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Abstract: With the background of limited energy storage of robots and considering the high coupling 
problem of multi-agent path finding (MAPF), we propose a priority-free ant colony optimization 
(PFACO) to plan conflict-free and energy-efficient paths, reducing multi-robots motion cost in the 
rough ground environment. First, a dual-resolution grid map considering obstacles and ground friction 
factors is designed to model the unstructured rough terrain. Second, an energy-constrained ant colony 
optimization (ECACO) is proposed to achieve energy-optimal path planning for a single robot, in 
which we improve the heuristic function based on the combined effects of path length, path smoothness, 
ground friction coefficient and energy consumption, and consider multiple energy consumption 
metrics during robot motion to improved pheromone update strategy. Finally, considering multiple 
collision conflict cases among multiple robots, we incorporate a prioritized conflict-free strategy (PCS) 
and a route conflict-free strategy (RCS) based on ECACO to achieve MAPF with low-energy and 
conflict-free in a rough environment. Simulation and experimental results show that ECACO can 
achieve better energy saving for single robot motion under all three common neighborhood search 
strategies. PFACO achieves both the conflict-free path and energy-saving planning for robots in 
complex scenarios, and the study has some reference value for solving practical problems. 

Keywords: multi-agent path finding; ant colony optimization; conflict-free; energy-efficient; 
unstructured rough terrain 
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1. Introduction 

In recent years, with the wide application of intelligent robots in intelligent warehouse 
management and traffic control, multi-agent path finding (MAPF) as a critical technology in multi-
intelligence collaboration has received extensive attention from scholars [1,2]. MAPF technique is to 
plan conflict-free paths for multiple robots with different tasks under obstacles and multiple constraints, 
and satisfies some production targets [3,4]. 

The algorithms for single robot path planning can be classified into three according to their 
characteristics: search-based, sampling-based and intelligent optimization-based. The typical method 
based on the search is the A* algorithm, but it is difficult to guarantee the optimality of paths in large-
scale complex environments [5]. Lu et al. [6] address the large memory consumption and long running 
time of traditional A* by improving the heuristic function to reduce search efficiency. A typical method 
based on sampling is the Rapidly-exploring Random Trees (RRT), but there is a large amount of 
redundant computation during the traversal process [7]. Therefore, Xu et al. [8] and Ruan et al. [9] 
proposed a regional sampling RRT based on simplified maps. Zhang et al. [10] proposed an improved 
RRT based on target constraint sampling and target bias expansion. They [8–10] all address the low 
execution efficiency of the traditional RRT algorithm. Intelligent optimization algorithms include the 
ant colony algorithm [11], genetic algorithm [12], sparrow algorithm [13], and so on. In recent years, 
related scholars have made promising achievements in solving common problems such as slow 
convergence speed and easy falling into local optimality, which are widely faced in intelligent 
optimization algorithms. Yang et al. [14] introduced optimal and worst solutions in ant colony 
pheromone updating to expand the influence of high-quality ants and weaken the pheromones on the 
path of worst ants, which accelerated the convergence of ACO. Xu et al. [15] proposed a two-level ant 
colony algorithm with mutual collaboration, using external ant colonies for global search and internal 
ant colonies for local search, improving the algorithm's solution accuracy. Li et al. [16] proposed an 
improved forward search optimization planning path. This method can shorten the global path length 
by jumping the node search way and combined with an improved artificial potential field to smooth 
that path. Experimental results show that this method keeps the path at a safe and comfortable distance 
from obstacles compared to the traditional strategy, which is more suitable for single robot motion. 

MAPF contains the research mentioned earlier on single-robot obstacle avoidance and path-
optimal metrics (path length, smoothness, safety, energy consumption, etc.), more importantly, 
considers more complex motion conflict situations between robots. It has received much attention from 
scholars as a classical NP-Hard problem [17]. Lin et al. [18] reviewed the relevant research of MAPF 
over the years and have made a more systematic summary and generalization, classifying the planning 
algorithms into classical, heuristic, bio-inspired, and artificial intelligence methods and classifying the 
decision-making methods into centralized and decentralized. Cheng et al. [19] proposed an enhanced 
heuristic A* algorithm for solving the path-planning problem of large parking lots. Ren et al. [20] 
proposed an MS* exact algorithm, which can solve the optimal conflict-free path for 20 robots 
performing 50 tasks. Wen et al. [21] proposed a MAPF-POST algorithm based on the characteristics 
of robot motion in the actual scene. It reduces the conflict between robot paths and improves search 
efficiency. Xin et al. [22] proposed a solution to the problems of high computational complexity and 
difficulty in local planning for collision-free path planning of AGVs based on a Time-space network 
model. The global planning problem is decomposed into more minor local planning problems to 
improve computational efficiency, newly defined decision variables and constraints are introduced to 
improve the planning capability, and extensive case studies verify the feasibility. Murakami [23] 
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considered scheduling and conflict-free paths for capacity-constrained AGV systems (robot capacity 
constraint and buffer capacity constraint) in a spatiotemporal network model. The proposed method 
enables optimal solutions in a wide range of cases. 

In order to improve the solution efficiency and planning success rate of MAPF problems, many 
scholars have applied the priority-based planning method, conflict-based search and traffic rule method 
in recent years. Cap et al. [24] proposed a class of MAPF algorithms based on Prioritized Planning 
(PP) and designed several rules for determining the priority. Greshler et al. [25] introduced the 
cooperative conflict-based search (Co-CBS) to solve task assignments of multiple robots and their path 
planning. Wang et al. [26] proposed a method combining priority to obtain the path with optimal cost 
and execution time. Li et al. [27] combined D* Lite and PP algorithms to achieve high search efficiency 
and optimization of path quality. In order to efficiently achieve conflict-free path planning for swarm 
robots in more complex environments, Wu et al. [28] embedded priority rules into the improved 
heuristic algorithm to eliminate robot trajectories with potential conflicts, which has a high success 
rate and achieves a good balance between maximum completion time and working time objectives. 
Dewanga et al. [29] proposed a distance-priority-based approach, enabling low-priority robots to avoid 
collisions by bypassing high-priority robots. 

There are promising results regarding the success rate of path solving and efficiency of algorithm 
execution for MAPF. However, the uncertain natural environmental factors may affect the cost of 
actual robot motion [30]. Accordingly, an investigation considering energy consumption [31] emerged. 
Zhang et al. [32] proposed a low energy consumption optimal path planning method based on the 
improved AD* (Anytime dynamic A*) algorithm, which incorporates distance and energy 
consumption cost into the evaluation function of the search nodes to search for the energy consumption 
optimal path. Mei et al. [33] divide the energy-optimal path planning process into two layers. First, a 
series of paths are generated by traditional path planning methods, such as the heuristic search [34] 
and RRT algorithms [35]. Then calculating these paths’ consumption according to the energy 
consumption model in the path optimization process, an energy-efficient path can obtain. 

In summary, most research on MAPF has focused on path planning success rate, algorithm 
execution efficiency, and so on as optimization objectives. Therefore, Considering the performance 
advantages of ACO in multi-objective planning paths have been verified and demonstrated by many 
scholars [36–38]. With the background of limited stored energy and the rough motion environment of 
the robot, we conducted a conflict-free and energy-efficient MAPF study based on an improved multi-
objective ACO. The main contributions are as follows: 

• A dual-resolution raster map that considers obstacle and ground friction factors is designed to 
model the unstructured warehouse environment. 

• The energy-constrained ant colony optimization (ECACO) for a single mobile robot is proposed 
based on the excellent robustness and iterative evolution capability of the ant colony algorithm in path 
planning, which contains the heuristic function by energy-constrained improvement and the 
pheromone update strategy by energy model optimization. The improved heuristic function considers 
the path length, path smoothness, road friction coefficient, and path energy consumption. The enhanced 
pheromone update strategy considers the transformed kinetic energy of robot motion, the energy 
consumption to overcome the loss of traction resistance, and the energy consumption of robot hardware. 

• The priority conflict-free strategy (PCS) and route conflict-free strategy (RCS) are incorporated 
in ECACO. We named it priority-free ant colony optimization (PFACO) and applied it to the multi-
warehouse robot systems. The PCS mainly solves the deadlock conflicts of multiple robots by 
switching the priority between conflicting robots and re-route planning to achieve the purpose of 
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conflict resolution. The RCS mainly solves node conflict, counterpoint conflict, occupancy conflict, 
and blockage conflict among multiple robots based on waiting in place or re-route planning.  

The rest of this paper is organized as follows: Section 2 classifies MAPF conflicts and proposes 
a 2.5D environment modeling method; Section 3 presents ECACO for single-robot energy-efficient 
path planning; Section 4 presents the multi-robot energy-efficient planning PFACO. Section 5 shows 
the simulation experiments and analysis; Section 6 provides a summary and the future work plan. 

2. Problem description  

2.1. Multi-agent path finding (MAPF) 

The MAPF problem is defined as robots starting from their positions, planning paths to reach 
their separate target points, and eliminating spatiotemporal conflicts in the robot paths as much as 
possible. Based on conflict-free, optimizing the robot group path’s energy consumption is the 
optimization goal in this paper. 
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Figure 1. Node conflict. 
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Figure 2. Type of counterpoint conflict. 
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Figure 3. Types of occupancy conflicts. 

where, the white grid indicates the free passable area, the black grid indicates the obstacle area, and 
the yellow grid indicates the free area always occupied by other high-priority robots. 
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(a) Blockage in the same 
direction of motion. 

(b) Non-co-motion blockage. (c) Complex blockage. 

Figure 4. Narrow terrain obstruction type. 

Considering the PCS and map scenarios adopted in this paper, the conflict types are divided into 
two categories: typical MAPF conflicts (node conflict and counterpoint conflict) and priority MAPF 
conflicts (occupancy conflict and blockage conflict), which are defined as follows： 

1) Node conflict: Two robots will occupy the same node position in the next moment. As shown 
in Figure 1, AGV1 and AGV2 will collide at moment Step 3 on map (2.5, 2.5). 

2) Counterpoint conflict: Two robots traveling in opposite directions and exchanging positions 
with each other at the next moment. As shown in Figure 2, at the moment of Step 3, AGV1 will move 
from the map (1.5, 2.5) to map (2.5, 2.5), AGV2 will move from the map (2.5, 2.5) to map (1.5, 2.5), 
and AGV1 and AGV2 will collide in the exchange of positions. 

3) Occupancy conflict: It means that in the priority MAPF (the principle is that the low-priority 
robot avoids the high-priority robot during its motion), as shown in Figure 3, the low-priority AGV2 
stops more advance than the high-priority AGV1. The target point of AGV2 is located precisely on the 
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node that AGV1 has not yet passed, and it cannot effectively avoid AGV1 later because the task is over. 
4) Blockage conflict: We define it as a highly coupled local dynamic scenario that allows only 

one robot to pass. As shown in Figure 4 (yellow obstacles indicate positions always occupied by other 
high-priority robots), the congruent and phased movements between AGVs can significantly 
exacerbate the environment’s coupling and limit the performance of conventional algorithms. 

2.2. Dual-resolution grid map modeling scheme 

Considering the differentiated energy consumption of robot movement on the road surface with 
different roughness, this paper proposes a dual-resolution 2.5D map-building scheme, a composite 
map composed of two layers of grid maps. As shown in Figure 5, Maps A and B store the information 
on the friction coefficient of non-flat ground and obstacle information in the environment, respectively. 
Where the friction coefficient value of each node in Map A represents the average value of the friction 
coefficient in a grid range, the nodes in Map B represent white grids that robots can pass freely or 
black obstacle grids that are forbidden to pass. 
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Figure 5. Dual resolution 2.5D map. 

In dual-resolution 2.5D, each grid information can be read arbitrarily by any robot. For example, 
we can use the function ‘get. Map (1.5, 1.5)’ to get the ground friction coefficient and obstacle 
information corresponding to Maps A and B at (1.5, 1.5), respectively. To reduce the computation of 
the algorithm, we mark the grid order from left to right and from top to bottom, and the relationship 
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between the grid number 𝑖 and the coordinates (𝑥, 𝑦) is as follows: 

𝑥 =
𝑚𝑜𝑑(𝑖, 𝑀𝑀) − 0.5, 𝑚𝑜𝑑(𝑖, 𝑀𝑀) ≠ 0

𝑀𝑀 + 𝑚𝑜𝑑(𝑖, 𝑀𝑀) − 0.5, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑦 = 𝑀𝑀 + 0.5 − 𝑐𝑒𝑖𝑙 (𝑖, 𝑀𝑀)

 (1) 

where, 𝑚𝑜𝑑  is the remainder operation;  𝑐𝑒𝑖𝑙  is the upward rounding operation;  𝑀𝑀  is the 
maximum value of the horizontal axis of the grid map. 

3. Ant colony optimization theory 

3.1. Traditional ant colony optimization (ACO) 

The ant colony algorithm simulates the foraging behavior of a natural ant population, where 
pheromones and heuristic information determine the probability 𝑝 ,  of how ants choose their next 

travel direction in grid environments. 

𝑝 , (𝑡) =

𝜏 , (𝑡) 𝜂 , (𝑡)

∑ ⊂ allowed   𝜏 , (𝑡) 𝜂 , (𝑡)
, 𝑗 ∈ 𝑎𝑙𝑙𝑜𝑤𝑒𝑑

                        0, 𝑗 ∉ allowed

 (2) 

where, 𝑘 is the ant number; 𝑖 and 𝑗 denote the current position grid and the next transferred grid of 
ant 𝑘, respectively;   𝑡 denotes the current iterations; 𝛼 and 𝛽 denote the expected values of the 
pheromone concentration 𝜏 , (𝑡) and heuristic function 𝜂 , (𝑡), respectively; 𝑎𝑙𝑙𝑜𝑤𝑒𝑑  denotes the 
set of selectable lattices of ant 𝑘 at the grid 𝑖.  𝜂 , (𝑡)  can be expressed as Eq (3). 

𝜂 , (𝑡) = 1/𝑑 (3) 

where, 𝑑 is the Euclidean distance from grid 𝑖 to grid 𝑗. 
As the iteration proceeds, 𝜏 , (𝑡) pheromones will accumulate and volatilize, and the pheromone 

update model is shown as follows: 

𝜏 , (𝑡 + 1) = 𝜌𝜏 , (𝑡) + ∑  𝛥𝜏 , (𝑡) (4) 

𝛥𝜏 , (𝑡) =
𝑄/𝐿 , {𝑖, 𝑗} ⊂ 𝑣𝑖𝑠𝑖𝑡𝑒𝑑
            0 , other

 (5) 

where, 𝜌 is the pheromone volatility residual; 𝑄 is the pheromone constant; 𝐿  is the total length 
traveled by ant 𝑘 in this cycle; 𝑀 is the total number of ants; 𝑣𝑖𝑠𝑖𝑡𝑒𝑑  is the collection of grids 
already visited by ant 𝑘. 

3.2. Energy constrained ant colony optimization (ECACO) 

There are three main methods [39–41] to improve the energy utilization of robots: The first is to 
use high-efficiency drive motors, the second is to improve the electrical energy conversion efficiency 
of motor drive circuits, and the third is to reduce energy consumption through motion planning. 
However, available hardware and electrical conditions limit the first two methods. Therefore, we 
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propose the energy-constrained ant colony optimization (ECACO) to explore an energy-efficient path 
planning of mobile robots based on the advantages of the iterative evolution of the ACO. 

3.2.1. Heuristic function of energy consumption constraint 

Based on the unstructured rough environment modeled in 2.5D, the distance of the path, the 
degree of the path curvature, and the energy consumption caused by the ground roughness factor on 
the robot motion are the best indicators to evaluate the path. However, the initial undifferentiated 
distribution of pheromones in ACO is prone to the chaotic nature of ant colony motion. To make the 
heuristic function with better guidance, we explore a heuristic function combined with an energy 
consumption constraint to reduce the energy consumption of ants in the search process. 

𝜂 , (𝑡) = [𝑤𝐿 , (𝑡) + 𝑥𝑇 , (𝑡) + 𝑦𝛬 , (𝑡) + 𝑧𝛦 , (𝑡)] ∗ 𝐵𝑎𝑐𝑘𝑐𝑜𝑠𝑡 (6) 

𝐵𝑎𝑐𝑘𝑐𝑜𝑠𝑡 =
0.01, 𝑖𝑓 𝑎𝑛𝑡  𝑏𝑎𝑐𝑘 𝑢𝑝 𝑙𝑎𝑠𝑡 𝑡𝑖𝑚𝑒

1,   𝑜𝑡ℎ𝑒𝑟
 (7) 

where, 𝐿 , (𝑡) is the road evaluation function; 𝑇 , (𝑡) is the smoothing evaluation function; 𝛬 , (𝑡) 
is the friction factor evaluation function;  𝛦 , (𝑡)  is the energy consumption evaluation function; 
𝑤, 𝑥, 𝑦, 𝑧 are the weight of each function; 𝐵𝑎𝑐𝑘𝑐𝑜𝑠𝑡 is the fallback suppression factor. 
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Figure 6. Blockage situation. 
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Figure 7. Fallback strategy. 

Considering the large-scale multi-robot scenario, ants will be given a large number of node 
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conflict constraints. Moreover, there is a high possibility of blockage conflict, as shown in Figure 6, 
under the obstacle environment constraint. To relieve such situations, we introduce a fallback 
strategy [42] based on the traditional ACO. The effect of this strategy is illustrated in Figure 7, where 
ants return to the original path when a zero suitable node is available to follow. For the purpose of 
preventing unnecessary backtracking of ants resulting in extra energy consumption, we use the 
suppression factor 𝐵𝑎𝑐𝑘𝑐𝑜𝑠𝑡 to reward and penalize the heuristic function. 
1) Road evaluation function 

The conventional ACO uses the distance factor of Eq (3) to evaluate the Euclidean distance from 
the ant's currently available grid that can be selected to the target grid. Since the difference in this 
distance is not apparent, we modified the distance evaluation function with the following equation to 
reflect the attractiveness of the target grid. 

𝐿 , (𝑡) =
𝐷 − 𝑑(𝑗, 𝐸)

𝐷 − 𝐷 + 0.01
 (8) 

where, 𝐷  and 𝐷  denote the maximum and minimum Euclidean distance from the neighboring 
grid to the endpoint 𝐸, respectively; 𝑑(𝑗, 𝐸) is the Euclidean distance from the neighboring grid 𝑗 to 
the endpoint 𝐸. 
2) Smoothing evaluation function 

Considering the smoothness of the path, the fewer the number of turns, the better the energy 
consumption is. The smooth evaluation function of the two-dimensional path is introduced as follow: 

𝑇 , (𝑡)=
1/𝐿𝑔𝑟𝑖𝑑, 𝑑𝑟 , = 𝑑𝑟 ,

0.5/𝐿𝑔𝑟𝑖𝑑, 𝑜𝑡ℎ𝑒𝑟
 (9) 

where, 𝐿𝑔𝑟𝑖𝑑 is the length of cell grid; 𝑑𝑟 ,  and 𝑑𝑟 ,  are the movement direction of ant at the 
previous and current moments, respectively. If the two transfer directions are the same, the ant has a 
higher probability of transferring in the direction of the previous movement. 
3) Friction factor evaluation function 

The friction factor in a rough road environment is the main factor affecting the energy-efficient 
path planning of robots: the larger the friction factor, the greater the energy consumption generated by 
the work of robots to overcome traction resistance [43]. In order to make the ants tend to choose the 
grid blocks with smaller friction coefficients during the movement, we design the friction factor 
evaluation function as follows. 

𝛬 , (𝑡) =
𝜇 − 𝜇 − 𝜇

𝜇 − 𝜇 + 0.01
 (10) 

where, 𝜇  and 𝜇  denote the maximum and minimum values of the friction coefficients of the 
current grid  𝑖 and the neighboring grid 𝑗, respectively; 𝜇  and 𝜇  denote the friction coefficients 
of the ant’s current position and the neighboring position, respectively. 
4) Energy consumption evaluation function 

Considering the physical characteristics of the mobile robot to overcome friction, we introduced 
an energy-related criterion to quantify the accumulated path energy consumption of the ant and the 
energy consumption to be generated. We used this criterion as an energy consumption evaluation 
function, expressed as follows:  
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𝛦 , (𝑡) =
1

∑ 𝜇 cos 𝜃 𝑚𝑔𝑠
, 𝑥 ⊂ 𝑣𝑖𝑠𝑖𝑡𝑒𝑑  (11) 

where, 𝜇  is the friction coefficient of ants passing through the grid path 𝑣𝑖𝑠𝑖𝑡𝑒𝑑𝑖; 𝜃 is the slope of 
the ground (this paper only considers the two-dimensional plane, so we set θ to 0); 𝑚 is the robot 
weight; 𝑔 is the acceleration of gravity; 𝑠  is the path length of the ant's single-step transfer.  

3.2.2. Pheromone update considering robot energy consumption model 

1) Energy consumption model 
The robot’s load size, mode of operation, road conditions, distance traveled, sensor composition, 

and electronics all affect the system's energy consumption. This is especially true for warehouse robots 
that continuously transport materials in large-scale and rough ground environments, requiring higher 
energy reserves. In this paper, the energy consumption is based on the work done by robots to overcome 
ground friction, and the influence of the travel distance and ground environment factors is discussed. 
The following assumptions are made in advance:  

Assumption 1: The robot has absolute power and can follow the planned path strictly without 
any failure.  

Assumption 2: To ensure the safety and controllability of the multi-warehouse robot system, the 
robot’s acceleration and deceleration motion control is achieved within half a grid area and works at 
rated power. 

The primary energy consumption [44–46] of the warehouse robots is: the energy converted into 
kinetic energy of the robot 𝐸 , the energy to overcome traction resistance to do work 𝐸 , and the loss 
from the conversion of the robot's hardware energy 𝐸 , as shown in the following: 

𝐸 = 𝐸 + 𝐸 + 𝐸  (12) 

𝐸 =
1

2
𝑚|𝑣 (𝑡) − 𝑣 (𝑡 − 1)| +

1

2
𝐼𝜔

𝑣(𝑡) = 𝑣(𝑡 − 1) + 𝑎𝑡

𝐼 = 𝑚 ∗ 𝑅

 (13) 

𝐸 =∫ 𝜇𝑚𝑔𝑐𝑜𝑠 𝜃𝑣(𝑡)𝑑𝑡 (14) 

𝐸 =∫(1 − 𝜂)𝑃𝑑𝑡 (15) 

where, 𝑚 is the weight of the mobile robot itself and the supplies; 𝑣(𝑡) and 𝑣(𝑡 − 1) denote the 
robot’s velocities at moments 𝑡 and 𝑡 − 1, respectively; 𝐼 is the rotational inertia; 𝜔 is the angular 
velocity of the robot during the turn; 𝑅  is the radius of the tire; 𝜇  is the ground friction 
coefficient; 𝑔 is the acceleration of gravity. η is the robot energy conversion efficiency; 𝑃 is the rated 
power of onboard sensors and electronics. 
2) Pheromone update under energy consumption constraint 

Several feasible paths will be obtained after the completion of the current iteration, which will be 
combined with the above energy consumption model to replace the traditional ant-period model. 
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𝜏 , (𝑡 + 1) = 𝜌𝜏 , (𝑡) + ∑  𝛥𝜏 , (𝑡) (16) 

𝛥𝜏 , (𝑡) =
𝑄

𝐸
, {𝑖, 𝑗} ⊂ visited 

0,   𝑜𝑡ℎ𝑒𝑟
 (17) 

We know from the above equation that the evaluated energy consumption value of a path always 
affects the update of the pheromone, which means that the lower the energy consumption of a path, 
the greater the accumulation of the pheromone. The probability 𝑝 , (𝑡)  is consequently doubly 

influenced by the energy consumption heuristic function of Eq (6) and the pheromone of Eq (16), 
which makes the ant colony always tend to choose the path with a low energy consumption value in 
the subsequent search process. A path with the lowest energy consumption is eventually evolved by 
our ECACO algorithm. 

Taking into account the possible local optimum problem caused by the search mechanism of the 
ant colony algorithm, we set the pheromone in the range as shown in Eq (18) by maximum 𝜏  and 
minimum 𝜏 . 

𝜏 , (𝑡) ≤ 𝜏

𝜏 , (𝑡) ≥ 𝜏
 (18) 

The pseudo code of ECACO above is shown in Algorithm 1. 

Algorithm 1  Energy constrained ant colony optimization 
1: procedure ECACO 
2: Constructing a known environment for robots based on the grid method;  
3: Initialize IACO parameters;  
4: for t = 1 to T do   // Iterate from the first generation 
5： for k = 1 to m do   // Ant number starts from 1 
6: Put all ants into start grid;  
7: while ant k is not in endpoint do 
10:  τ (t) and η (t) are obtained through Eqs (6) and (16), respectively; and choose the next 

grid by Eq (2); 
11: end while 
12: if all ants have arrived endpoint then 
13: E ← Energy consumption of antk’s path;  
14: Update the pheromone by Eqs (16)–(18);  
15: End if 
16: End for 
17: End for 
18: Output the path with optimal energy consumption for the wheeled robot; 
19： End procedure   

4. Priority free ant colony algorithm for multi robot 

A straightforward approach to solve trajectory coordination problems is to see all robots in the 
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system as one composite robot with many degrees of freedom and use some path planning algorithm 
to find a joint path for all the robots. However, the size of the joint configuration space that has to be 
searched during the planning is exponential in the number of robots. Thus, this approach quickly 
becomes impractical if one wants to plan for multi-robots. A pragmatic approach often useful for large 
multi-robot teams is prioritized planning. The idea of prioritized planning was first articulated by 
Erdman et al. [47].  

Priority-free ant colony optimization (PFACO) is a heuristic algorithm that considers multi-robot 
path conflict and energy consumption cost, which is proposed for the first time in this paper. Based on 
our ECACO algorithm, the PFACO algorithm integrates the prioritization-free conflict strategy (PCS) 
and route-free conflict strategy (RCS). The execution process is as follows: First, the optimal energy 
consumption path of a single robot is planned by ECACO (the conflicts between robots are ignored), 
and the four-neighborhood search mechanism is adopted in this step. Then the robots are given the 
corresponding priority according to the energy consumption value. Then the low-priority robot 
searches for Spatio-temporal conflicts with the high-priority robot through the binary conflict-tree 
(CT). When a conflict is recognized, the path of the higher-priority robots holds while lower-priority 
robots follow wait or replan. We employ a dynamic priority adjustment method to improve conflict-
free success, as the solution space of lower-priority robots is limited when there are too many robots. 

PFACO consists of two crucial parts, a scheme for prioritizing robots in rough ground 
environments and a free strategy for resolving low-priority robot conflict. We will discuss how to 
fulfill them in this section. 

4.1. Prioritized conflict-free strategy 

It was proposed by Erdmann et al. [47] in 1987 for the priority scheme. This works as follows: 
First, each robot is assigned a unique priority; Second, the trajectories of the individual robots are 
planned in decreasing order of priority; Third, one conflict-free trajectory is obtained for each robot. 

4.1.1. Prioritization order 

One crucial question is how to assign different priorities to the robots. While there certainly can 
be some natural reasons, such as based on the task's importance or the robots' different times, this is 
not something we assume here. In addition, as there are N! priority plans if we have N robots, it 
would not be an appropriate solution to sacrifice valuable CPU time to try all plans to choose the best 
one [48]. 

We propose a simple method to assign priority to robots. In our ECACO algorithm, the optimal 
energy consumption path for each robot in a non-smoothed environment from the start point to the 
goal point is determined, so we define a robot's energy consumption query set as 𝐸𝑛𝑒𝑟𝑔𝑦 =

{𝐸  ,𝐸  ,...𝐸 }. In our approach, the corresponding priority of a robot is its query position in the 
ascending energy consumption set 𝐸𝑛𝑒𝑟𝑔𝑦∗ = {𝐸 , 𝐸 , . . . , 𝐸 }∗. The rationale behind this heuristic 
can be illustrated in Figure 8: Robots with more significant query energy consumption traverse a larger 
number of regions and have a more extensive solution space than low-energy consumption robots. It 
should be able to complete the planning task relatively unhindered by giving it a lower priority, and 
this should be beneficial for reducing our energy consumption goal.  

Since the path energy consumption of each robot is differentiated, it means that the priority of 
each robot can be specified. For example, this is done by the ECACO algorithm for the robots 
numbered {①, ②, ③, ④, ⑤}; Then we get Energy = {200, 345, 514, 490, 145}, after ascending 
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order as Energy∗ = {145, 200, 345, 490, 514}, the robots correspond to priority {1, 2, 3, 4, 5}in order, 
and the robots numbered {⑤, ①, ②, ④, ③}. We know that the query energy consumption of robots 
⑤ and ③ are 145 J and 514 J, respectively, and the corresponding priorities are 1 and 5, respectively, 
so robot ③ needs to execute PCS for robot {⑤, ①, ②, ④} which has higher priority than it. 
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Figure 8. PCS mechanism. 

4.1.2. Secondary-free mechanism 

For example, as shown in Figure 9, PCS determines the numbering of AGVs as ①–④, with 
decreasing priority. There is a risk of collision between AGV4 and AGV3 at Step 3 when the robots 
start moving simultaneously, and the low-priority AGV4 cannot search for a valid path. To solve this 
invalid pre-planned path caused by the priority mechanism, we perform the reward and punishment 
operation shown in Eq (20) on the heuristic function of ECACO. It prevents the ants from selecting 
those nodes with spatio-temporal conflicts during the path search process as much as possible by 
quadratic solution. Eventually, it obtains the ideal path in Figure 10. 

𝑁𝑒𝑤
, ( ) = 𝑅 𝜂 , (𝑡) (19) 

𝑅 =
0.01, 𝐼𝑓 𝑎𝑛𝑡𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑛𝑜𝑑𝑒 𝑎𝑠  𝑙𝑜𝑠𝑒𝑟_𝑅𝑜𝑢𝑛𝑡𝑒 𝑎𝑡 𝑠𝑎𝑚𝑒 𝑡𝑖𝑚𝑒 

1, 𝑜𝑡ℎ𝑒𝑟
  (20) 
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Figure 9. Unsolved path. 
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Figure 10. PCS quadratic solution path. 

4.1.3 Dynamic prioritization strategy 

The hypothesis is that other factors still hinder the secondary planning path of the ECACO 
algorithm, which will face an awkward situation, as shown in Figure 11. Considering the sensitivity of 
the priority mechanism to the robot scheduling order [49], we propose a priority dynamic adjustment 
strategy to respond. The principle is to find the highest priority robot which has a conflict with AGV4 
by CT, that is AGV2, and adjust the original priority AGV1 > AGV2 > AGV3 > AGV4 to AGV1 > 
AGV4 > AGV2 > AGV3 by the priority insertion mechanism, and replan the paths of subsequent 
robots from AGV4. The coordinated conflict-free path is shown in Figure 12, and only AGV3 increases 
the waiting time at Step 3 moment. The dynamic priority adjustment strategy can possibly reduce the 
collision risk and energy consumption compared to the replanning path. 

In this subsection, we discuss the PCS for resolving the overall conflict, which contains how to 
determine the task priority of the robots, the secondary-free operation, and the priority dynamic 
adjustment mechanism. In the following subsection, we will discuss the path conflict-free strategy 
when two robots are situation in detail. 
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Figure 11. Failed planning. 
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Figure 12. PCS -Dynamic prioritization strategy. 

4.2. Route conflict-free strategy (RCS) 

4.2.1. Four-neighborhood search mechanism 

The diagonal directional transfer shown in Figure 13 may occur in a single robot's traditional 
eight-neighborhood search path. It is difficult to effectively judge the motion conflict between two 
robots, especially when there are large-scale robots. In this paper, we restrict the selection of the grid 
by ECACO to the four-neighborhood shown in Figure 14 through Eq (21), which makes the single-
step jump distance of 1m for the ant. This is not only guaranteed robot not to collide with obstacles 
but also more conducive to achieving the synchronization of swarm robot movements. 
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Figure 13. Eight-neighborhood search. 
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Figure 14. Four-neighborhood search. 
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𝐷(𝑖, 𝑗) =
1, 𝑚𝑜𝑑(𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛(𝑗),2) = 0 

𝑖𝑛𝑓, 𝑜𝑡ℎ𝑒𝑟
 (21) 

where, 𝐷(𝑖, 𝑗) is the distance from the grid 𝑖 to grid 𝑗 in eight-neighbourhood range; 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛() 
is the direction which the ant move from grid 𝑖 to grid 𝑗.  

Algorithm 2 RCS for typical conflict 
1: Input: J, Robots, visited, MAP; //adjacency matrix, path of high priority robots, visited nodes, 

Map 
2: MM = size(MAPA, 1); //Map size 
3: Dir = [-1, MM,1, -MM]; //Motion direction 
4: temp_conflict = 0 //conflict indicator 
5: For k = 1: 4 
6: k1 = Dir(k) + visited(end); // k1 is the raster number visited indicates the visited path 
7: position = Find(k1, Node_robots (t-1) ); //Find the location of the conflicting node 
10: If  position  //there is a node conflict  
11: Location = Find(k1, Node_robots (t-1) ); 
12: If |(visited(end)-k1| = MM & |Robots(t) - Robots(t-1)| = 1  
13: temp_conflict = 1;  //Cross node conflict 
14: Elseif |visited(end) - k1) = 1| & |Robots(t-1) - Robots(t) = MM|  
15: temp_conflict = 1;   //Cross node conflict 
16: Else   //Phase node conflict 
17: Continue  
18: End 
19: End 
20: If k1 = Robots (t-1) & visited (end) = Robots(t) // There is an alignment conflict 
21: Continue 
22: End 
23: J(Jc) = k1;  // The set of raster to be visited 
24: N(Jc) = k;  // set of directions to be selected 
25: Jc = Jc + 1;  
26: End 
27: If visited(end) ~ = Robots(t) & temp_conflict = 1 // Waiting mechanism for node conflict 

trigger 
28: J = []; N = []; 
29: J = visited(end); 
30: N = last_direct; // movement direction is the same as last time 
31: End 
32：Output J and N //Node number and direction of movement to be transferred 

4.2.2. RCS for typical path conflicts 

Node and counterpoint conflicts are the most typical conflict in MAPF, where two robots meet in 
motion. We determine the movement nodes of the low-priority robots according to the node expansion 
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approach in Section 4.2.1 to stop-wait or detour. The stop-wait mechanism is shown in Figure 15, 
which means expanding the current node as the next state point and resuming the motion after the 
high-priority robot leaves. The detour mechanism applies when the stop-wait mechanism fails, and the 
low-priority robot can only choose a conflict-free path with the high-priority one. The RCS pseudo-
code for the typical conflict is shown in Algorithm 2. 

Down

Left

Up

Right
Wait in 
place

 

Figure 15. Waiting in place. 

1) Cross-shaped node conflict: as shown in Figure 16, the priority of conflicting robots is judged 
by ascending energy consumption priority strategy. The low-priority robot AGV2 implements wait-in-
place, i.e., the extended wait point is the next state point until the motion path of the high-priority robot 
AGV1 no longer affects its movement and then continues to travel along the original path. 
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Figure 16. Cross node conflict RCS. 

2) Phase direction type node conflict: As shown in Figure 17, the high-priority robot AGV1 
continues to move according to the planned path, and the low-priority robot AGV2 performs a local 
re-planning path movement to the target point. 

3) Counterpoint conflict: As shown in Figure 18, a collision between robots must exist, and the 
low-priority wait-in-place strategy fails. At this time, the high-priority robot AGV1's path remains 
unchanged, and the low-priority robot AGV2 gets a new path. 
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Figure 17. RCS of phase wise node conflict. 
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Figure 18. Counterpoint conflict RCS. 

4.2.3. RCS for priority-derived conflicts 

Node and counterpoint conflicts are typical motion conflicts, and fewer scholars have focused on 
the risk of occupancy conflict and large-scale robot blockage coordination problems derived from 
priority MAPF. We additionally concentrate on the green path planning problem, with the following 
RCS for resolving related conflicts. 
1) Placeholder Conflict 

Occupancy conflict define: the target point of the low-priority robot is located exactly on the 
path not passed by the high-priority robot. 

RCS (The RCS pseudo code is shown in Algorithm 3):  
 Strategy 1- As shown in Figure 19, it is predicted that there is an occupancy conflict between 

the low-priority AGV2 and the high-priority AGV1. We then allow AGV2 to activate the waiting 
mechanism at the nearest Step3 position (conflict-free node) from the target point and resume its 
movement after the conflict release.  

 Strategy 2- As shown in Figure 20, the path is replanned if the conditions of AGV3 would 
not enable a waiting mechanism of strategy 1 to be triggered. In this process, the waiting mechanism 
will be triggered cyclically so that we can also save energy resources while taking into account the 
obstacle avoidance process as much as possible.  
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Algorithm 3  RCS for occupancy conflict 
1: Input: J, Goal, Robots, visited   

//adjacency matrix Goal point Path of high priority robots Visited nodes 
2: If find(J = Goal) //Robots may next choose a goal point with conflict    
3: For i = 1: nub - 1 
4: position = Find(Goal, Robot(i)); // Find the location of the conflicting node    
5: If position > length(visited) + 1 & visited(end)~ = Robots(t + 1) //Robots have conflicting 

positions and there is no temporal conflict node 
6: J = visited(end); 
7: N = last_direct;  
10: Break 
11: Else //discard the target point from the node to be selected 
12: Position* = Find(J,Goal); 
13: J(Position*) = []; 
14: End 
15: End 
16: End 
17: Output J and N 
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Figure 19. Occupancy conflict strategy 1. 
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Figure 20. Occupancy conflict strategy 2. 
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2) Blockage Conflict 
Blockage conflict define: low-priority robot meets high-priority robot in a narrow environment. 
RCS (The RCS pseudo-code is shown in Algorithm 4): 

Algorithm 4  RCS for Blockage conflict 
1: Input: J, temp_conflict ,visit  //adjacency matrix Cross node conflict indicator Visited nodes 
2: Back_number = 0; Back_conflict = 0 
3: If isempty(J) & temp_conflict == 1 //the set of accessible nodes J is empty and there is a 

conflict == >> back strategy 
4: Back_conflict = 1; //back-off  has occurred 
5: If length(visited)-2 * (Back_number + 1) + 1>0 //Not back to the start 
6: J = visited(end-2 * (Back_number + 1) + 1); // contains the matrix of raster numbers to be 

visited 
7: N = last_direct; //retains the direction of the last movement 
8: Back_number = Back_number + 1; //Record the number of backtracking 
9: Else //has backed up to the starting point, then wait for 
10: J = visited; 
11: N = last_direct; 
12: End 
13: Elseif J = [] & temp_conflict == 0 //If it can't backtrack, the ant is dead 
14: break 
15: End 
16: If Back_conflict == 0 //No backtracking occurred this time, then the backtracking number is 

cleared to 0 
17: Back_number = 0 
18: End 
19: Output J and N 

 Strategy 1- As shown in Figure 21, a failed path is searched by low-priority AGV3 at Step3 
time under massive conflict. We allow AGV3 to retreat to the previous path node if nothing is disturbed 
by other robots at the next moment. If this conflict holds, it will stop the movement at the original safe 
position to save energy. The movement on the original path is continued as soon as the conflict is 
solved. Otherwise, the path of AGV3 is re-planned.  
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Figure 21. Blockage conflict strategy 1. 
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 Strategy 2- In the particular case shown in Figure 22, there is no wait command satisfied by 
the low-priority AGV2. It will trigger a multiple fallback method without affecting the movement of 
high-priority AGV1 until the conflict is entirely released before resuming the original motion. 

2

1 2 3

G2

G1
7

1

4

56
8

7

8

9

101112
AGV1

AGV2

4

5

3

6

 

Figure 22. Blockage conflict strategy 2. 

Remember: We did introduce the secondary freedom mechanism in Section 4.1.2 and the 
dynamic priority policy in Section 4.1.3 for resolution in the planning process when RCS failed to 
resolve the above four conflicts effectively. 

4.3. Algorithm flow 

The flow of our multi-robot energy-efficient planning algorithm is shown in Figure 23. 

5. Simulation experiments 

This paper is a simulation experiment on Matlab 2020a with the computer performance of Lenovo 
R7000, i5-11400H@2.70GHz. The relevant parameters of the robot and the ant colony algorithm are 
shown in Table 1. 

Table 1. Main parameters of our robot and algorithm. 

Parameter Value Parameter Value 
Robot weight m (kg) 10 Velocity 𝑣 at uniform motion (m/s) 1 
Gravitational acceleration g (m/s ) 9.8 Angular velocity ω (rad/s) 10 
Tire radius R(m) 0.15 Motor efficiency η 0.78 
Acceleration a at start/stop (m/s ) 1 Motor power Ρ (w) 200 
Number of ants M 30 𝜏  10 
Number of iterations Nc 50 𝜏  40 
Pheromone Heuristic Factor α 1 𝑤 20 
Expectation heuristic factor β 3 𝑥 1 
Pheromone constant Q 100 𝑦 10 
Pheromone volatilityρ 0.8 𝑧 1 
Lgrid 1   
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Figure 23. Flow chart of PFACO. 

5.1. Single-robot path planning comparison experiment 

In order to verify the energy-saving effect of the ECACO algorithm proposed in this paper on 
robot motion, a dual-resolution map is used to simulate an unstructured scenario. The map model uses 
a 20 m × 20 m scale, the friction coefficient of the non-flat road surface is randomly generated between 
0 and 0.45, and the robot's weight is 10 kg. To reflect the applicable scenarios of our algorithm, we 
consider three standard neighborhood search methods for path planning: traditional eight-
neighborhood, secure eight-neighborhood [50], and optimized four-neighborhood [51]. In addition, we 
verify the effectiveness of ECACO in energy saving by ablation experiments under each type of 
approach. The compared algorithms include Improved heuristic function-ACO (IHF-ACO), Improved 
pheromone update (IPU-ACO), traditional ACO, traditional A* and IA*[52]. 
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5.1.1. Traditional eight-neighborhood search method 

We conducted comparative experiments in an environment filled with diagonal obstacles, and the 
results of the simulation experiments are shown in Table 2 and Figures 24 and 25. It can be noticed 
that the energy cost of the path planned by ECACO in this paper is 9973 J, which is optimized by 5.04, 
5.62, 2.70, 16.09 and 17.08% compared to IHF-ACO, IPU-ACO, traditional ACO, A* and IA*, 
respectively. A* and IA* outperforms ECACO slightly in terms of path length and solution time. 
Regarding path length and the number of energy-stable iterations, our ECACO algorithm is 
significantly better than the other algorithms with both 6 iterations. In terms of path smoothing, IHF-
ACO and IA* perform the worst, ECACO has the least number of turns. In general, the algorithms in 
this paper outperform the comparison methods in comprehensive indexes. However, the paths planned 
by all algorithms in the traditional eight-neighborhood search method pass through the diagonal 
obstacle at (15, 4) and collide with the obstacle’s edge many times on the map. Sections 5.1.2 and 5.1.3 
will explore the safe ground path planning problem under the two safe neighborhood search 
mechanisms. The IA* algorithm improves the traditional heuristic function of A*, so it has its 
advantages in node expansion as well as program efficiency but may have the awkward situation of 
non-optimal solutions. 

 

Figure 24. Path planning. 

 

Figure 25. Iterative diagram of path length and energy consumption. 
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Table 2. Experimental results. 

5.1.2. Security eight-neighborhood search method 

We remained in the more complex diagonal obstacle environment and conducted safety eight-
neighborhood experiments, as shown in Figures 26 and 27 and Table 3. The results show that the paths 
planned by all algorithms after improving the neighborhood search maintain a certain safety distance 
from the obstacles, which improves the safety of robot passage compared with Section 5.1.1. In terms 
of energy consumption solution, the path energy consumption of our ECACO and traditional A* are 
11,089 J, which is optimized by 1.67, 2.11, 0.40 and 2.26% compared to IHF-ACO, IIU-ACO, 
traditional ACO and IA*, respectively. Regarding the path length, IPU-ACO plans the longest path, 
ACO is the second, and the shortest path length of the robot in this paper is 30.3848 m. The stable 
iterations of path length and energy consumption in our ECACO are 6, which is better than other 
algorithms. In the smoothness of the path, ECACO, IHF-ACO, A* and IA*are the same, and both are 
better than IPU-ACO and ACO. As for the solution time, IHF-ACO has the worst solution time, IA* 
has the best path solution time. 

 

Figure 26. Path planning. 

Optimal path indicators 
Our 
ECACO 

IHF-ACO 
IPU-
ACO 

ACO A* IA* 

Energy consumption (J) 9973 10502 10567 10250 11885 12027 

Path length (m) 30.9706 31.7990 30.3848 30.3848 29.7990 
29.799
0 

Number of turns (time) 7 13 11 9 12 13 

Friction coefficient mean 
square difference 

0.1448 0.1128 0.1148 0.1200 0.1356 0.1321 

Number of iterations of 
path length stabilization 
convergence 

6 15 37 17 --- --- 

Number of energy-stable 
convergence iterations 

6 15 38 41 --- --- 

Algorithm solving time (s) 1.2179 3.5864 6.9591 1.0853 0.5102 0.3171 
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Figure 27. Iterative diagram of path length and energy consumption. 

Table 3. Experimental results. 

It can be seen from the comprehensive analyses that the IPU-ACO using energy consumption 
model optimization has poor algorithm-seeking ability due to the lack of a reasonable heuristic guide. 
While the IHF-ACO, considering the energy consumption model heuristic function, can achieve low-
energy path planning, it also lacks a reasonable pheromone strategy to enhance the iterative evolution 
of the algorithm. In this paper, ECACO integrates the advantages of IPU-ACO and IHF-ACO under 
the security eight-neighborhood mechanism to achieve better energy-efficient path planning. Both IA* 
and A* are heuristic algorithms with path length as the goal of finding the optimal path. IA* improves 
program execution efficiency but presents the awkward situation of non-optimal paths, as described in 
Section 5.1.1. The distribution of obstacles is relatively simple in this case, resulting in the path with 
the shortest path length also being the lowest energy one. Thus, the A* achieves the same effect as 
ECACO in this paper under the safe eight-neighborhood search mechanism, but there is a significant 
difference under the four-domain search in Section 5.1.3. 
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ACO IHF-ACO IPU-ACO Our ECACO

The length of the best route

Energy consumption of the best route

Optimal path indicators 
Our 
ECACO 

IHF-ACO IPU-ACO ACO A* IA* 

Energy consumption (J) 11089 11277 11328 11133 11089 11345 

Path length (m) 30.3848 31.2132 33.8995 33.3137 30.3848 30.9706 

Number of turns (time) 7 7 13 12 7 7 

Friction coefficient mean 
square difference 

0.1101 0.1058 0.1242 0.1282 0.1101 0.1165 

Number of iterations of 
path length stabilization 
convergence 

6 13 35 35 --- --- 

Number of energy-stable 
convergence iterations 

6 13 35 32 --- --- 

Algorithm solving time (s) 1.2887 4.3201 1.6929 1.451 0.7868 0.5700 
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5.1.3. Optimizing the four-neighborhood search method 

The more popular current node search strategy for multi-robot systems is the four-neighborhood 
approach (described in Section 4.2.1). To facilitate the experimental verification of the multi-
warehouse robots in subsequent Sections 5.3.1 and 5.3.2, the energy-efficient planning of ECACO is 
verified in a single-robot environment in advance. The simulation and experimental results are shown 
in Table 4 and Figures 28 and 29. In terms of energy consumption solution, the energy consumption 
of the ECACO in this paper is 11,219 J, which is 11.32, 8.39, 13.16, 19.91 and 26.30% optimized 
compared with IHF-ACO, IIU-ACO, traditional ACO, A* and IA*, respectively. As for the solution 
time, ECACO has the worst solution time, and IA* has the best path solution time. Since the optimized 
four-neighborhood approach is adopted, the path lengths of all six algorithms are the same. However, 
our ECACO significantly reduces the energy cost due to its clear superiority over other algorithms in 
path smoothing and node selection for rough pavement. In addition, ECACO outperforms the IHF-
ACO, IIU-ACO and traditional ACO regarding path and energy consumption iteration stability. Taken 
together, it can be seen that the ECACO algorithm proposed in this paper is suitable for multi-robot 
environments and can reduce energy costs. 

 

Figure 28. Path planning. 

 

Figure 29. Iterative diagram of path length and energy consumption. 
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Table 4. Experimental results. 

5.2. Multi-robot priority scheduling sensitivity verification 

The PFACO algorithm in this paper incorporates three strategies: single-robot ECACO, PCS for 
determining multi-robot priorities, and RCS for coordinating multi-robot conflicts. Section 5.1 verifies 
the energy-saving effectiveness of ECACO. This section will test the sensitivity of robot priority 
scheduling on MAPF problem through a 10 m × 10 m scale blank rough environment and a 10 m × 10 
m scale obstacle rough environment energy consumption.  Within the framework of ECACO-PCS-
RCS in this paper, three types of PCS are selected for comparison: energy consumption ascending PCS 
(the smaller the energy consumption value, the higher the robot priority), energy consumption 
descending PCS (the more extensive the energy consumption value, the higher the robot priority), and 
regular PCS (the robot priority is not specially treated). We set up 10 robots in each of the environments 
for 10 labs, and the starting and endpoints of each robot were randomly generated. The algorithm 
performance was quantified by averaging the energy consumption, path length, the number of turns, 
mean squared difference of friction coefficients, and time spent on algorithm solving. 

Table 5. Experimental results. 

Experimental index Our PCS Descending PCS Conventional PCS 
Average energy consumption (KJ) 73.858 85.408 80.113 
Average path length (m) 61.8 73.5 67.3 
Average number of turns (time) 21 26 22 
Average friction coefficient mean 
square difference 

0.2702 0.2682 0.2679 

Algorithm average time (s) 11.9934 13.9810 12.2915 

5.2.1. Blank rough environment 

The experimental results of the three PCS strategies in the blank rough environment are shown in 
Figures 30–32 and Table 5. What can be known is that the average energy consumption value of PCS 

Optimal path indicators 
Our 
ECACO 

IHF-ACO IPU-ACO ACO A* IA* 

Energy consumption (J) 11219 12651 12247 12919 14008 15222 

Path length (m) 38 38 38 38 38 38 

Number of turns (time) 4 12 8 12 10 22 

Friction coefficient mean 
square difference 

0.1225 0.1248 0.1322 0.1277 0.1325 0.1219 

Number of iterations of 
path length stabilization 
convergence 

3 4 9 12 --- --- 

Number of energy-stable 
convergence iterations 

4 5 39 30 --- --- 

Algorithm solving time (s) 1.8781 1.5603 1.4352 1.4343 0.2507 0.1631 



3555 

Mathematical Biosciences and Engineering  Volume 20, Issue 2, 3528-3565. 

in this paper is 73.858 KJ, which is 13.5 and 7.8% more optimized than descending PCS and 
conventional PCS, respectively. Regarding path length solving, the results of this paper and the 
descending PCS are optimal and worst, respectively. As for path smoothing, Our PCS and conventional 
PCS solving effects are close, and the descending PCS performs the worst. The three strategies are 
close in effect in terms of the average friction coefficient mean square deviation and algorithm-solving 
time. In addition, we can obviously discover from Figure 30 that the descending PCS performs the 
worst in each experiment, and the conventional PCS outperforms our PCS only in the seventh 
experiment. Overall, the strategy of this paper to query the energy consumption of robots in blank 
rough environments based on the ECACO algorithm and assign higher priority to robots with lower 
energy consumption values is feasible and effective. 

 

Figure 30. Multi-robot energy consumption distribution. 

   

(a) This paper PCS (b) Descending PCS (c) Regular PCS 

Figure 31. Path diagram of the 9th experiment. 

   

(a) This paper PCS (b) Descending PCS (c) Regular PCS 

Figure 32. Path diagram of the 10th experiment. 
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Figure 33. Multi-robot energy consumption distribution. 

   

(a) This paper PCS (b) Descending PCS (c) Regular PCS 

Figure 34. Path diagram of the 9th experiment. 

   

(a) This paper PCS (b) Descending PCS (c) Regular PCS 

Figure 35. Path diagram of the 10th experiment. 
 

5.2.2. Obstacle rough environment 

This section adds the obstacle environment to the above rough terrain experiments to further 
expand the test scenario of the algorithm, and the experimental results are shown in Figures 33–35 and 
Table 6. What can be known is that the energy consumption values of our PCS, descending PCS, and 
conventional PCS are 86.9405, 94.2088 and 94.4898KJ, respectively. Our PCS is optimized by 4 
and 8% compared to the two strategies. Our strategy performs optimally regarding path length, path 
smoothing and algorithm time-solving. We compare three different PCS strategies in the framework 
of the ECACO-PCS-RCS algorithm through this example experiment and verify the feasibility of the 
ascending PCS to determine the robot priority in this paper. In the following subsection, we will expand 
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the number of robots and the scale of the environments, then compare and analyze multiple 
performance metrics in both horizontal and vertical directions. 

Table 6. Experimental results. 

Experimental index Our PCS Descending PCS Conventional PCS 
Average energy consumption (KJ) 86.9405 94.2088 94.4898 
Average path length (m) 72.9 81.5 80.1 
Average number of turns (time) 25 27  29 
Average friction coefficient mean 
square difference 

0.27712 0.27206 0.27474 

Algorithm average time (s) 15.17284 18.82398 17.85909 

5.3. Multi-robot path planning comparison experiment 

In order to evaluate the practical advantages of the multi-robot energy-efficient path planning 
algorithm in this paper, two different scenarios are selected for comparison experiments, which are 20 
m × 20 m scale blank rough and 40 m × 40 m scale rough warehouse environments. Based on the 
algorithmic framework of ECACO-PCS-RCS in this paper, our PFACO algorithm is compared with 
three methods, ACO-TPCS-RCS, ACO-PCS-RCS and ECACO-TPCS-RCS, in each scenario. Where 
ACO is the ant colony algorithm of the traditional ant perimeter model; ECACO is the ant colony 
algorithm of the energy consumption model in this paper; TPCS is the traditional priority strategy; 
PCS is the priority strategy in this paper; RCS is the free strategy for multi-robot path conflicts (to 
ensure that there is no collision conflict among robots) in this paper. 

Regarding experimental design and comparison metrics: the number of robots increases from 10 
until the total number is over 100, with 10 more each round. For each experiment, the starting and 
target points are randomly generated to match the number of robots, and they are guaranteed to be 
different from each other to avoid invalid conflict. In order to avoid the chance of single simulation 
experiment results, 20 non-repeated experiments are conducted for the same number of robots, and the 
average of these experiments reflects the algorithm’s accuracy. The performance indexes of the 
algorithm mainly include path planning success rate (We only count those cases where the paths are 
free of any conflicts), average energy consumption, average path length, the average number of turns, 
average variance of ground friction coefficient, and average program running time value. 

5.3.1. Blank rough environment 

As shown in Figure 36, when the number of robots is small (less than 20), the success rate of all 
two algorithms (PFACO, ACO-PCS-RCS) in planning paths is 100%. The success rate of solving 
ACO-TPCS-RCS and ECACO-TPCS-RCS starts to decrease obviously when the number of robots 
has more than 20, and the conflict among robots increases, so the robots with low priority under the 
TPCS strategy may not be able to find feasible paths. In contrast, based on our PCS strategy, PFACO 
and ACO-PCS-RCS success rates only start to decrease when the number of robots is 60 and 50, 
respectively. However, our PFACO maintains a high success rate, which is still 15% higher than ACO-
PCS-RCS at a scale of 100 robots. As shown in Figures 37–40 for each comparison metric, the 
comparative analysis of PFACO and ACO-PCS-RCS is focused due to the premature death of the 
ACO-TPCS-RCS and ECACO-TPCS-RCS algorithms. When the number of robots is 10, the energy 
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consumption solution result of our PFACO is 4.0 KJ better than ACO-PCS-RCS. When the number of 
robots is increased to 100, the difference achieves 30.4 KJ. The difference between the two algorithms 
increases as the number of robots increases, indicating that our PFACO algorithm framework is not 
only better at solving robot conflict but also more energy efficient. This is mainly reflected in the fact 
that PFACO significantly outperforms the other algorithms in terms of path length, the number of turns, 
and friction coefficient in Figures 38–40. Regarding the solution time shown in Figure 41, the 
difference in solution time between the four algorithms is small when the number of robots is small. 
As the number of robots increases and the congestion of robots becomes higher, the wait-in-place and 
detour behaviors performed by the RCS strategy rise, and the solution times of PFACO and ACO-PCS-
RCS increase significantly. The maximum solution time of ACO-PCS-RCS is 13.4 s larger than our 
method at first, but the difference between the two is 255.3 s when the number of robots reaches 100. 
The path schematic of the maximum number of robots that the algorithm can achieve is shown in 
Figure 42. Our PFACO execution success rate is higher and the quality of the planned paths is better, 
as shown by comparing the various metrics of the four algorithms in the blank rough environment. 

  

Figure 36. Algorithm success rate. Figure 37. Average energy consumption. 

  

Figure 38. Average path length. Figure 39. Average total number of turn points. 

  

Figure 40. Average friction coefficient 
mean square deviation. 

Figure 41. Average running time. 
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(a) PFACO 

(Agents = 100) 

(b) ACO-TPCS-RCS 

(Agents = 30) 

(c) ACO-PCS-RCS 

(Agents = 100) 

 (d) ECACO-TPCS-RCS 

(Agents = 50) 

 
Figure 42. Multi robot path planning. 

5.3.2. Rough warehouse environment 

To further verify the effectiveness and stability of the algorithm, the maximum load m = 500kg 
of the unmanned warehouse robot of Jingdong Company was used as the background. The relevant 
parameters of ECACO were modified as follows: the pheromone constant Q was 10,000, the number 
of ants M was 20, and the maximum number of iterations NC was 10. The size of the unstructured 
warehouse scene is 40 m × 40 m, and 48 shelves are placed. We conducted more comprehensive testing 
and analysis of the algorithms by the different levels of robots and random tasks, and the experimental 
results are shown in Figures 43–49. 

The solution success rates of all algorithms are shown in Figure 43, where the success rates of 
ACO-TPCS-RCS and ECACO-TPCS-RCS still decrease to 0 prematurely, and the following analysis 
is focused on PFACO and ACO-PCS-RCS. Both PFACO and ACO-PCS-RCS success rates are at 100% 
when the number of robots is less than 60, and the success rate gradually decreases as the number 
increases. Although our ECACO outperforms ACO significantly for individual robots (verified in 
Section 5.1.3), this also means that more path intersections and more conflicts are generated when 
applied to multiple robots. These experiments add obstacle constraints compared to the obstacle-free 
environment in Section 5.3.1, making the success rate of our ECACO slightly worse than that of ACO-
PCS-RCS when the number of robots is 90–120. However, it is clear from the energy consumption 
shown in Figure 44 that the energy consumption advantage of our PFACO algorithm is still apparent, 
especially when the number of robots is 120, the average energy consumption results of PFACO and 
ACO-PCS-RCS algorithms are 10207.1 KJ and 14675.2 KJ, respectively, and ours reduces 30% 
consumption compared with ACO-PCS-RCS. In Figures 45–48, with the number of robots at 120, our 
PFACO algorithm outperforms the ACO-PCS-RCS in terms of path length, the number of turns, 
friction coefficient, and algorithm running time by 24, 53, 3 and 51%, respectively. 

Through the comparison experiments under two different environments in Section 5.3, we 
thoroughly verify the advantages of the PFACO algorithm in this paper regarding the success rate and 
cost of multi-robot path planning, and the innovative and industrial reference value of the theory is 
also reflected. 
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Figure 43. Algorithm success rate. Figure 44. Average energy consumption. 

  

Figure 45. Average path length. Figure 46. Average total number of turn points. 

  

Figure 47. Average friction coefficient mean 
square deviation. 

Figure 48. Average running time. 

   
(a) PFACO 

(Agents = 120) 

(b) ACO-TPCS-RCS 

(Agents = 60) 

(c) ACO-PCS-RCS 

(Agents = 120) 

 (d) ECACO-TPCS-RCS 

(Agents = 70) 

Figure 49. Multi robot path planning. 

6. Conclusions and prospect 

Multi-robot coordination and cooperation in completing work will be the trend of robotics 
research. This paper proposes a multi-robot energy-efficient path planning algorithm based on the 
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priority scheduling concept with limited energy storage and robots’ energy consumption as the MAPF 
background. First, we design an unstructured storage environment modeling method that considers 
both obstacle and rough ground friction factors. Second, we propose an ECACO energy-efficient 
planning algorithm for a single mobile robot, which contains a heuristic function for energy 
consumption constraint improvement and a pheromone update strategy for energy consumption model 
optimization. The improved heuristic function considers the path length, path smoothness, road friction 
coefficient, and path energy consumption. The improved pheromone update considers the transformed 
kinetic energy of robot motion, energy loss from overcoming traction resistance, and robot hardware 
energy consumption. Then, we propose a PFACO energy-efficient planning algorithm for multi-
warehouse robots, which incorporates Prioritized Conflict-free Strategies (PCS) and Route Conflict-
free Strategies (RCS) based on ECACO. PCS mainly solves the deadlock conflicts of multiple robots 
by swapping the priority between conflicting robots and re-route planning to free conflict. RCS mainly 
resolves node conflict, counterpoint conflict, occupancy conflict and blockage conflict among multiple 
robots based on the methods of waiting in place or re-route planning. The results show that our ECACO 
algorithm and the extended PFACO algorithm have more significant improvements in energy savings 
and solution success rate than other methods in complex rough terrain, which are of reference value 
when applied to practical warehouse robots. 

The performance of our PFACO algorithm was fully validated in this study, but further 
improvement of the algorithm success rate, path performance metrics, and program execution 
efficiency in the large-scale robot scenario will continue during future work. In addition, more complex 
factors such as MAPF multitask planning (TSP problem), intermittent communication, and dynamic 
obstacle problems will also be focused on in future research. 

Data available 

Detailed multi-robot experimental data can be obtained from the link: 
https://github.com/1354109872/PFACO. 
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