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1. Introduction

In this paper, we consider the following modified Schrödinger-Poisson system, which is usually
used to describe solitary waves for the nonlinear stationary Schrödinger equations interacting with an
unknown electromagnetic field (refer to [1–4] for more physical background): −∆u + V(x)u + ϕ(x)u −

1
2

u∆(u2) = f (x, u), in R3,

−∆ϕ = u2, in R3,
(1.1)

where V(x) ∈ C(R3), V0 := inf
x∈R3

V(x) > 0 and satisfies

(V): For any M, r > 0, there is a ball Br(y) centered at y with radius r such that

µ({x ∈ Br(y) : V(x) ≤ M})→ 0, as |y| → ∞.

In the past twenty years, there have been a lot of contributions about the following Schrödinger-
Poisson system  −∆u + V(x)u + ϕ(x)u = f (x, u), in R3,

−∆ϕ = u2, lim
|x|→+∞

ϕ(x) = 0, in R3, (1.2)
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after the pioneering work in [2]. For example, Ruiz et al. gave some existence and nonexistence results
for the case V(x) = 1 and f (x, u) = |u|p−2u, 2 < p < 6 in [5], while Azzollini [6] studied the existence
of a ground state solution of Eq (1.2) with the same f (x, u) but 3 < p < 6. And [7–9] focused on the
existence and multiplicity of nontrivial solutions with a superlinear and subcritical growth condition.
Amongst them a global Ambrosetti-Rabinowitz type condition is given as follow

0 < F(x, u) :=
∫ u

0
f (x, s)ds ≤

1
γ

u f (x, u), γ > 4, (A-R)

which is only valid for f (x, u) = |u|p−2u with p > 4. Then in [10], Liu, Wang and Zhang provided a
supplement as p ∈ (3, 4). And we discussed for a more general nonlinearity f (x, u) without any growth
restrictions at infinity in [11].

On the other hand, some researchers also considered a quasilinear Schrödinger equation defined by

−∆u + V(x)u − ∆(u2)u = f (x, u), x ∈ RN ,

which arose in several models of physical phenomena, such as superfluid films in plasma physics (see
e.g., [12–14]). And it has received considerable attention in mathematical analysis in the last twenty
years (see [15–19]). Feng and Zhang in [20] added the quasilinear term ∆(u2)u to Eq (1.2) and found
that the new Eq (1.1) possesses at least one non-trivial solution by using perturbation method and
mountain pass theorem based on the following assumptions:
(F1): f ∈ C(R3 × R,R), | f (x, u)| ≤ C1

(
|u| + |u|p−1

)
for some C1 > 0 and p ∈ (4, 6);

(F2): f (x, u) = o(u) uniformly in x as u→ 0;
(F3): there exists µ > 4 such that

0 < µF(x, s) = µ
∫ s

0
f (x, t)dt ≤ s f (x, s), s ∈ R \ {0}, x ∈ R3;

(F4): there exists M > 0 such that
inf

x∈R3,|u|≥M
F(x, u) > 0.

After that, Chen L. et al. proved that Eq (1.1) possesses a sign-changing solution by a minimisation
on a Nehari-type constraint for the corresponding Euler-Lagrange functional if f satisfies the following
assumptions in [21]:
(F′1): f ∈ C1(R,R);
(F′2): lim

s→0

f (s)
s = lim

|s|→∞

f (s)
|s|11 = 0;

(F′3): there exists µ > 4 such that

0 < µF(s) = µ
∫ s

0
f (t)dt ≤ s f (s), s ∈ R \ {0};

(F′4): f (t)
|t|3 is increasing on (−∞, 0) and (0,∞), respectively.

Motivated by the above work, we discuss the existence of solutions for the modified Schrödinger-
Poisson Eq (1.1) with coercive potential and more general assumptions on f but not need to be C1.
Concretely, let f satisfy
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( f1): f ∈ C(R3 × R,R), | f (x, u)| ≤ C2

(
1 + |u|p−1

)
for some C2 > 0 and p ∈ (4, 12);

( f2): f (x, u) = o(u) uniformly in x as u→ 0;
( f3): F(x, u)/u4 → ∞ uniformly in x as |u| → ∞, where F(u) =

∫ u

0
f (s)ds;

( f4): u → f (x, u)/u3 is positive for u , 0, strictly decreasing on (−∞, 0) and strictly increasing on
(0,∞).

Clearly, ( f1) and ( f2) show that for any ε > 0, there exists Cε > 0 such that

| f (x, u)| ≤ ε|u| +Cε|u|p−1 for all u ∈ R and x ∈ R3. (1.3)

Using ( f2) and ( f4), we have

F(x, u) ≥ 0 and f (x, u)u > 4F(x, u) > 0 if u , 0. (1.4)

Remark 1.1. (F3) and (F′3) in [20, 21] can ensure the boundness of the Palais-Smale sequences of
the corresponding Euler-Lagrange functional. Although they are quite natural, (F3) and (F′3) are
somewhat restrictive and eliminate many nonlinearities. For example, the function

f (x, t) = |t|2t log(1 + |t|)

does not satisfy (F3) and (F′3) for any µ > 4, but it satisfies ( f1) − ( f4).

Now, we give our first main result.

Theorem 1.1. Assume (V) and ( f1) − ( f4) hold. Equation (1.1) has a nontrivial solution.

For the proof of this theorem, we find that Eq (1.1) involves a second order derivative ∆(u2)u and
a nonlocal term ϕu, whose natural energy functional is not well defined in H1(R3) × D1,2(R3) and
variational methods cannot be used directly. In this case, we will make use of the perturbation method
introduced in [22,23]. Since f is not assumed to be differentiable, we do not know whether the Nehari
manifold of the corresponding Euler-Lagrange functional is of class C1 under our assumptions. Besides
these, compared with [20,21], we do not assume f satisfying the Ambrosetti-Rabinowitz condition (see
(F3)), so the boundness of Palais-Smale sequence (or minimizing sequence) seems hard to prove.

Remark 1.2. The condition (V) was firstly introduced by Bartsch, Pankov and Wang [24] to guarantee
the compactness of embeddings of the work space. The limit of condition (V) can be replaced by one
of the following simpler conditions:
(V1): V(x) ∈ C(R3), µ({x ∈ R3 : V(x) ≤ M}) < ∞ for any M > 0 (see [25]);
(V2): V(x) ∈ C(R3), V(x) is coercive, i.e., lim

|x|→∞
V(x) = ∞.

Next, we study the multiplicity of solutions of the Eq (1.1). Genus theory gives that Eq (1.1) has
infinitely many high energy solutions.

Theorem 1.2. Suppose that (V), ( f1)− ( f4) are satisfied and f is odd in u. Equation (1.1) has infinitely
many pairs of solutions.

Remark 1.3. Although the condition (V) plays a role in guaranteeing the compactness of the
minimizing sequence for the energy functional Iλ, the existence result can also hold when V is a
periodic potential because of the concentration-compactness principle.
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Suppose that Eq (1.1) has a periodic potential V and V satisfies
(V∗): V(x) ∈ C(R3) and is 1-periodic in xi, 1 ≤ i ≤ 3, V0 := inf

x∈R3
V(x) > 0

and f satisfies
( f ′1): f ∈ C(R3×R,R), f is 1-periodic in xi for i = 1, 2, 3 and | f (x, u)| ≤ C2

(
1 + |u|p−1

)
for some C2 > 0

and p ∈ (4, 12).
Our third main result is

Theorem 1.3. Assume (V∗), ( f ′1) and ( f2) − ( f4) hold. System (1.1) has a nontrivial solution.

Remark 1.4. When V is a periodic potential and f is odd in u, [26] proved the Schrödinger-Poisson
has infinitely many solutions. But to the best of our knowledge, there is no result in the literature about
the multiplicity of solutions of Eq (1.1) with the periodic potential. While we can still obtain that the
perturbation functional of Eq (1.1) has infinitely many critical points by the method in [27]. But we
can not make sure their critical values limit to be infinity, which is necessary to find distinct solutions
of the Eq (1.1). For this reason, the multiplicity of solutions for the original problem with the periodic
potential seems hard to obtain.

Up to now, the functions f considered above is 4-superlinear at infinity (see ( f3)), specially f (x, u) =
|u|p−2u with 4 < p < 12. When p = 4, Nie and Wu [28] proved the existence of a non-trivial ground
state solution and two non-trivial solutions for the Eq (1.1) with f (x, u) = |u|2u + h(x). However, when
f (x, u) = |u|p−2u with 1 ≤ p ≤ 4, due to the effect of quasilinear term and the nonlocal Poisson term, it
becomes quite complicated.

In the last part of our paper, we consider the following autonomous modified Schrödinger-Poisson
system  −∆u + u + ϕ(x)u −

1
2

u∆(u2) = |u|p−2u, in R3,

−∆ϕ = u2, in R3,
(1.5)

where p ≥ 1.
We have the following result.

Theorem 1.4. (1) If 1 ≤ p ≤ 3 or p ≥ 12, problem (1.5) does not admit any nontrivial solution.
(2) If p ∈ (4, 12), problem (1.5) has a radial solution.

This paper is organized as follows. In Section 2, we describe the related mathematical tools. And
Sections 3–6 give the proofs of Theorems 1.1–1.4, respectively.

In what follows, C and Ci always denote positive generic constants.

2. Preliminaries and functional setting

We first recall some definitions and known facts which will be used. Let Lp(R3) be the usual
Lebesgue space with the norm

∥u∥p =
(∫
R3
|u|pdx

)1/p

.

And the Sobolev space W1,p(RN) is the space endowed with the follow norm

∥u∥W1,p =

(∫
R3

(|∇u|p + up) dx
)1/p

.
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Moreover, D1,2(R3) is the completion of C∞0 (R3) with the norm

∥u∥D1,2 =

(∫
R3
|∇u|2dx

)1/2

.

Due to the existence of quasilinear term u∆(u2), we consider a family of the perturbation functional
Iλ (see Eq (2.3)), which is well-defined in

E = W1,4(R3) ∩ H1
V(R3),

where

H1
V(R3) := {u ∈ H1(R3) :

∫
R3

V(x)u2dx < +∞}

and V(x) satisfies (V), which is a Hilbert space endowed with the following norm

∥u∥HV =

(∫
R3

(
|∇u|2 + V(x)u2

)
dx

)1/2

and W1,4(R3) endowed with the norm

∥u∥W =
(∫
R3

(|∇u|4 + u4)dx
)1/4

.

The norm of E is defined by

∥u∥ =
(
∥u∥2W + ∥u∥

2
HV

)1/2
.

Notice that the embedding from H1
V(R3) into L2(R3) is compact (see [25]). Thus, by applying the

interpolation inequality, and so the embedding E ↪→ Ls(R3) is compact for any 2 ≤ s ≤ 12.
Next, the Lax-Milgram theorem (see [5]) shows that, for every u ∈ H1(R3), there exists a unique

ϕu ∈ D1,2(R3) such that
−∆ϕu = u2

and ∫
R3
∇ϕu · ∇vdx =

∫
R3

u2vdx, for all v ∈ D1,2(R3).

The following lemma gives some properties of ϕu. See [5].

Lemma 2.1. For any u ∈ E ⊂ H1(R3), the following conclusions are true
(1) ϕu ≥ 0;
(2) ϕtu = t2ϕu, ∀t ∈ R;
(3) ∥ϕu∥

2
D1,2 =

∫
R3 ϕuu2dx ≤ C3∥u∥412/5 ≤ C4∥u∥4HV

, where C3, C4 > 0 are constants;
(4) If un ⇀ u weakly in H1(R3), then up to a subsequence, ϕun → ϕu strongly in D1,2(R3) and∫

R3
ϕunu

2
ndx→

∫
R3
ϕuu2dx.
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We look for a weak solution u ∈ H1
V(R3) ∩ L∞(R3) of system (1.1), such that for all φ ∈ C∞(R3),

satisfying ∫
R3

(∇u∇φ + V(x)uφ) dx +
∫
R3

u2∇u∇φdx +
∫
R3
|∇u|2uφdx

+

∫
R3
ϕuuφdx −

∫
R3

f (x, u)φdx = 0,
(2.1)

which is formally associated to the energy functional given by

I(u) =
1
2

∫
R3

(
|∇u|2 + V(x)u2 + u2|∇u|2

)
dx +

1
4

∫
R3
ϕuu2dx

−

∫
R3

F(x, u)dx, for u ∈ H1
V(R3) ∩ L∞(R3),

(2.2)

where F(x, u) =
∫ u

0
f (x, s)ds.

Due to
∫
R3 u2|∇u|2dx is not well-defined in H1

V(R3), we take a perturbation functional of Eq (2.2)
given by

Iλ(u) =
λ

4

∫
R3

(
|∇u|4 + u4

)
dx + I(u). (2.3)

It follows from conditions (V), Eqs (1.3) and (1.4), that Iλ ∈ C1(E,R) and

⟨I′λ(u), φ⟩ = λ
∫
R3

(
|∇u|2∇u∇φ + u3φ

)
dx +

∫
R3

(∇u∇φ + V(x)uφ) dx +
∫
R3

u2∇u∇φdx

+

∫
R3
|∇u|2uφdx +

∫
R3
ϕuuφdx −

∫
R3

f (x, u)φdx, for all φ ∈ E.
(2.4)

For a proof, we refer to the Lemma 2.1 in [29].

3. Proof of Theorem 1.1

First of all, we discuss some properties of the perturbation functional Iλ on Nλ which are useful to
apply the general Nehari theory.

Lemma 3.1. Assume (V) and ( f1) − ( f4) hold and λ ∈ (0, 1].
(1) For u ∈ E \ {0}, there exists a unique tu = t(u) > 0 such that m(u) := tuu ∈ Nλ and

Iλ(m(u)) = max
t∈R+

Iλ(tu);

(2) For all u ∈ Nλ, there exists α0 > 0 such that ∥u∥W ≥ α0;
(3) There exists ρ > 0 such that c := inf

Nλ

Iλ ≥ inf
S ρ

Iλ > 0, where S ρ := {u ∈ E : ∥u∥ = ρ};

(4) IfV ⊂ E \ {0} is a compact subset, there exists R > 0 such that Iλ ≤ 0 on R+V \ BR(0).

Proof. (1) For any u ∈ E \ {0}, we consider hu(t) = Iλ(tu) for t ∈ (0,∞),

hu(t) =
λt4

4

∫
R3

(
|∇u|4 + u4

)
dx +

t2

2

∫
R3

(|∇u|2 + V(x)u2)dx +
t4

2

∫
R3

u2|∇u|2dx

+
t4

4

∫
R3
ϕuu2dx −

∫
R3

F(x, tu)dx.
(3.1)
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Combining Eq (1.3) and the Sobolev embedding E ↪→ Ls(R3) for s ∈ [2, 12] is continuous, for
ε > 0 small enough, we obtain

hu(t) ≥
λt4

4
∥u∥4W +

t2

2
∥u∥2HV

+
t4

2

∫
R3

u2|∇u|2dx +
t4

4

∫
R3
ϕuu2dx

−
εt2

2

∫
R3
|u|2dx −

Cεtp

p

∫
R3
|u|pdx

≥
λt4

4
∥u∥4W +

t2

4
∥u∥2HV

−C5tp∥u∥pp.

Hence for t > 0 small enough, we have hu(t) > 0.
On the other hand, using Lemma 2.1-(3), ( f3) and Fatou’s lemma, it is easy to say that

hu(t) ≤
λt4

4
∥u∥4W +

t2

2
∥u∥2HV

+C6t4∥u∥4HV
+C7t4∥u∥4W

− t4
∫
R3

F(x, tu)
|tu|4

u4dx→ −∞, as t → ∞.

Hence, there exists a tu = t(u) > 0 such that h′u(tu) = 0, hu(tu) is a positive maximum and tuu ∈ Nλ.
Next, we prove the uniqueness of tu. Otherwise, there exists t∗u > 0 with t∗u , tu such that h′u(t∗u) = 0.
Then we obtain

λ∥u∥4W +
∥u∥2HV

(t∗u)2 +

∫
R3
ϕuu2dx + 2

∫
R3

u2|∇u|2dx =
∫
R3

f (x, t∗uu)
(t∗uu)3 u4dx,

and

λ∥u∥4W +
∥u∥2HV

(tu)2 +

∫
R3
ϕuu2dx + 2

∫
R3

u2|∇u|2dx =
∫
R3

f (x, tuu)
(tuu)3 u4dx.

Then (
1

(t∗u)2 −
1

(tu)2

)
∥u∥2HV

=

∫
R3

(
f (x, t∗uu)
(t∗uu)3 −

f (x, tuu)
(tuu)3

)
u4dx,

which contradicts with ( f4).
(2) From Eq (1.3) and u ∈ Nλ, we see that for ε > 0 sufficiently small, there has

0 = λ∥u∥4W + ∥u∥
2
HV
+

∫
R3
ϕuu2dx + 2

∫
R3

u2|∇u|2dx −
∫
R3

f (x, u)udx

≥ λ∥u∥4W + ∥u∥
2
HV
−
ε

2

∫
R3
|u|2dx −

Cε
p

∫
R3
|u|pdx

≥ λ∥u∥4W +
1
2
∥u∥2HV

−C8∥u∥
p
W

≥ λ∥u∥4W −C8∥u∥
p
W .

The above result means that for any u ∈ Nλ, there exists a constant α0 > 0 such that ∥u∥W ≥ α0 > 0.
(3) For any ρ > 0, let u ∈ E \ {0} with ∥u∥ ≤ ρ, there exists C > 0 such that∫

R3
u2|∇u|2dx ≤ Cρ4.
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By (V), ( f1), ( f2) and the Sobolev inequality, without losing generality, if we choose ρ < 1 small
enough and ε = 1

2 , then for any ∥u∥ ≤ ρ, we have

Iλ(u) ≥
λ

4
∥u∥4W +

1
2
∥u∥2HV

+
1
2

∫
R3

u2|∇u|2dx +
1
4

∫
R3
ϕuu2dx

− ε

∫
R3
|u|2dx −Cε

∫
R3
|u|12dx

≥
λ

4
∥u∥4W +

1
4
∥u∥2HV

+
1
2

∫
R3

u2|∇u|2dx −C9

(∫
R3

u2|∇u|2dx
)3

≥
λ

4
∥u∥4W +

1
4
∥u∥2HV

≥
λ

8
∥u∥4.

(3.2)

Owing to Lemma 3.1-(1), for any u ∈ Nλ, we arrive at

Iλ(u) = max
t∈R+

Iλ(tu). (3.3)

Taking s > 0 with su ∈ S ρ. From Eqs (3.2) and (3.3), we get

Iλ(u) ≥ Iλ(su) ≥ inf
v∈S ρ

Iλ(v) ≥
λ

8
ρ4 > 0.

Therefore
c := inf

Nλ

Iλ ≥ inf
S ρ

Iλ > 0.

(4) Suppose this is not true, there must exist un ∈ V and vn = tnun such that Iλ(vn) ≥ 0 for all n and
tn → ∞ as n → ∞. Without losing generality, we assume that ∥un∥ = 1 for every un ∈ V. Passing
to subsequence, there exists u ∈ E with ∥u∥ = 1 and un → u strongly in E. For u(x) , 0, we have
|vn(x)| → ∞, it follows from ( f3) and Fatou’s lemma that∫

R3

F(x, vn)
v4

n
u4

ndx→ ∞, as n→ ∞,

which, jointly with Lemma 2.1-(3), one has

0 ≤
Iλ(vn)
∥vn∥

4

=
1
∥vn∥

4

(
λ

4
∥vn∥

4
W +

1
2
∥vn∥

2
HV
+

1
4

∫
R3
ϕvnv

2
ndx +

1
2

∫
R3

v2
n|∇vn|

2dx
)
−

∫
R3

F(x, vn)
v4

n
u4

ndx

≤ C10 −

∫
R3

F(x, vn)
v4

n
u4

ndx→ −∞ as n→ ∞.

This is a contradiction.

Now we are in a position to study the minimizing sequence for Iλ on Nλ.
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Lemma 3.2. For fixed λ ∈ (0, 1], let {un} ⊂ Nλ be a minimizing sequence for Iλ. Then {un} is bounded
in E. In addition, passing to a subsequence there exists u ∈ E such that un ⇀ u , 0 and un → u in E.

Proof. Let {un} ⊂ Nλ be a minimizing sequence of Iλ. i.e.

Iλ(un)→ c := inf
Nλ

Iλ and ⟨I′λ(un), un⟩ = 0. (3.4)

By Eq (3.4), one sees that

c + o(1) = Iλ(un) −
1
4
⟨I′λ(un), un⟩

=
1
4
∥un∥

2
HV
+

∫
R3

(
1
4

f (x, un)un − F(x, un)
)

dx.

Thus, we deduce ∥un∥HV is bounded, which in turn means that ∥un∥W is bounded.
If {un} is unbounded in W1,4(R3), set ωn = ∥un∥

−1
W un, we have

ωn ⇀ ω weakly in W1,4(R3), ωn → ω strongly in Lp(R3), ωn → ω a.e. on x ∈ R3.

This proof can be split into two steps.
Step 1: If ω = 0, it follows from Lemma 3.1-(1) that

Iλ(un) = max
t∈R+

Iλ(tun).

For any m > 0 and set vn = (8m)1/4ωn, since vn → 0 strongly in Lp(R3), we infer from Eq (1.3) that

lim
n→∞

∫
R3

F(x, vn)dx = 0. (3.5)

So for n large enough, (8m)1/4∥un∥
−1
W ∈ (0, 1), and

Iλ(un) ≥ Iλ(vn)

= 2λm + (2m)1/2
∥un∥

2
HV

∥un∥
2
W

+ 2m

∫
R3 ϕunu

2
ndx

∥un∥
4
W

+ 4m

∫
R3 u2

n|∇un|
2dx

∥un∥
4
W

−

∫
R3

F(x, vn)dx

≥ λm.

Thus, for fixed λ > 0, together with the arbitrariness of m, we can obtain that Iλ(un) → ∞. This
contradicts with Iλ(un)→ c > 0.

Step 2: If ω , 0, the set Θ = {x ∈ R3 : ω(x) , 0} has a positive Lebesgue measure. For x ∈ Θ and
|un(x)| → ∞, this together with condition ( f3), implies

F(x, un(x))
|u(x)|4

|ωn(x)|4 → ∞ as n→ ∞.
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According to Iλ(un) → c, Lemma 2.1-(3), ( f3), Sobolev inequality and Fatou’s Lemma, there holds
that

c + o(1)
∥un∥

4
W

=
λ

4
+
∥un∥

2
HV

∥un∥
4
W

+

∫
R3 ϕunu

2
ndx

4∥un∥
4
W

+

∫
R3 u2

n|∇un|
2dx

2∥un∥
4
W

−

∫
R3 F(x, un)dx

∥un∥
4
W

≤
λ

4
+C11 −

(∫
ω,0
+

∫
ω=0

)
F(x, un(x))
|un(x)|4

|ωn(x)|4dx + o(1)

≤
λ

4
+C11 −

∫
ω,0

F(x, un(x))
|un(x)|4

|ωn(x)|4dx→ −∞, as n→ ∞,

where C11 is a constant independent of n. This is impossible.
In any case, we obtain a contradiction. It follows that {un} is bounded in W1,4(R3). Therefore, {un}

is bounded in E, so un ⇀ u weakly in E after passing to a subsequence. If u = 0, since un ∈ Nλ, for n
sufficiently large, we see as in Eq (3.5) that

c + 1 ≥ Iλ(un) ≥ Iλ(sun) ≥ C12s4 −

∫
R3

F(x, sun)dx→ C12s4

for all s > 0, where C12 =
λ
4

(
inf

u∈Nλ
∥u∥W

)4

> 0, it is a contradiction. Hence u , 0.

Owing to the fact that embedding E ↪→ Lp(R3) is compact, similar to Lemma 3.1 in [20], it is easily
to obtain un → u strongly in E.

Lemma 3.3. For fixed λ ∈ (0, 1], there exits u ∈ Nλ such that Iλ(u) = inf
Nλ

Iλ.

Proof. Let {un} ⊂ Nλ be a minimizing sequence of Iλ, then by Lemma 3.2 we have {un} ⊂ E is bounded.
Thus, passing to a subsequence we have un ⇀ u , 0 weakly in E, as is known to all ⟨I′λ(u), u⟩ = 0.
It follows that u ∈ Nλ. Thus, Iλ(u) ≥ c > 0. To complete the proof, we just need to prove Iλ(u) ≤ c.
Indeed, by Eq (1.4), Fatou’s lemma and the weakly lower semi-continuity of norm, it is clear that

c + o(1) = Iλ(un) −
1
4
⟨I′λ(un), un⟩

=
1
4
∥un∥

2
HV
+

∫
R3

(
1
4

f (x, un)un − F(x, un)
)

dx

≥
1
4
∥u∥2HV

+

∫
R3

(
1
4

f (x, u)u − F(x, u)
)

dx + o(1)

= Iλ(u) −
1
4
⟨I′λ(u), u⟩ + o(1)

= Iλ(u) + o(1).

The proof is completed.

Let S be the unit sphere in E. Define a mapping m(ω) : S → Nλ and a functional Jλ(ω) : S → R
by

m(ω) = tωω and Jλ(ω) := Iλ(m(ω)),

where tω is as in Lemma 3.1-(1). As Proposition 2.9 and Corollary 2.10 in [27], the following
proposition is a consequence of Lemma 3.1 and the above observation.
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Proposition 3.1. Assume (V) and ( f1) − ( f4). For fixed λ ∈ (0, 1], then
(1) Jλ ∈ C1(S ,R), and

J′λ(ω)z = ∥m(ω)∥⟨I′λ(m(ω)), z⟩

for any z ∈ TωS = {v ∈ E : ⟨v, ω⟩ = 0};
(2) {ωn} is a Palais-Smale sequence for Jλ if and only if {m(ωn)} is a Palais-Smale sequence for Iλ;
(3) ω ∈ S is a critical point of Jλ if and only if m(ω) ∈ N is a critical point of Iλ. Moreover, the
corresponding critical values of Jλ and Iλ coincide and c = inf

S
Jλ = inf

Nλ

Iλ.

Finally, the proof of Theorem 1.1 is based on the following convergence result for the modified
functional Iλ.

Lemma 3.4. Let λn → 0 and {un} ⊂ E be a sequence of critical points of Iλn satisfying I′λn
(un) = 0

and Iλn(un) ≤ C for some C independent of n. Then up to a subsequence un ⇀ ũ weakly in H1
V(R3) as

n→ ∞ and ũ is a critical point of I.

Proof. The proof is similar to many existing literature (see [20, 21]).

Now we are ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1 Let {ωn} ⊂ S be a minimizing sequence for Jλ. By Ekeland’s variational
principle we may assume J′λ(ωn) → 0 and Jλ(ωn) → c as mentioned above. From Proposition 3.1-(2),
we have Iλ(un) → c and I′λ(un) → 0, where un = m(ωn). Therefore, {un} is a minimizing sequence for
Iλ on Nλ, by using Lemma 3.3, it is clear that there exists a minimizer u of Iλ|Nλ . Therefore
m−1(u) ∈ S is a minimizer of Jλ and also a critical point of Jλ, we can obtain that u is a critical point
of Iλ by Proposition 3.1-(3).

Choose a sequence λi → 0. Let {ui} ⊂ E be a sequence of critical points of Iλi with
Iλi(ui) = cλi ≤ C. From Lemma 3.4, there exists a critical point ũ of I such that ũ ∈ H1

V(R3) ∩ L∞(R3).
Next, we need prove that ũ is a non-trivial critical point of I. Considering ⟨I′λi

(ui), ui⟩ = 0, it follows
from Sobolev inequality and Young’s inequality that

0 = λi∥ui∥
4
W + ∥ui∥

2
HV
+

∫
R3
ϕuiu

2
i dx + 2

∫
R3

u2
i |∇ui|

2dx −
∫
R3

f (x, ui)uidx

≥ ∥ui∥
2
HV
+ 2

∫
R3

u2
i |∇ui|

2dx −
ε

2

∫
R3
|ui|

2dx −
Cε
p

∫
R3
|ui|

12dx

≥
1
2
∥ui∥

2
HV
+C13∥ui∥

4
12 −C14∥ui∥

12
12

≥ C13∥ui∥
4
12 −C14∥ui∥

12
12,

which implies ∥ui∥12 ≥ (C13
C14

)1/8. Recall that ui → ũ strongly in L12(R3). Therefore, it is clear that ũ , 0.

4. Proof of Theorem 1.2

To prove Theorem 1.2, we need recall some concepts. Denote

Γ = {A ⊂ E \ {0} : A is closed,−A = A}.
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For A ∈ Γ, we define the Z2 genus of A as follows

γ(A) = min{n ∈ N : there exists a odd, continuous ϕ : A→ Rn \ {0}},

if the minimum does not exist, we let γ(A) = +∞. In addition, set γ(∅) = 0.
Next, we notice that the nonlinearity f no longer meets Ambrosetti-Rabinowitz condition, so it

seems difficult to prove the boundedness of Palais-Smale sequences. Which is why, in what follows,
we need to illustrate the functional Iλ satisfies the Cerami condition. We say Iλ satisfies the Cerami
condition, if any (C)c-sequence has a convergent subsequence in E. We know the (C)c-sequence {un}

in E at the level c means,
Iλ(un)→ c and (1 + ∥un∥)I′λ(un)→ 0.

Lemma 4.1. For all λ ∈ (0, 1), there exist αi < βi independent of λ such that αi → ∞ as i → ∞ and
the functional Iλ has sequence of critical points {ui(λ)} with Iλ(ui(λ)) ∈ [αi, βi].

Proof. We split the proof into two steps.
Step 1. For 0 < λ < 1. Let {un} ⊂ E be any Cerami sequence of Iλ, i.e.

Iλ(un)→ c and (1 + ∥un∥)∥I′λ(un)∥ → 0 as n→ ∞. (4.1)

From Eq (4.1), we can obtain that

c + o(1) = Iλ(un) −
1
4
⟨I′λ(un), un⟩

=
1
4
∥un∥

2
HV
+

∫
R3

(
1
4

f (x, un)un − F(x, un)
)

dx.

Thus, ∥un∥HV is bounded and then ∥un∥W is bounded. Otherwise, if {un} is unbounded in W1,4(R3),
un , 0 for all n. For t ∈ R+, Lemma 3.1 implies that

α(t) := Iλ(tun)

has a positive maximum. Take tn ∈ [0, 1],

Iλ(tnun) = max
t∈[0,1]

Iλ(tu).

We show that {Iλ(tnun)} is bounded. Indeed, if tn = 0 or tn = 1, it is obvious. Assume tn ∈ (0, 1) for
all n ∈ N. It follows from the condition ( f4) and Eq (4.1) that

Iλ(tnun) = Iλ(tnun) −
1
4
⟨I′λ(tnun), tnun⟩

=
1
4
∥tnun∥

2
HV
+

∫
R3

(
1
4

f (x, tnun)un − F(x, tnun)
)

dx

≤
1
4
∥un∥

2
HV
+

∫
R3

(
1
4

f (x, un)un − F(x, un)
)

dx

= Iλ(un) −
1
4
⟨I′λ(un), un⟩

= c + on(1).
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Then, set ωn = ∥un∥
−1
W un, up to a subsequence we have

ωn ⇀ ω weakly in W1,4(R3), ωn → ω strongly in Lp(R3), ωn → ω a.e. on x ∈ R3.

Case 1. ω = 0. For any M > 0 and n sufficiently large, from ∥un∥W → +∞, we obtain

Iλ(tnun) = max
t∈[0,1]

Iλ(tun) ≥ Iλ(Mωn) ≥
1
4

M4 −

∫
R3

F(x,Mωn)dx. (4.2)

By Eq (1.3), we have∣∣∣∣∣∫
R3

F(x,Mωu)dx
∣∣∣∣∣ ≤ εM2

∫
R3
ω2

ndx +CεMp
∫
R3
|ωn|

pdx.

As n→ ∞, by the arbitrariness of ε, we have
∣∣∣∫
R3 F(x,Mωu)dx

∣∣∣→ 0. It follows from Eq (4.2) that

lim inf
n→∞

Iλ(tnun) ≥
M4

4
, for all M > 0.

From the arbitrariness of M and the boundedness of {Iλ(tnun)}, we have a contradiction.
Case 2. ω , 0. The set Θ = {x ∈ R3 : ω(x) , 0} has positive Lebesgue measure. For x ∈ Θ that

|un(x)| → ∞, which together with condition ( f3) implies

F(x, un(x))
|u(x)|4

|ωn(x)|4 → ∞ as n→ ∞.

From Iλ(un)→ c, Lemma 2.1-(3), ( f3), Sobolev inequality and Fatou’s Lemma, we obtain

c + o(1)
∥un∥

4
W

=
λ

4
+
∥un∥

2
HV

∥un∥
4
W

+

∫
R3 ϕunu

2
ndx

4∥un∥
4
W

+

∫
R3 u2

n|∇un|
2dx

2∥un∥
4
W

−

∫
R3 F(x, un)dx

∥un∥
4
W

≤
λ

4
+C15 −

∫
ω,0

F(x, un(x))
|un(x)|4

|ωn(x)|4dx→ −∞, as n→ ∞,

where C15 is a constant independent on n. This is impossible.
Summing up the aforementioned arguments, we know that the Cerami sequence of Iλ is bounded.

Since the embedding E ↪→ Lp(R3) is compact, similar to Lemma 3.1 in [20], it is easy to check that
the sequence un possesses a convergent subsequence in E.

Step 2. For all 0 < λ < 1, we show that the functional Iλ has a sequence of critical points {ui(λ)}
with Iλ(ui(λ)) ∈ [αi, βi], and αi → ∞ as i→ ∞.

Consider the eigenvalue problem∫
R3

(∇u · ∇ϕ + V(x)uϕ) dx = µ
∫
R3

uϕdx, for all ϕ ∈ H1
V(R3),

where µ is a eigenvalue of the operator L = −∆+V . From the compactness of the embedding H1
V(R3) ↪→

L2(R3), we obtain that the spectrum σ(L) = {µ1, µ2, · · · , µn, · · · } of L with

µ1 < µ2 ≤ · · · ≤ µn ≤ · · ·
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and µn → +∞ as n → ∞. Let en ∈ E be corresponding orthogonal eigenfunctions of µn. Denote by
En = {e1, e2, · · · , en}. Then the space E is decomposed as E = En ⊕Wn for n = 1, 2, · · · , where Wn is
an orthogonal complement to En in H1

V(R3).
Hereafter, we use the following notations:

Qρ = {u ∈ E : ∥u∥2HV
+

∫
R3

u2|∇u|2dx ≤ ρ2},

where ρ > 0;
Dn = En ∩ Qrn ,

where rn is chosen in the following Claim 1; and

Gn = {ϕ ∈ C(Dn, E) : ϕ is odd and ϕ|∂Qrn∩En = id}.

Γi = {ϕ(Dn \ A) : ϕ ∈ Gn, n ≥ i, A = −A ⊂ En ∩ Qrn is closed and γ(A) ≤ n − i},

where γ(·) is the genus;
ci(λ) = inf

B∈Γi
sup
u∈B

Iλ(u), i = 1, 2, · · ·

Claim 1. For n dimensional subspace En, there exists rn > 0 such that

Iλ < 0 on En \ Qrn . (4.3)

It suffices to prove that for u ∈ En,

Iλ(u)→ −∞, as ∥u∥2HV
+

∫
R3 u2|∇u|2dx→ ∞.

For any {u j} ⊂ En with ∥u j∥
2
HV
+

∫
R3 u2

j |∇u j|
2dx→ ∞ as j→ ∞, then ∥u j∥ → ∞. Set

a j =
u j

∥u j∥
.

Clearly {a j} is bounded in En, and there exists a ∈ En \ {0} such that

a j → a strongly in En,

a j → a a.e. on R3.

For x ∈ {a , 0}, we obtain
|u j(x)| → ∞. (4.4)

Therefore, from condition ( f3) and Eq (4.4), there is

F(x, u j)
∥u j∥

4 =
F(x, u j(x))
|u j(x)|4

|a j(x)|4 → ∞ as j→ ∞.

By Fatou’s Lemma, we have∫
R3

F(x,u j)
∥u j∥4

dx ≥
∫
{a,0}

F(x,u j)
∥u j∥4

dx→ +∞, as j→ ∞,
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and

Iλ(u j) = ∥u j∥
4

λ∥u j∥
4
W

4∥u j∥
4 +
∥u j∥

2
HV

∥u j∥
4 +

∫
R3 ϕu ju

2
jdx

4∥u j∥
4 +

∫
R3 u2

j |∇u j|
2dx

2∥u j∥
4 −

∫
R3 F(x, u j)dx

∥u j∥
4


≤
λ

4
+C16 −

(∫
a,0
+

∫
{a,0}

)
F(x, u j)
∥u j∥

4 dx→ −∞, as n→ ∞.

Claim 2. For each B ∈ Γi, if 0 < ρ < rn for all n ≥ i, B ∩ ∂Qρ ∩Wi−1 , ∅.

For a rigorous proof of this Claim, readers can refer to the Lemma 2.4 in [22].
Claim 3. There exist constants αi < βi such that ci(λ) ∈ [αi, βi] and αi → +∞ as i→ ∞.
Indeed, when ρ < rn for all n ≥ i, from Claim 2 and the definition of ci(λ), we obtain

ci(λ) ≥ inf
u∈∂Qρ∩Wi−1

Iλ(u) ≥ inf
u∈∂Qρ∩Wi−1

I(u).

For small ε > 0 and u ∈ ∂Qρ ∩ Wi−1, by (V), ( f1), ( f2), the Sobolev inequality and interpolation
inequality, there is

Iλ(u) ≥ I(u)

≥
1
2
∥u∥2HV

+
1
2

∫
R3

u2|∇u|2dx +
1
4

∫
R3
ϕuu2dx

− ε

∫
R3
|u|2dx −Cε

∫
R3
|u|pdx

≥
1
4
∥u∥2HV

+
1
2

∫
R3

u2|∇u|2dx −Cε

∫
R3
|u|pdx

≥
ρ2

4
−Cε∥u∥

(1−t)p
2 ∥u∥tp12

≥
ρ2

4
−Cεµ

−
(1−t)p

2
i ρ(1−t)p+ tp

2

= ρ2
(
1
4
−Cεµ

−
(1−t)p

2
i ρ(1−t)p+ tp

2 −2
)
,

where t ∈ (0, 1) satisfies 1
p =

t
12 +

1−t
2 . Take ρ = ρi satisfying ρ(1−t)p+ tp

2 −2
i = 1

8Cε
µ

(1−t)p
2

i and choose rn > ρn.

Since µi → +∞ as i → ∞, Iλ(u) ≥ ρ2
i

8 := αi → +∞ as i → ∞. By ci(λ) ≤ ci(1) := βi, we have
completed this claim.

Claim 4. ci(λ), i = 1, 2, · · · , are critical values of Iλ.
In fact, the Deformation Lemma still holds under the Cerami condition [30]. If ci(λ) is not a critical

value of Iλ, by Theorem A.4 in [31], for 0 < ε < min{αi : i = 1, 2, · · · }, there exist ε ∈ (0, ε) and
η ∈ C([0, 1] × E, E) such that
(a) η(t, u) = u for all t ∈ [0, 1] if Iλ(u) < [ci(λ) − ε, ci(λ) + ε];
(b) η(1, Ici(λ)−ε

λ ), where Ici(λ)−ε
λ = {u ∈ E : Iλ(u) ≤ ci(λ) − ε};

(c) η(t, u) is odd in u.
Set ϕ = η(1, ·), Eq (4.3) gives that ϕ = id on ∂Qrn ∩En for all n. According to the definition of ci(λ),

there exists B ∈ Γi such that
sup
u∈B

Iλ(u) ≤ ci(λ) + ε,
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which means A = ϕ(B) ∈ Γi. By (b), we have

ci(λ) ≤ sup
u∈A

Iλ(u) ≤ ci(λ) − ε.

This is a contradiction.
Obviously, from previous discussions, for all 0 < λ < 1, the functional Iλ has sequence of critical

points {ui(λ)} with Iλ(ui(λ)) ∈ [αi, βi], and αi → ∞ as i→ ∞.

We are ready to prove Theorem 1.2.
Proof of Theorem 1.2. By Lemma 4.1, for each λ and i ≥ 2, we have a sequence of critical values
ci(λ) for which there are critical points ui(λ) of Iλ. Since ci(λ) ∈ [αi, βi] for all λ, by using Lemma
3.4, as λn → 0, we obtain a critical point ui of I with the critical value in [αi, βi]. Because αi → +∞,
infinitely many pairs of geometrically distinct solutions ±ui have been obtained.

5. Proof of Theorem 1.3

The proof of Theorem 1.3 is analogous to that in Section 3. From Lemma 3.1 and 3.2, we know
the functional Iλ on Nλ has a bounded minimizing sequence {un}. The question arises whether the
minimizing sequence is convergent or not. In this section, let E∗ := W1,4(R3)∩H1(R3), which endowed
with the norm

∥u∥ =
(
∥u∥2W + ∥u∥

2
H

)1/2
.

Therefore, it is necessary to research some compact properties of the minimizing sequence for Iλ
on Nλ. Firstly, we can get the following result from P. L. Lions (see [32, 33]),

Lemma 5.1. Let r > 0. If {un} is bounded in E∗ and

lim
n→∞

sup
y∈R3

∫
Br(y)
|un|

2dx = 0,

we have un → 0 strongly in Ls(R3) for any s ∈ (2, 12).

Next we are in a position to study the minimizing sequence for Iλ on Nλ.

Lemma 5.2. Let {un} ⊂ Nλ be a minimizing sequence for Iλ. {un} is bounded in E∗. Furthermore,
after a suitable Z3-translation, passing to a subsequence there exists u ∈ Nλ such that un ⇀ u and
Iλ(u) = inf

Nλ

Iλ.

Proof. Let c = inf
Nλ

Iλ. Notice that {un} is bounded from Lemma 3.2, un ⇀ u weakly in E∗ after passing

to subsequence. If

lim
n→∞

sup
y∈R3

∫
Br(y)
|un|

2dx = 0,

due to Lemma 5.1, one has un → 0 strongly in Ls(R3) for any s ∈ (2, 12). From the above fact and Eq
(1.3), we have ∫

R3
f (x, un)undx = o(∥un∥W).

Mathematical Biosciences and Engineering Volume 20, Issue 2, 3482–3503.



3498

Therefore,

0 = ⟨I′λ(un), un⟩

= λ∥un∥
4
W +

∫
R3

(
|∇un|

2 + V(x)u2
n

)
dx + 2

∫
R3

u2
n|∇un|

2dx +
∫
R3
ϕunu

2
ndx

−

∫
R3

f (x, un)undx

≥ λ∥un∥
4
W − o(∥un∥W),

which implies ∥un∥W → 0. This is contradictory to Lemma 3.1-(2). Therefore, there exist r, δ > 0 and
a sequence {yn} ⊂ R

3 such that

lim
n→∞

∫
Br(yn)
|un|

2dx ≥ δ > 0,

where we suppose yn ∈ Z
3. Owing to the invariance of Iλ andNλ under translations, {yn} is bounded in

Z3. Hence, passing to a subsequence we imply un ⇀ u , 0 weakly in E and ⟨I′λ(u), u⟩ = 0. It follows
that u ∈ Nλ. Thus, Iλ(u) ≥ c > 0.

It follows from Eq (1.4), Fatou’s lemma and the weakly lower semi-continuity that

c + o(1) = Iλ(un) −
1
4
⟨I′λ(un), un⟩

=
1
4
∥un∥

2
HV
+

∫
R3

(
1
4

f (x, un)un − F(x, un)
)

dx

≥
1
4
∥u∥2HV

+

∫
R3

(
1
4

f (x, u)u − F(x, u)
)

dx + o(1)

= Iλ(u) −
1
4
⟨I′λ(u), u⟩ + o(1)

= Iλ(u) + o(1),

which implies Iλ(u) ≤ c.

Proof of Theorem 1.3 Using the similar methods of proving Theorem 1.1, by Lemma 5.2, we can
prove Theorem 1.3.

6. Proof of Theorem 1.4

Consider the problem −∆u + u + ϕ(x)u −
1
2

u∆(u2) = |u|p−2u, in R3,

−∆ϕ = u2, in R3,

for p ∈ [1,∞) and (u, ϕ) ∈ H1(R3) ∩ L∞(R3) × D1,2(R3). In order to prove nonexistence results, we
need to build a related Pohozaev equality for Eq (1.5). With this equality, we can prove that there does
not exist nontrivial solutions of Eq (1.5) for 1 ≤ p ≤ 2 or p ≥ 12. For p ∈ (2, 3], we make use of the
trick introduced in [5] for the Schrödinger-Poisson system.
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Proof of Theorem 1.4 We divide this proof into three steps. First of all, we give the following two
nonexistence results. Finally, we prove that there exists a radial solution of Eq (1.5) for p ∈ (4, 12).

Step 1: When p ∈ (2, 3].
Suppose that (u, ϕ) ∈ H1(R3)∩L∞(R3)×D1,2(R3) is a solution of Eq (1.5). Multiply the first equation

of Eq (1.5) by u and integrate, there is∫
R3

(
|∇u|2 + u2 + ϕu2 + 2u2|∇u|2

)
dx −

∫
R3
|u|pdx = 0. (6.1)

By the definition of ϕ, we have that∫
R3
ϕu2dx =

∫
R3
|∇ϕ|2dx.

On the other hand, ∫
R3
|u|3dx =

∫
R3
⟨∇ϕ,∇|u|⟩dx.

As in [32], we can easily conclude∫
R3
|u|3dx ≤

∫
R3
|∇u|2dx +

1
4

∫
R3
|∇ϕ|2dx.

Inserting this inequality into Eq (6.1), we obtain

0 =
∫
R3

(
|∇u|2 + u2 + |∇ϕ|2 + 2u2|∇u|2

)
dx −

∫
R3
|u|pdx

≥

∫
R3

(
u2 + |u|3 − |u|p

)
dx.

It is easy to check that, if p ∈ (2, 3], the function l(u) = u2 + |u|3 − |u|p is nonnegative and vanishes
only at zero. Therefore, u must be equal to zero.

Step 2: When 1 ≤ p ≤ 2 or p ≥ 12.
For the general case, recall that (u, ϕ) ∈ H2

loc(R
3) × H2

loc(R
3) is a solution of Eq (1.5). Multiply the

first equation of the Eq (1.5) by x · ∇u and integrate by parts on a ball BR, we deduce

−
1
2

∫
BR

|∇u|2dx −
3
2

∫
BR

u2dx −
1
2

∫
BR

u2(x · ∇ϕ)dx −
1
2

∫
R3
|∇u|2u2dx

−
3
2

∫
BR

ϕu2dx +
3
p

∫
BR

|u|pdx

=
1
R

∫
∂BR

|x · ∇u|2dσ −
R
2

∫
∂BR

|∇u|2dσ −
R
2

∫
∂BR

u2dσ

+
1
R

∫
∂BR

u2|x · ∇u|2dx −
R
2

∫
∂BR

u2|∇u|2dx

−
R
2

∫
∂BR

ϕu2dσ +
R
p

∫
∂BR

|u|pdσ.

(6.2)
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Multiply the Possion equation by x · ∇ϕ and integrate on BR, we obtain∫
BR

u2(x · ∇ϕ)dx =
∫

BR

−∆ϕ(x · ∇ϕ)dx

= −
1
2

∫
BR

|∇ϕ|2dx −
1
R

∫
∂BR

|x · ∇ϕ|2dσ +
R
2

∫
∂BR

|∇ϕ|2dσ.
(6.3)

This together with Eq (6.2) implies

−
1
2

∫
BR

(
|∇u|2 −

1
2
|∇ϕ|2

)
dx −

3
2

∫
BR

u2dx −
1
2

∫
BR

|∇u|2u2dx −
3
2

∫
BR

ϕu2dx

+
3
p

∫
BR

|u|pdx =
1

2R

∫
∂BR

|x · ∇u|2dσ −
R
2

∫
∂BR

(
|∇u|2 −

1
2
|∇ϕ|2

)
dσ

−
R
2

∫
∂BR

u2dσ +
1
R

∫
∂BR

u2|x · ∇u|2dx −
R
2

∫
∂BR

u2|∇u|2dx

−
R
2

∫
∂BR

ϕu2dσ +
R
p

∫
∂BR

|u|pdσ.

(6.4)

A similar method used in [34] can show the existence of a sequence Rn → +∞ such that the right
hand side of Eq (6.4) vanishing. Hence∫

R3

(
|∇u|2 −

1
2
|∇ϕ|2

)
dx + 3

∫
R3

u2dx +
∫
R3
|∇u|2u2dx

+ 3
∫
R3
ϕu2dx −

6
p

∫
R3
|u|pdx = 0.

(6.5)

By ∫
R3
|∇ϕ|2dx =

∫
R3
ϕu2dx,

and Eq (6.5) we get

−2
∫
R3
|∇u|2dx − 6

∫
R3

u2dx − 2
∫
R3
|∇u|2u2dx − 5

∫
R3
ϕu2dx +

12
p

∫
R3
|u|pdx = 0. (6.6)

On the other hand, because (u, ϕ) ∈ H2
loc(R

3) × H2
loc(R

3) is a solution of Eq (1.5),∫
R3
|∇u|2dx +

∫
R3

u2dx + 2
∫
R3
|∇u|2u2dx

+

∫
R3
ϕu2dx −

∫
R3
|u|pdx = 0.

(6.7)

Isolate the third term in Eq (6.7) and substitute it in Eq (6.6), we have

−

∫
R3
|∇u|2dx − 5

∫
R3

u2dx − 4
∫
R3
ϕu2dx + (

12
p
− 1)

∫
R3
|u|pdx = 0, (6.8)

which indicates that
∫
R3 ϕu2dx ≥ 0. Hence, if p ≥ 12, u = 0 is valid from Eq (6.8).
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Then we isolate the second term in Eq (6.7) and substitute it in Eq (6.6),

4
∫
R3
|∇u|2dx + 10

∫
R3
|∇u|2u2dx +

∫
R3
ϕu2dx + (

12
p
− 6)

∫
R3
|u|pdx = 0. (6.9)

If 1 ≤ p ≤ 2, Eq (6.9) combining with Lemma 2.1 implies u = 0.
Step 3: When 4 < p < 12.
Denote by

H1
r (R3) := {u ∈ H1(R3) : u(x) = u(|x|)}

and consider the problem −∆u + u + ϕ(x)u −
1
2

u∆(u2) = |u|p−2u, in R3,

−∆ϕ = u2, u ∈ H1
r (R3) ∩W1,4(R3), in R3.

It is well known that the embedding H1
r (R3) ∩ W1,4(R3) → Lp(R3) is compact for 2 ≤ p < 12.

Owing to the symmetric critical principle and the perturbation method, the existence result of
Theorem 1.4 is as same as Theorem 1.1. However, now we have the fact that Nemyskii operator
corresponding to the nonlinearity f is still compact and the nonlinearity f (x, u) = |u|p−2u (p ∈ (4, 12))
satisfies Ambrosetti-Rabinowitz condition, so some parts of the proofs become simpler than Theorem
1.1. The details are omitted.
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