̃; then,

mFYWGΥ(η̃1, η̃2, . . . , η̃n) = η̃. (2.15)
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Theorem 2.11. (Bounded Property) Let η̃t = (p1 ◦ ηt, . . . , pm ◦ ηt) be a set of ‘n’ mF numbers, η̃l =⋂n
t=1(ηt) and η̃u =

⋃n
t=1(ηt); then,

η̃l ≤ mFYWGΥ(η̃1, η̃2, . . . , η̃n) ≤ η̃u. (2.16)

Theorem 2.12. (Monotone Property) For every two arbitrary sets of mF numbers η̃t and η̃′t with t ∈
{1, 2, . . . , n}, if η̃t ≤ η̃

′
t , then

mFYWGΥ(η̃1, η̃2, . . . , η̃n) ≤ mFYWGΥ(η̃′1, η̃
′
2, . . . , η̃

′
n). (2.17)

We now present some new mFYOWG operators as below:

Definition 2.8. For a set of mF numbers η̃t = (p1 ◦ ηt, p2 ◦ ηt, . . . , pm ◦ ηt) with t ∈ {1, 2, . . . , n}, an
mFYOWG operator is a mapping mFYOWG : η̃n → η̃, which is given as:

mFYOWGΥ(η̃1, η̃2, . . . , η̃n) =
n⊗

t=1

(η̃ς(t))Υt (2.18)

where Υ = (Υ1,Υ2, . . . ,Υn)T is the weight-vector and Υt ∈ (0, 1] with
n∑

t=1
Υt = 1. Here ς(t) with

(t = 1, 2, . . . , n) serves as an arbitrary permutation which satisfies η̃ς(t−1) ≥ η̃ς(t).

Theorem 2.13. For a set of mF numbers η̃t = (p1 ◦ηt, . . . , pm ◦ηt) with t ∈ {1, 2, . . . , n}, an accumulated
value of the given mF numbers with the help of mFYOWG operators is computed by

mFDOWGΥ(η̃1, η̃2, . . . , η̃n) =
n⊗

t=1

(η̃ς(t))Υt

=

(√√
1 −min

(
1,

( n∑
t=1

(
Υt(1 − (p1 ◦ ης(t))2)σ

)) 1
σ
)
, . . . ,

√√
1 −min

(
1,

( n∑
t=1

(
Υt(1 − (pm ◦ ης(t))2)σ

)) 1
σ
) )
.

(2.19)

Example 2.5. Let η̃1 = (0.4, 0.6, 0.2, 0.3), η̃2 = (0.4, 0.7, 0.2, 0.7), η̃3 = (0.5, 0.1, 0.6, 0.9) and η̃4 =

(0.3, 0.9, 0.6, 0.4) be 4F numbers and Υ = (0.3, 0.4, 0.2, 0.1)T be a weight-vector. Then, the score
values of these 4F numbers for σ = 5 is calculated as:

S (η̃1) =
0.4 + 0.6 + 0.2 + 0.3

4
= 0.375, S (η̃2) =

0.4 + 0.7 + 0.2 + 0.7
4

= 0.45,

S (η̃3) =
0.5 + 0.1 + 0.6, 0.9

4
= 0.525, S (η̃4) =

0.3 + 0.9 + 0.6 + 0.4
4

= 0.55.

Since, S (η̃4) > S (η̃3) > S (η̃2) > S (η̃1), thus

η̃ς(1) = η̃4 = (0.3, 0.9, 0.6, 0.4), η̃ς(2) = η̃3 = (0.5, 0.1, 0.6, 0.9),
η̃ς(3) = η̃2 = (0.4, 0.7, 0.2, 0.7), η̃ς(4) = η̃1 = (0.4, 0.6, 0.2, 0.3).
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Then, from Definition 2.8,

mFYOWGΥ(η̃1, η̃2, η̃3, η̃4) =
4⊗

t=1

(η̃ς(t))Υt ,

=

(√√
1 −min

(
1,

( 4∑
t=1

(
Υt(1 − (p1 ◦ ης(t))2)σ

)) 1
σ
)
, . . . ,

√√
1 −min

(
1,

( 4∑
t=1

(
Υt(1 − (pm ◦ ης(t))2)σ

)) 1
σ
) )
,

=

(√
1 −min

(
1,

(
0.3 ×

(
1 − (0.3)2)5

+ 0.4 ×
(
1 − (0.5)2)5

+ 0.2 ×
(
1 − (0.4)2)5

+ 0.1 ×
(
1 − (0.4)2)5)1/5

)
,√

1 −min
(
1,

(
0.3 ×

(
1 − (0.9)2)5

+ 0.4 ×
(
1 − (0.1)2)5

+ 0.2 ×
(
1 − (0.7)2)5

+ 0.1 ×
(
1 − (0.6)2)5)1/5

)
,√

1 −min
(
1,

(
0.3 ×

(
1 − (0.6)2)5

+ 0.4 ×
(
1 − (0.6)2)5

+ 0.2 ×
(
1 − (0.2)2)5

+ 0.1 ×
(
1 − (0.2)2)5)1/5

)
,√

1 −min
(
1,

(
0.3 ×

(
1 − (0.4)2)5

+ 0.4 ×
(
1 − (0.9)2)5

+ 0.2 ×
(
1 − (0.7)2)5

+ 0.1 ×
(
1 − (0.3)2)5)1/5

))
,

= (0.4054, 0.4102, 0.4516, 0.5282).

Remark 2.2. The mFYOWG operators verify different basic laws such as monotonicity, idempotency
and boundedness as given by Theorems 2.10–2.12.

Theorem 2.14. (Commutativity Property) For every two arbitrary sets of mF numbers η̃t and η̃′t with
t ∈ {1, 2, . . . , n}, if η̃t ≤ η̃

′
t , then

mFYOWGΥ(η̃1, η̃2, . . . , η̃n) = mFYOWGΥ(η̃′1, η̃
′
2, . . . , η̃

′
n), (2.20)

where η̃′t is any permutation of η̃t.

Proof. Its proof is obvious by Definition 2.8 and Theorem 2.13. □

From Definitions 2.4 and 2.5, we conclude that mFYWG and mFYOWG operators are useful to
efficiently aggregate mF numbers. The only difference is that mFYWG operators only aggregate mF
information without considering the ordering of mF numbers while mFYOWG operators consider their
ordering. We now present another general type of AOs called mFYHG operators, which keep the
features of mFYWG and mFYOWG operators.

Definition 2.9. For a set of mF numbers η̃t = (p1 ◦ ηt, p2 ◦ ηt, . . . , pm ◦ ηt) with t ∈ {1, 2, . . . , n}, an
mFYHG operator is given as:

mFYHGΥ,Ω(η̃1, η̃2, . . . , η̃n) =
n⊗

t=1

( ˜̃ης(t))Υt , (2.21)

where Υ = (Υ1,Υ2, . . . ,Υn)T denotes the weights associated with the mF numbers η̃t, t = 1, 2, . . . , n,

Υt ∈ (0, 1],
n∑

t=1
Υt = 1 and ˜̃ης(t) represents the j-th largest mF numbers such that ˜̃ης(t) = (nΩt)η̃t, (t =

1, 2, . . . , n), Ω = (Ω1,Ω2, . . . ,Ωn) is a weight-vector with Ωt ∈ (0, 1],
n∑

t=1
Ωt = 1.
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Notice that, when Υ = (1
n ,

1
n , . . . ,

1
n )T , the mFYHG operator becomes the mFYWG operator. When

Ω = ( 1
n ,

1
n , . . . ,

1
n )T , the mFYHG operators convert into mFYOWG operators. Thus, mFYHG operators

are an extension of mFYWG and mFYOWG operators.

Theorem 2.15. For a set of mF numbers η̃t = (p1 ◦ηt, . . . , pm ◦ηt) with t ∈ {1, 2, . . . , n}, an accumulated
value of the given mF numbers with the help of mFYHG operator is given by

mFYHGΥ,Ω(η̃1, η̃2, . . . , η̃n) =
n⊗

t=1

( ˜̃ης(t))Υt

=

(√√
1 −min

(
1,

( n∑
t=1

(
Υt(1 − (p1 ◦ ˜̃ης(t))2)σ

)) 1
σ
)
, . . . ,

√√
1 −min

(
1,

( n∑
t=1

(
Υt(1 − (pm ◦ ˜̃ης(t))2)σ

)) 1
σ
) )
. (2.22)

Proof. It is similar to the proof of Theorem 2.2 via a mathematical induction method. □

Example 2.6. Let η̃1 = (0.7, 0.9, 0.8), η̃2 = (0.6, 0.5, 0.7), η̃3 = (0.9, 0.8, 0.4) and η̃4 = (0.5, 0.4, 0.5) be
3F numbers, and Υ = (0.1, 0.2, 0.4, 0.3)T be an associated weight-vector and Ω = (0.2, 0.3, 0.4, 0.1)T

be another weight-vector. Then, using Definition 2.9, for σ = 4

˜̃η1 =

(√
1 −min

(
1,

(
nΩ1(1 − (p1 ◦ η1)2)σ

) 1
σ

)
, . . . ,

√
1 −min

(
1,

(
nΩ1(1 − (p3 ◦ η1)2)σ

) 1
σ

) )
,

=

(√
1 −min

(
1,

(
4 × 0.2 ×

(
1 − (0.7)2)4)1/4

)
,

√
1 −min

(
1,

(
4 × 0.2 ×

(
1 − (0.9)2)4)1/4

)
,√

1 −min
(
1,

(
4 × 0.2 ×

(
1 − (0.8)2)4)1/4

))
,

= (0.7195, 0.9057, 0.8121).

Similarly,

˜̃η2 =

(√
1 −min

(
1,

(
4 × 0.3 ×

(
1 − (0.6)2)4)1/4

)
,

√
1 −min

(
1,

(
4 × 0.3 ×

(
1 − (0.5)2)4)1/4

)
,√

1 −min
(
1,

(
4 × 0.3 ×

(
1 − (0.7)2)4)1/4

))
,

= (0.5746, 0.4637, 0.6828),

˜̃η3 =

(√
1 −min

(
1,

(
4 × 0.4 ×

(
1 − (0.9)2)4)1/4

)
,

√
1 −min

(
1,

(
4 × 0.4 ×

(
1 − (0.8)2)4)1/4

)
,√

1 −min
(
1,

(
4 × 0.4 ×

(
1 − (0.4)2)4)1/4

))
,

= (0.8867, 0.7714, 0.2351),
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and

˜̃η4 =

(√
1 −min

(
1,

(
4 × 0.1 ×

(
1 − (0.5)2)4)1/4

)
,

√
1 −min

(
1,

(
4 × 0.1 ×

(
1 − (0.4)2)4)1/4

)
,√

1 −min
(
1,

(
4 × 0.1 ×

(
1 − (0.5)2)4)1/4

))
,

= (0.6353, 0.5762, 0.6353).

Now the scores of mF numbers for σ = 3 are computed as below:

S ( ˜̃η1) =
0.7195 + 0.9057 + 0.8121

3
= 0.8124, S ( ˜̃η2) =

0.5746 + 0.4637 + 0.6828
3

= 0.5737,

S ( ˜̃η3) =
0.8867 + 0.7714 + 0.2351

3
= 0.6311, S ( ˜̃η4) =

0.6353 + 0.5762 + 0.6353
3

= 0.6156.

Clearly, S ( ˜̃η1) > S ( ˜̃η3) > S ( ˜̃η4) > S ( ˜̃η2); thus,

˜̃ης(1) = η̃1 = (0.7195, 0.9057, 0.8121), ˜̃ης(2) = η̃3 = (0.8867, 0.7714, 0.2351),
˜̃ης(3) = η̃4 = (0.6353, 0.5762, 0.6353), ˜̃ης(4) = η̃2 = (0.5746, 0.4637, 0.6828).

Now by Definition 2.8, we get

mFYHGΥ,Ω(η̃1, η̃2, η̃3, η̃4) =
4⊗

t=1

(η̃ς(t))Υt

=

(√√√
1 −min

(
1,

( 4∑
t=1

(
Υt(1 − (p1 ◦ ˜̃ης(t))2)σ

)) 1
σ
)
, . . . ,

√√√
1 −min

(
1,

( 4∑
t=1

(
Υt(1 − (p3 ◦ ˜̃ης(t))2)σ

)) 1
σ
) )
,

=

(√
1 −min

(
1,

(
0.1 ×

(
1 − (0.7195)2)4

+ 0.2 ×
(
1 − (0.8867)2)4

+ 0.4 ×
(
1 − (0.6353)2)4

+ 0.3 ×
(
1 − (0.5746)2)4)1/4

)
,√

1 −min
(
1,

(
0.1 ×

(
1 − (0.9057)2)4

+ 0.2 ×
(
1 − (0.7714)2)4

+ 0.4 ×
(
1 − (0.5762)2)4

+ 0.3 ×
(
1 − (0.4637)2)4)1/4

)
,√

1 −min
(
1,

(
0.1 ×

(
1 − (0.8121)2)4

+ 0.2 ×
(
1 − (0.2351)2)4

+ 0.4 ×
(
1 − (0.6353)2)4

+ 0.3 ×
(
1 − (0.6828)2)4)1/4

))
,

= (0.6445, 0.5763, 0.5507).

3. Application to MCDM

In this section, we present an MCDM methodology based on our initiated mF Yager AOs to tackle
different real-world MCDM situations involving mF information. The terms used for this purpose are
provided in the following subsection.

3.1. Methodology

Let {S1,S2, . . . ,Sk} be a universe and {E1,E2, . . . ,En} be universal set of parameters. Let Υ =

{Υ1,Υ2, . . . ,Υn} be a weight vector with
n∑

t=1
Υt = 1, Υt ∈ (0, 1], ∀ t ∈ {1, 2, . . . , n}. Suppose that an mF
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decision-matrix M̃ = (d̃it)k×n =
(
p1 ◦ ηit, p2 ◦ ηit, . . . , pm ◦ ηit

)
k×n, which contains the experts’ opinions

in the form of membership degrees.
An algorithm is developed to tackle MCDM situations using mFYWA (or mFYWG) operators.
Algorithm: Selection of an appropriate alternative under mF Yager AOs
Step I: Input:
M̃, an mF decision matrix containing n attributes and k alternatives.

Υ = (Υ1,Υ2, . . . ,Υn)T , the weight vector.
Step II: Utilize the mFYWA operators in the aggregation process of the given datasets in an mF

decision matrix M̃ and determine the preference values d̃r; here, the variation of ‘r’ is from 1 to k for
given mF numbers ηt.

d̃r = mFYWAΥ(η̃r1, η̃r2, . . . , η̃rn) =
n⊕

t=1

(Υtη̃rt)

=

(√√
min

(
1,

( n∑
t=1

Υt(p1 ◦ η̃rt)2σ) 1
σ

)
, . . . ,

√√
min

(
1,

( n∑
t=1

Υt(pm ◦ η̃rt)2σ) 1
σ

) )
.

When we use mFYWG operators, then

d̃r = mFYWGΥ(η̃r1, η̃r2, . . . , η̃rn) =
n⊗

t=1

(η̃rt)Υt ,

=

(√√
1 −min

(
1,

( n∑
t=1

(
Υt(1 − (p1 ◦ η̃rt)2)σ

)) 1
σ
)
, . . . ,

√√
1 −min

(
1,

( n∑
t=1

(
Υt(1 − (pm ◦ η̃rt)2)σ

)) 1
σ
) )
.

Step III: Determine the scores S(d̃r), where the variation of ‘r’ is from 1 to k.
Step IV: Write all of the alternatives Sr, (r = 1, 2, . . . , k) in order in terms of their score values

S(d̃r). In the case when the final score values of two alternatives are equal, one can use the accuracy
function to find their exact ranking.

Output: An alternative with the highest score in the last step is the decision.

3.2. A case study: Site selection for a new refinery in Pakistan

An oil refinery or petroleum refinery is an industrial process plant where crude oil is processed and
refined into more beneficial commodities like liquefied petroleum gas, kerosene, heating oil, asphalt
base, petroleum naphtha, diesel fuel and gasoline. A petroleum refinery contains very sensitive and
important substances, which is why making a suitable site selection is not an easy task due to the
effects of different factors (parameters), including the availability of land, availability of raw water,
resources/labor, effluent disposal, natural and geographic conditions of the site, conditions of society
(humanities) and economy, conditions of traffic and transportation and conditions of utilities.

The government of Pakistan wants to build a new oil refinery and for this very important project,
the first significant thing is site selection because the cost of this project is directly proportional to the
site. Therefore, this crucial assignment is given to a team of experts of this domain from the eight
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areas proposed by the government officials. The proposed alternatives are S1,S2, . . . ,S8. After few
meetings among the experts, they all agreed to evaluate the alternatives under their expertise with the
following five common parameters:

E1 denotes the “Natural Conditions”,
E2 denotes the “Traffic and Transportation Conditions”,
E3 denotes the “Conditions of Utilities”,
E4 denotes the “Cost”,
E5 denotes the “Geographical Conditions”.

Some other sub characteristics of these parameters are provided below to better understand the
construction of 3F numbers.

• The parameter “Natural Conditions” in the site selection procedure includes temperature,
humidity and wind.
• The parameter “Traffic and Transportation Conditions” in the site selection process includes by

road, railway and sea.
• The parameter “Conditions of Utilities” includes power supply, availability of raw water and

resources/labor.
• The “Cost” includes medium, high and very high.
• The parameter “Geographical Conditions” affects the site selection, and it includes hydro geology,

soil type and rock exposure.

The final judgments of experts about the alternatives, as in terms of the favorable parameters, are
presented in Table 2 in the form of 3F decision matrix.

Table 2. 3F decision matrix.

– E1 E2 E3 E4 E5

S1 (0.3, 0.5, 0.8) (0.6, 0.9, 0.5) (0.8, 0.5, 0.4) (0.7, 0.4, 0.2) (0.5, 0.7, 0.3)
S2 (0.5, 0.7, 0.8) (0.4, 0.8, 0.7) (0.6, 0.4, 0.2) (0.7, 0.6, 0.9) (0.6, 0.4, 0.7)
S3 (0.8, 0.4, 0.9) (0.4, 0.8, 0.4) (0.7, 0.8, 0.6) (0.3, 0.5, 0.7) (0.8, 0.6, 0.5)
S4 (0.7, 0.4, 0.5) (0.9, 0.7, 0.6) (0.8, 0.6, 0.5) (0.7, 0.4, 0.6) (0.6, 0.8, 0.5)
S5 (0.8, 0.5, 0.4) (0.7, 0.2, 0.5) (0.9, 0.4, 0.8) (0.7, 0.9, 0.7) (0.8, 0.3, 0.6)
S6 (0.5, 0.7, 0.4) (0.6, 0.8, 0.7) (0.8, 0.4, 0.6) (0.1, 0.8, 0.9) (0.6, 0.7, 0.3)
S7 (0.8, 0.3, 0.7) (0.8, 0.7, 0.3) (0.5, 0.9, 0.8) (0.7, 0.6, 0.5) (0.4, 0.5, 0.8)
S8 (0.7, 0.6, 0.2) (0.5, 0.9, 0.1) (0.8, 0.2, 0.5) (0.6, 0.7, 0.9) (0.9, 0.7, 0.5)

In view of the government officials, the team of experts assign a weight-vector to the set of
parameters as follows:

Υ1 = 0.24, Υ2 = 0.35, Υ3 = 0.10, Υ4 = 0.25 and Υ5 = 0.06.

Since
5∑

t=1
Υt = 1. We now compute the most suitable ranking between the available sites for an oil

refinery with the help of developed AOs, i.e., the: mFYWA and mFYWG operators:
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Step I: When σ = 4, by implementing the mFYWA operator, we compute the values d̃i of the
alternatives Si, i = 1, 2, . . . , 8 in terms of the ranking of sites for an oil refinery.

d̃1 = (0.6630, 0.7925, 0.6722), d̃2 = (0.6063, 0.7256, 0.8022),
d̃3 = (0.6980, 0.7265, 0.7671), d̃4 = (0.8161, 0.6510, 0.5731),
d̃5 = (0.7734, 0.7577, 0.6546), d̃6 = (0.6293, 0.7656, 0.7746),
d̃7 = (0.7621, 0.7145, 0.6722), d̃8 = (0.7064, 0.8028, 0.7574).

Step II: Find the score values S(d̃i) of 3F numbers d̃i, (i = 1, 2, . . . , 5) of the alternatives Si:

S(d̃1) = 0.7092, S(d̃2) = 0.7114, S(d̃3) = 0.7305,
S(d̃4) = 0.6800, S(d̃5) = 0.7286, S(d̃6) = 0.7232,
S(d̃7) = 0.7162, S(d̃8) = 0.7555.

Step III: Compute the ranking of alternatives using the scores obtained in the previous step: S8 >

S3 > S5 > S6 > S7 > S2 > S1 > S4. Step IV: The alternative S8 has the highest score; thus, it is the
most suitable suitable site for the construction of an oil refinery in Pakistan.

We now apply the mFYWG operator to compute a suitable option.

Step I: For σ = 4, by using the mFYWG operator, we find the values d̃i of the alternatives Si, i =
1, 2, . . . , 8 in terms of the ranking of sites for an oil refinery.

ˆ̃d1 = (0.5342, 0.5501, 0.4426), d̃2 = (0.5135, 0.6199, 0.6443),
d̃3 = (0.4762, 0.5640, 0.5564), d̃4 = (0.7338, 0.5187, 0.5564),
d̃5 = (0.7331, 0.4177, 0.5354) d̃6 = (0.4599, 0.6840, 0.5745),
d̃7 = (0.6744, 0.5416, 0.4873) d̃8 = (0.5977, 0.6174, 0.3510).

Step II: Find the score values S(d̃i) of 3F numbers d̃i, (i = 1, 2, . . . , 8) of the alternatives Si:

S(d̃1) = 0.5090, S(d̃2) = 0.5926, S(d̃3) = 0.5322,
S(d̃4) = 0.6030, S(d̃5) = 0.5621, S(d̃6) = 0.5728,
S(d̃7) = 0.5678, S(d̃8) = 0.5220.

Step III: Compute the ranking of alternatives using the scores S(d̃i), (i = 1, 2, . . . , 8) determined in
previous step: S4 > S2 > S6 > S7 > S5 > S3 > S8 > S1.

Step IV: The alternativeS4 has the highest score; thus, it is the most suitable option for the construction
of an oil refinery in Pakistan.

The method used to solve the above MCDM application is displayed in Figure 1.
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Figure 1. Flowchart diagram.

4. Comparison analysis and discussion

In this section, we give both qualitative and quantitative comparative analyses of the initiated mF
Yager AOs with mF Dombi AOs [26], mF Hamacher AOs [24] and some Yager’s operation-based AOs
to prove their cogency and efficiency. Further, we discuss the validity of the proposed AOs through the
use of three effectiveness tests which have been introduced by Wang and Triantaphyllou [45].

4.1. Comparative analysis

To effectively deal with mF information, the existing Yager’s operation-based AOs, including
Fermatean fuzzy Yager AOs [28], complex Pythagorean fuzzy Yager AOs [30] and q-rung picture
fuzzy Yager AOs [29] are not useful; therefore, mF Yager AOs have been proposed in this study. In
the literature, mF information is aggregated via Dombi and Hamacher TNs and TCoNs with very hard
calculations. Yager’s operations are simpler than Dombi and Hamacher TNs and TCoNs. This is
another reason that has motivated us to select Yager’s TN and TCoN in the current work.

We now discuss the comparison between the results of initiated mF Yager AOs and existing mF
Dombi AOs [26] and mF Hamacher AOs [24]. For this, we applied these AOs to a daily-life scenario,
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and the computed results are provided in Tables 3 and 4 (for more detail see Figure 2). From Tables 3
and 4, we can easily see that the optimal object (i.e., S2) is the same by applying mFHWA and
mFHWG [24] operators but it is not similar to the optimal object “S4” which is obtained by applying
the proposed mFYWG operator. Besides, the optimal object (i.e., S8) is the same by applying existing
mFDWA and mFDWG [26] operators and the proposed mFYWA operator. Thus, to deal with mF
MCDM situations effectively, our proposed mF Yager AOs are much more versatile and generalized
than certain existing MCDM tools, including mFDWA and mFDWG [26] operators, and mFHWA and
mFHWG [24] AOs.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8

mFHWA

mFHWG

mFDWA

mFDWG

Proposed mFYWA

Proposed mFYWG

Figure 2. Comparison of mF Yager AOs with existing mF Dombi and Hamacher AOs on the
application in Section 3.2.

Table 3. Comparison of mF Yager AOs with mF Dombi AOs [26] and mF Hamacher
AOs [24].

Operators S(d̃1) S(d̃2) S(d̃3) S(d̃4) S(d̃5) S(d̃6) S(d̃7) S(d̃8)
mFHWA [24] 0.5892 0.6589 0.6214 0.6402 0.6231 0.6385 0.6328 0.6123
mFHWG [24] 0.5508 0.6361 0.5887 0.6300 0.5895 0.5957 0.6066 0.5479
mFDWA [26] 0.7731 0.7517 0.7930 0.7149 0.8035 0.7808 0.7803 0.8506
mFDWG [26] 0.6306 0.5761 0.5661 0.4361 0.5205 0.6307 0.5700 0.6704
Proposed mFYWA 0.7092 0.7114 0.7305 0.6800 0.7286 0.7232 0.7162 0.7555
Proposed mFYWG 0.5090 0.5926 0.5322 0.6030 0.5621 0.5728 0.5678 0.5220
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Table 4. Comparison between the ranking results of mF Yager AOs and mF Dombi AOs [26]
and mF Hamacher AOs [24].

Operators Ranking Order Best Option
mFHWA [24] S2 > S4 > S6 > S7 > S5 > S3 > S8 > S1 S2

mFHWG [24] S2 > S4 > S7 > S6 > S5 > S3 > S1 > S1 S2

mFDWA [26] S8 > S5 > S3 > S6 > S7 > S1 > S2 > S4 S8

mFDWG [26] S8 > S6 > S1 > S2 > S7 > S3 > S5 > S4 S8

Proposed mFYWA S8 > S3 > S5 > S6 > S7 > S2 > S1 > S4 S8

Proposed mFYWG S4 > S2 > S6 > S7 > S5 > S3 > S8 > S1 S4

4.2. Effectiveness tests

In the following, the feasibility and productiveness of the proposed algorithm based on mFYWA
and mFYWG operators is justified via three tests criteria, which have been introduced by Wang and
Triantaphyllou [45] to check the validity of MCDM methods.

• Test-I: When the belongingness degrees of a sub-optimal alternative are replaced with worse
belongingness degrees without changing the criteria, then the decision object should be invariant.
• Test-II: The MCDM method should verify the transitive law.
• Test-III: If a given problem is resolved into different small portions by removing alternatives and

the same MCDM approach is applied, then the ranking of alternatives should be the same as the
original.

Now, we discuss the effectiveness of the proposed MCDM method under the conditions of mF Yager
AOs by means of the above validity tests.

1) Validity checking by Test I: The proposed MCDM approach with Yager AOs verifies this test
because when we replace the belongingness degrees of the object S1 with S

′

1 and the object S4

with S
′

4 in Table 2 (i.e., 3F decision matrix), then by applying the developed mFYWA operator to
the new decision matrix, which is provided by Table 5, the scores of the alternatives S1 and S6 are
S(d1) = 0.4383 and S(d6) = 0.4858, respectively. Clearly, S8 is again the best alternative, which
is the same as the original decision object. In a similar manner, if we apply the mFYWG operator,
the scores of the objects S1 and S6 are S(d1) = 0.3158 and S(d6) = 0.4051, respectively. Clearly,
S4 is the best alternative which is the same as the original. Thus, the optimal alternatives were the
same as that of the original ranking when we changed the sub-optimal alternatives belongingness
values. Thus, the developed algorithm is reliable under the validity test criterion I.

2) Validity checking by Tests II and III: These test criteria also hold for our proposed MCDM
approach with mF Yager AOs because when we remove some objects in the developed application
(Section 3) and apply the developed mFYWA and mFYWG operators, we obtain similar ranking
orders between the alternatives and the original. This is why, the overall ranking order of the
alternatives will not be changed and the transitive property holds. Thus, the proposed algorithm
is reliable under the validity checking tests II and III.
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Table 5. 3F decision matrix.

– E1 E2 E3 E4 E5

S
′

1 (0.1, 0.3, 0.5) (0.4, 0.6, 0.2) (0.3, 0.4, 0.1) (0.1, 0.3, 0.1) (0.4, 0.6, 0.2)
S2 (0.5, 0.7, 0.8) (0.4, 0.8, 0.7) (0.6, 0.4, 0.2) (0.7, 0.6, 0.9) (0.6, 0.4, 0.7)
S3 (0.8, 0.4, 0.9) (0.4, 0.8, 0.4) (0.7, 0.8, 0.6) (0.3, 0.5, 0.7) (0.8, 0.6, 0.5)
S4 (0.6, 0.3, 0.2) (0.7, 0.5, 0.3) (0.4, 0.2, 0.4) (0.5, 0.2, 0.4) (0.2, 0.6, 0.3)
S5 (0.8, 0.5, 0.4) (0.7, 0.2, 0.5) (0.9, 0.4, 0.8) (0.7, 0.9, 0.7) (0.8, 0.3, 0.6)
S
′

6 (0.6, 0.3, 0.2) (0.7, 0.5, 0.3) (0.4, 0.2, 0.4) (0.5, 0.2, 0.4) (0.2, 0.6, 0.3)
S7 (0.8, 0.3, 0.7) (0.8, 0.7, 0.3) (0.5, 0.9, 0.8) (0.7, 0.6, 0.5) (0.4, 0.5, 0.8)
S8 (0.7, 0.6, 0.2) (0.5, 0.9, 0.1) (0.8, 0.2, 0.5) (0.6, 0.7, 0.9) (0.9, 0.7, 0.5)

5. Conclusions, limitations and future research

Nowadays, due to the existence of multipolar data and multiple attributes in several real-world
problems, the fuzzification of multipolar information with AOs is emerging as a very popular
mathematical topic for the unification of various inputs into a single useful output because traditional
MCDM approaches fail to deal with complex decision-making problems. With the motivation to
remove these issues of existing MCDM methods, and we have integrated mF numbers with Yager’s
TN and TCoN operations, and have presented some new Yager AOs in an mF environment, namely,
mFYWA, mFYOWA, mFYHA, mFYWG, mFYOWG and mFYHG operators, which are respectively
explained with illustrative numerical examples. Further, we have applied different results of the
proposed AOs. To prove the feasibility and reliability of the developed mF AOs, we have
implemented them to a daily-life problem, that is, the selection of an appropriate site for the
construction of an oil refinery. Subsequently, we performed a comparative analysis of the initiated mF
Yager AOs with existing mF Dombi [26] and mF Hamacher AOs [24]. From the comparative analysis
(Tables 3 and 4), we have clearly observed that the optimal object (that is, S8) is the same by applying
mFDWA and mFDWG [26] operators and the proposed mFYWA operator. On the other hand, the
optimal object (that is, S2) is the same by applying mFHWA and mFHWG [24] operators, but it is not
similar to the optimal object “S4” which is obtained by applying the proposed mFYWG operator. In
the end, we have verified the effectiveness of the developed MCDM method by applying validity tests
that were presented by Wang and Triantaphyllou [45].

The literature analysis revealed that the existing AOs have both pros and cons. Because of this, we
noticed that our initiated AOs also have some limitations. The developed mF Yager AOs are not
useful in the case of multipolar information from opposite sources because they only deal with
multi-valued membership-based information. It may not be easy to compute final ranking results in
the case of a big number of attributes without using mathematical software, including MAPAL,
MATLAB, Mathematica, etc.

In the future, our presented work can be extended to the following

• mF Yager prioritized AOs,
• mF soft Yager AOs,
• Hesitant mF Yager AOs,

Mathematical Biosciences and Engineering Volume 20, Issue 2, 3566–3593.
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• mF Yager Bonferroni mean operators,
• Possibility mF Yager AOs,
• Rough mF Yager AOs.
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Appendix

A.1. Proof of Theorem 2.2

Proof. By utilizing the mathematical induction method we can easily prove it.
1). By putting n = 1 in Eq (2.4), we get

mFDWAΥ(η̃1, , η̃2, . . . , η̃n) = Υ1η̃1 = η̃1, (since Υ1 = 1)

=

(√
min

(
1,

(
(p1 ◦ η1)2σ) 1

σ

)
, . . . ,

√
min

(
1,

(
(pm ◦ η1)2σ) 1

σ

) )
.

Thus, Eq (2.4) holds for n = 1.
2). Now let us suppose that Eq (2.4) holds when n = r, where r ∈ N (set of natural numbers); then,

mFYWAΥ(η̃1, η̃2, . . . , η̃r) =
r⊕

t=1

(Υtη̃t),

=

(√√
min

(
1,

( r∑
t=1

Υt(p1 ◦ ηt)2σ) 1
σ

)
, . . . ,

√√
min

(
1,

( r∑
t=1

Υt(pm ◦ ηt)2σ) 1
σ

) )
. (A.1)

For n = r + 1,

mFYWAΥ(η̃1, η̃2, . . . , η̃r, η̃r+1) =
r⊕

t=1

(Υtη̃t) ⊕ (Υr+1η̃r+1),
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=
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Thus, Eq (2.4) holds for n = r + 1. Consequently, Eq (2.4) verifies for all n ∈ N. □

A.2. Proof of Theorem 2.4

Proof. Since η̃t = (p1 ◦ ηt, . . . , pm ◦ ηt) = η̃, where t = 1, . . . , n. Then, by Eq (2.4),

mFYWAΥ(η̃1, η̃2, . . . , η̃n) =
n⊕

t=1

(Υtη̃t),

=

(√√
min

(
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( n∑
t=1

Υt(p1 ◦ ηt)2σ) 1
σ

)
, . . . ,
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min
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( n∑
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Υt(pm ◦ ηt)2σ) 1
σ

) )
,

=

(√
min

(
1,

(
(p1 ◦ η)2σ) 1

σ

)
, . . . ,

√
min

(
1,

(
(pm ◦ η)2σ) 1

σ

) )
,

= (p1 ◦ η, . . . , pm ◦ η), for σ = 1
= η̃.

Hence, mFYWAΥ(η̃1, η̃2, . . . , η̃n) = η̃ holds if η̃t = η̃, when ‘t’ varies from 1 to n. □
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