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Abstract: With the deep integration of “AI + medicine”, AI-assisted technology has been of great help 
to human beings in the medical field, especially in the area of predicting and diagnosing diseases based 
on big data, because it is faster and more accurate. However, concerns about data security seriously 
hinder data sharing among medical institutions. To fully exploit the value of medical data and realize 
data collaborative sharing, we developed a medical data security sharing scheme based on the C/S 
communication mode and constructed a federated learning architecture that uses homomorphic 
encryption technology to protect training parameters. Here, we chose the Paillier algorithm to realize 
the additive homomorphism to protect the training parameters. Clients do not need to share local data, 
but only upload the trained model parameters to the server. In the process of training, a distributed 
parameter update mechanism is introduced. The server is mainly responsible for issuing training 
commands and weights, aggregating the local model parameters from the clients and predicting the 
joint diagnostic results. The client mainly uses the stochastic gradient descent algorithm for gradient 
trimming, updating and transmitting the trained model parameters back to the server. In order to test 
the performance of this scheme, a series of experiments was conducted. From the simulation results, 
we can know that the model prediction accuracy is related to the global training rounds, learning rate, 
batch size, privacy budget parameters etc. The results show that this scheme realizes data sharing while 
protecting data privacy, completes the accurate prediction of diseases and has a good performance. 
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1. Introduction 

With the rapid development of information technology, all kinds of data break the restrictions of 
time and space and accumulate in different fields to form data treasures. It breeds huge commercial 
value and unlimited potential. Therefore, the intelligent use of data and the maximization of data value 
have become the focus of competition in various industries. But, in the face of the complex network 
environment, it must ensure data security while exploiting the value of data. Therefore, the research 
on data sharing based on privacy protection has become a major challenge [1–3]. 

At present, there are many data sharing schemes, the most widely used of which are the 
centralized processing mode and distributed processing mode. 

In the centralized processing mode, all participants need to share their data, that is to say, this kind 
of centralized mode requires the participant to upload their data to the server, and all of the data are 
applied for centralized learning or training on the server. If the server is malicious or the server is 
vulnerable to external attacks, then there is a risk of data privacy leakage. So, this kind of sharing mode 
undoubtedly reduces the possibility of data sharing among different participants. 

To solve the above problems of the centralized processing mode and avoid privacy leakage, a new 
distributed processing mode has emerged. Google proposed a new “distributed training model”, i.e., a 
federal learning model. In this model, the data of the client does not leave the local area and all model 
training is performed locally. After the local model training, the trained parameters are uploaded to the 
server. Then, the server receives and combines all of the trained parameters for unified aggregation, 
and it will redistribute the new results to the local level, where a new model is updated. Essentially, 
federated learning is a type of distributed machine learning, and its most important feature is that the 
user’s data are stored locally by the client so that the original data of each participant are not leaked 
during the process of cooperation training. Federated learning organizes the process of model training 
through distributed mode, and the whole training process only moves the model, not the data, so that 
the model using the framework of federated learning can ensure that multi-institutional data are jointly 
modeled under the premise of security without revealing privacy [4,5]. 

The federated learning model can safely share data, and it achieves the purpose of distributed training 
based on all data being localized, but it also has some loopholes and is vulnerable to attacks [6–8]. For 
example, after the client is trained locally, it will upload the training parameters. During 
communication between the clients and the server, the parameters are transmitted in plain text. If these 
parameters are obtained by the attacker, the client’s data information may also be inferred through the 
parameters. Studies have shown that a malicious participant can infer sensitive user data backward 
based on the differences in the federal learning gradient parameters in each round. Therefore, 
parameters that are not protected by encryption are compromised, and to a certain extent, can be 
targeted for attack, thus indirectly compromising users’ private data [9,10]. 

In recent years, with the deep integration of “AI + medicine”, medical data are playing an 
increasingly valuable role, with healthcare data sharing taking on greater significance. “Baidu 
Doctor” was launched in 2014, enabling patients to make appointments with doctors in a short period 
of time, reducing the cost of medical care and optimizing medical resources. AliCloud established the 
“Peace of Mind on the Cloud” alliance, which combines AliCloud’s massive data and powerful 
computing power to provide accurate medical services for everyone. The basis for all of this is the 
security of medical data and the safe use of data on the basis of security. In particular, the development 
of medical imaging and the combination of big data and medical imaging allows for more accurate 
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prediction of disease. 
In order to fully utilize the value of medical data and protect the privacy of individuals while 

enabling data sharing, medical data were used as the prototype data, and a data sharing scheme based 
on homomorphic encryption (HE) was designed through the use of federated learning, focusing on 
feasibility and effectiveness. This scheme can protect the participant’s data privacy and realize data 
security sharing. 

In summary, the contributions of this paper are as follows: 
1) It proposes a data security sharing scheme based on the C/S communication mode and presents 

a federated learning architecture that uses HE to protect training parameters. 
2) It introduces a distributed parameter update mechanism in the process of training, and the 

server is responsible for issuing training commands and parameters, aggregating the local model 
parameters uploaded by the client. On the client side, the client uses the stochastic gradient descent 
algorithm for gradient trimming and updating. 

3) Taking medical data as the test dataset, a series of experiments have been designed to assess 
the performance of this scheme, and the influence factor has been analyzed from the predicted results. 

The rest of the paper is organized as follows. In Section 2, this paper discusses and summarizes 
related work. The related preliminaries are in Section 3. Section 4 describes the construction, 
algorithms and execution process. The test results and the performance are shown in Section 5. Finally, 
Section 6 concludes the paper and discusses future directions. Special note: in this paper, the user, the 
client or the participant all refer to the same concept. 

2. Related work 

With the deepening of energy digital transformation, cross-border convergence, the sharing and 
integration of data and innovative applications are becoming increasingly widespread. According to 
the Global Internet Trends Report released in 2018, data sharing has become an inevitable trend in the 
development of the Internet and big data. 

At present, in order to ensure data privacy, a lot of cryptography technologies are being used in 
the process of data sharing. This includes anonymous sharing, ciphertext searches, threshold access, 
provable security, permission security, etc. [11,12]. Furthermore, attribute encryption, blockchain 
technology and various data sharing schemes emerged in this period [13]. Among them, federated 
learning is a hot spot for current research, as it has recently attracted a lot of attention from the 
academic community. It was first proposed by Google in 2016 and was originally used to solve the 
problem of updating models locally by Android phone users. The goal of its design is to carry out 
efficient machine learning among multiple participants under the premise of guaranteeing data security. 
This technology is a type of distributed cryptographic technology in which all participants can share 
the underlying data. Its most important feature is to keep one’s own data in the local area so that the 
original data of each participant will not be leaked during the process of cooperation training, and this 
technology has shown strong vitality and development prospects in more and more scenarios. 

In 2019, FATE (Federated AI Technology Enabler) was developed at the AI department of 
Webank, and it was open-sourced. It is a high-performance, privacy-secure computing framework that 
provides a solution platform for common industrial applications [14]. As the concept of federated 
learning has become popular, the applications of federated learning [15–18] have been gradually 
developed. In 2022, Ait-Mlouk et al. proposed FEDQAS, a privacy-preserving machine reading system 
capable of leveraging large-scale private data without the need to pool those datasets in a central 
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location. The proposed approach combines transformer models and federated learning technologies. 
The system was developed by using the FEDn framework and deployed as a proof-of-concept alliance 
initiative [19]. In the federated learning scenario, users do not need to share local data, but only upload 
the model-trained parameters. However, using model parameters as the interaction medium, there may 
be privacy leakage during the process of learning. Established federal learning works [20] show that 
private information may still be leaked when the model parameters of distributed users are uploaded 
piecewise with the model structure. Based on the model parameters uploaded by each participant, the 
original data owned by the local user can be inferred. Possibly more serious is that, when an attacker 
who may be an honest but curious server, a malicious client or a malicious third party directly intercepts 
model parameters uploaded by each client, they can further infer the user’s private information, so the 
model parameters also need protection. 

3. Preliminaries 

To clarify the scheme proposed in this paper, some relevant theoretical knowledge needs to be 
introduced here. 

3.1. Homomorphic encryption 

The concept of HE was first proposed by Rivest et al in 1978 [21]. HE is a method that can process 
ciphertext information. It is an encryption technology that allows computing operations on ciphertext 
and generates encryption results. The calculation result obtained in the ciphertext is decrypted and 
matched with that in plaintext as if the same calculation operation has been performed on plaintext. 
The processing flow in encrypted and unencrypted states is shown in Figure 1. 

 

Figure 1. Process of HE. 

As a method that can process ciphertext without decrypting ciphertext, HE is the most commonly 
used privacy protection mechanism nowadays. HE mechanism can compute the ciphertext without 
decrypting the ciphertext so that the computation party does not need to know the contents of the 
plaintext, but only needs to obtain the ciphertext, which is a good way to protect sensitive data and 
information while performing computation operations. 

HE can efficiently process cryptographic information and achieve specific algebraic operations 
on the encrypted content. The HE cryptosystem is composed of quaternions, as shown in Eq (1). 

 H Ho_Key,Enc,Dec,Eval
                                                     (1) 

where KeyH -o    represents the key generation function, Enc  represents the encryption function, Dec
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represents the decryption function and Eval  represents the evaluation function. 

A secure cryptosystem such as Eq (2) can be called a homomorphic operation. Using  pubEnc  

represents the encryption function that uses the public key pub as the encryption key, M represents the 
plaintext space and C represents the ciphertext space. 

1 2 1 2 1 2, , ( ) ( ) ( )pub M pub C pubm m M Enc m m Enc m Enc m   
                    (2) 

Here, M   and C   represent the operator on the plaintext space M and the ciphertext space C, 
respectively. Eq (2) shows that, for any two elements 1m   and 2m    in the plaintext space M, after 

performing the M  operating on them, the obtained result is encrypted; the result is the same as if 1m  

and 2m  were encrypted first and then the operators were executed. The symbol “” indicates that the 

left-hand term is equal to or can be computed directly from the right-hand term without any 
intermediate decryption operation. To simplify the expression, we can use   v  to represent the result 
of HE for the plaintext v. The two basic operations of HE are defined below, namely, addition HE and 
multiplication HE. 

Definition 1: Additive homomorphic operation. For any two elements u and v in the plaintext 
space, the encryption results are respectively   u  and   v , with priDec  indicating that the private key 

is used for decryption if Eq (3) is satisfied: 

      ( ) ( ) pri priDec u v Dec u v u v                                                    (3) 

Definition 2: Multiplicative homomorphic operation. For any two elements u and v in the plaintext 
space, the encryption results are respectively   u  and   v , with priDec   indicating that the private key 
is used for decryption if Eq (4) is satisfied: 

      ( ) ( ) pri priDec u v Dec u v u v                                                     (4) 

3.2. Paillier algorithm 

In the Paillier algorithm, the generation steps of the public-private key pair and the principle of 
encryption and decryption are as follows [22]. 

Key generation: First, randomly select two large prime numbers a and b (ensure that a and b are 

of equal length). Next, calculate abn    and  1,1  balcm , where lcm  is a function to find the least 

common multiple. Define  
n

x
xL

1
  , and then randomly select a positive integer g   less than  2n   to 

satisfy Eq (5): 

2 2 1( ( mod ), ) 1, ( ( mod )) modgcd L g n n u L g n n                                    (5) 

gcd  is a function to find the maximum common divisor. By the above operation, we can get the public 
key  gn,  and private key  u, . 
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Encryption process: For any plaintext message m  , choose any random number r   satisfying

0 r n  ; the ciphertext c  is calculated by Eq (6): 

2modm nc g r n                                                                       (6) 

Decryption process: For the ciphertext c, the plaintext message m  is obtained from Eq (7): 

2( mod )* modm L c n u n                                                            (7) 

The Paillier algorithm is an implementation of an asymmetric encryption algorithm, which can 
operate on encrypted data under encryption and then decrypt the encrypted result. The obtained result 
is the same as the result of directly operating on the plaintext. However, the Paillier algorithm does not 
satisfy the multiplicative homomorphic operation. Although the Paillier algorithm is not fully HE, its 
computational efficiency is high, so it is widely used in the industry. In this paper, the Paillier algorithm 
is used as the simulation algorithm of HE. 

4. Data security sharing scheme based on HE 

4.1. Our construction 

In this part, we build a federated learning model based on HE; it not only considers privacy 
security at the data level, but it also considers the security issues at the client level.  

Repeated update optimization
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Figure 2. Architecture of data security sharing scheme.  



2267 

Mathematical Biosciences and Engineering  Volume 20, Issue 2, 2261-2279. 

This model not only ensures the privacy security of local data in each client, but it also ensures 
the information security between clients. The server receives the trained parameters of the local model 
from the client, but the  server cannot determine which client uploaded it. It is also not possible to infer 
whether a client is participating in the current federated training. The architecture of the model is 
shown in Figure 2. 

4.2. Data pre-processing 

Here, we take the medical data as the sharing data. To realize data sharing under the premise of 
protecting data privacy, we used horizontal federated learning technology, so each participant has the 
same data features [23–26]. We used an open-source dataset from the Wisconsin Center for Scientific 
Research [27]. For the convenience of processing, we pre-processed the data features and extracted 30 
main features. The information after feature extraction is shown in Table 1, and the 31st column 
represents the label data (with 1 for benign tumors and 0 for malignant tumors). 

Table 1. Main features of medical data. 

F1 F2 F3 F4 F5 F6 … 31_label 

1.0961 -2.07151 1.268817 0.98351 1.567087 3.280628 … 0 
1.828212 -0.35332 1.684473 1.90703 -0.82624 -0.48664 … 0 
1.578499 0.455786 1.565126 1.557513 0.941382 1.052 … 0 
-0.76823 0.253509 -0.59217 -0.76379 3.280667 3.399917 … 1 
1.748758 -1.1508 1.775011 1.824624 0.280125 0.538866 … 0 
… … … … … … … … 

Since some feature values are greater than 100 and some feature values are less than 1, the dataset 
is first normalized and pre-processed to reduce the dimensions and difference of each value. Data 
standardization mainly scales the value of each dimension according to a certain proportion so that it 
falls into a specific interval, allowing the feature value of different units or magnitudes to be weighted 
and compared. 

4.3. Algorithms of data sharing scheme 

4.3.1. Multi-party computation 

Secure multi-party computation (MPC) is a branch of cryptography that involves multiple 
participants working together to perform collaborative computation [28]. Based on MPC for any 
function requirements can compute it without revealing information other than the output. 

The whole protocol of MPC-based federal learning can be viewed as the process of computing 

the federal learning function fFL. fFL is defined as the composition of a round of functions 1 1, ,...n nf f f , 
where  is the jth iteration in the m-ary function. 

For each iteration in federal learning, we define an m-ary function: 
1) Define the m - 1 parties selected by the federal learning server (FLS) as MPC participants. 

There are m participants, including FLS itself. 
2) Define the model weights and training parameters as the system parameters (sysm) of MPC. 
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3) Define the initial viewi. Initialize the view of the participant Pi by inputting the random numbers 
Di, ri and sysm. 

4) Define , where ( )isout i = 1,...,m -1  denotes the output of Pi and the output of FLS is msout .  
5) Define function m-ary: , where . In the case where f is a deterministic m-ary function, a secure 

MPC protocol   is secure if there exists a probabilistic polynomial-time algorithm denoted as S for 

every [ ]I m  if ( ( ) ( ))i1 it IS I, x ,...,x , f x  is computationally indistinguishable from ( )Iview x . In this 
scheme, we use MPC to protect the participants; it can ensure the security of the client level. 

4.3.2. Calculation of the encryption loss function 

In the federation learning model that uses the Paillier algorithm to protect the training parameters, 
the public and private keys are generally generated randomly on the server side. The public key is 
mainly for encrypting data, and the private key is for decrypting data. In machine learning models, a 
loss function is usually first defined, and then an optimization algorithm such as a stochastic gradient 

descent is used to find the minimum value of ( ; )L x  . The parameter 
*   that minimizes the value 

( ; )L x  is optimal. Taking logistic regression as an example, let the current set of n sample data points 

be 1 1 2 2( , ), ( , ),..., ( , )n nT x y x y x y , and use the logarithmic loss function as its target loss function, 
as shown in Eq (8): 

1

1
(1 )

T
i i

n y x

i
L log e

n



 

                                                          (8) 

The model parameters are updated by taking the partial derivative   in the above Eq (8) and 
bringing the obtained gradient values into the gradient descent equation as shown in Eq (9): 

*
L

lr 



 
                                                                      (9) 

The above computation process is repeated until the value of the loss function ( ; )L x  is no longer 
decreasing or the maximum number of iterations is reached; then, the iteration is stopped. The above 
computation process, including the parameters and data information, is computed in the explicit state, 
and there is a risk of data leakage in the federal learning scenario. 

Federal learning based on HE requires that the parameters are solved in the encrypted state, i.e., 

the transmitted parameter   is usually an encrypted value     ; the loss function is shown in Eq (10). 

 
1

1
(1 )

T
i i

n y x

i
L log e

n
   


 

                                                    (10) 

The calculation of the loss function involves exponential and logarithmic operations on the 
encrypted data, but the Paillier algorithm only supports addition homomorphism and scalar 
multiplication homomorphism; it does not support multiplication homomorphism and complex 
exponential and logarithmic operations. Therefore, it is not possible to solve the above Eq (10) in the 
encrypted state. Here, we use the Taylor loss function to approximate the original logarithmic loss 
function instead, i.e., by Taylor expansion of the original logarithmic loss function, the logarithmic 
loss function is approximated by polynomials, and after Taylor expansion, the loss function is 
transformed into only scalar multiplication and addition operations so that Paillier can be applied 
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directly to the cryptographic solution. When  zf  is the logarithmic loss function, the Taylor expansion 

expression for    zezf  1log  at z  is as shown in Eq (11). 

2 21 1
(1 ) 2 ( )

2 8
zlog e log z z o z    

                                              (11) 

Using the second-order polynomials to approximate the logarithmic loss function and substituting 
Tz y x  into Eq (11), we can get Eq (12): 

21 1
(1 ) 2 ( )

2 8

Ty x T Tlog e log y x y x     
                                      (12) 

The encrypted gradient equation can be obtained from Eq (13): 

 
1

1 1 1
( )
4 2

Tn

i i ii

L
x y x

n


 

            


                                              (13) 

4.3.3. Design of re-encryption algorithm 

When using the Paillier algorithm for encryption and decryption operations, a large number of 
large prime power operations are involved, so intermediate results may be out of bounds and usually 
result in overflow errors. Therefore, we design the re-encryption algorithm to re-encrypt the data using 
the server-side key when the number of local training iterations reaches a certain number of rounds. 

4.3.4. FedAvg and FedProx algorithms 

Gradient descent is one of the most important optimization algorithms in machine learning. Since 
machine learning involves a large number of optimization problems, it is often difficult to directly use 
partial derivatives to obtain the optimal solution; then, the gradient descent method and its derivative 
models are needed to obtain the optimal solution iteratively. The computational process of gradient 
descent is to solve for the minimal value along the direction of gradient descent (or the maximal value 
along the direction of gradient ascent); FedAVg and FedProx gradient descent algorithms are used here. 

The FedAvg algorithm is the most fundamental gradient aggregation method that only computes 
the gradient on the client side, the FedAvg method expects the client side to do more operations to get 
a better descent direction than the gradient [29,30]. The essence of the FedAvg idea is that the client 
uses a random gradient descent algorithm to get the weight parameters, and the server integrates each 
user's trained weights for averaging, as shown in Eq (14). 

1 1
1

K
kk

t t
k

n
w w

n 



                                                            (14) 

The FedProx algorithm focuses on improving FedAvg performance from two directions: system 
heterogeneity and statistical heterogeneity. The local iterations of epochs performed by each client may 
not be guaranteed, so adding a proximal term to the optimization objective function of the client makes 
the optimization algorithm more stable and, ultimately, makes FedProx converge faster, even under 
statistical heterogeneity, as shown in Eq (15). 
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1 1

1

( )
m

t t t t
i i

i

Q = Q L Q 



 
                                                      (15) 

where tQ  denotes the global model parameters of the tth round of aggregation, 1t
iQ  denotes the model 

of the ith client after the 1t   round of local update and 1tQ  denotes the global model after the 1t   

round of aggregation. 

4.3.5. Logistic regression algorithm 

Logistic regression is the most commonly used binary classification algorithm; it belongs to the 
family of generalized linear models and is widely used because of its simplicity and good results. A 
differentiable nonlinear function f is found to relate to the discrete label value y, and the predicted 
continuous value of linear regression is shown in Eq (16). 

( )Ty = f W X b                                                                (16) 

In logistic regression, the logistic function is generally used to act as this nonlinear mapping, and 
the logistic function is expressed in the form of Eq (17). 

1
( )

1 z
f z =

e                                                                   (17) 

When using logistic regression for classification prediction, if the prediction value of linear 
regression 0b XW T , then it is judged to be a positive case and the output is 1; otherwise, it is judged 
to be a negative case and the output is 0. 

4.4. Execution process 

In this part, the server and the clients are based on the C/S communication mode. First, use the 
MPC protocol to ensure the participants and the server. Then, the server randomly generates a public-
private key pair pubKey   and priKey   based on the Paillier algorithm to encrypt the initialized model 

parameters w  by using the public key to obtain ][ tw . Next, it sends the encrypted model parameters 

][ tw  to the participating clients. 

The clients begin the local training after getting the model parameters ][ tw , and then they send 

the new trained parameters ][ t
iw  back to the server. The server decrypts them by using the private key 

and uses a logistic regression algorithm to evaluate the model on the test set; it then generates the next 
round of new encrypted model parameters 1tw  according to the model aggregation algorithm. If it has 
not met the training requirements, repeat the process, i.e., encrypt, send, train, upload, decrypt, etc., 
until it meets the requirements of training. 

5. Test results and discussion 

In order to assess the performance of this scheme, a series of experiments was conducted. Here, 
we ignore communication time and assume that all participants are normally involved in the 
collaborative computation. The test was conducted using a Windows 10 operating system with an Intel 
(R) Core(TM) i5-6500 CPU 3.20 GHz and 16 GB of RAM. We used PyCharm as the integrated 
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development environment. Python was used as the programming language, and many third-party 
libraries were installed, such as pytorch, socket, numpy, etc. The test dataset was from the Wisconsin 
Center for Scientific Research [28]. 

In the experiments, we considered the effects of the global training round, batch size and learning 
rate; at the same time, we compared the convergence speed of the FedAvg and FedProx algorithms. In 
this part, we mainly compared and tested two scenarios:  

(i) Directly pass the parameters. (Here, we named it DP). In this federated learning scenario, it is 
just like the scheme FedQAS [19], without the need to pool those datasets in a central location. It just 
combines transformer models and federated learning technologies and allows intuitive participation 
and execution of local model training. It presents the architecture and implementation of the system, 
as well as provides a reference evaluation based on the SQUAD dataset, to showcase how it 
overcomes data privacy issues and enables knowledge sharing between alliance members in a 
federated learning setting. 

(ii) Indirectly pass the parameters under HEmode (Here, it is named HEM). In this federated 
learning scenario, users do not need to share local data, but only upload the model-trained parameters. 
However, using model parameters as the interaction medium, there may be privacy leakage during the 
process of learning, so we chose the Paillier algorithm to realize the addition homomorphism to protect 
the training parameters. 

5.1. Effect of global training round 

We set the learning rate to 0.01, the privacy budget to 0.5 and the batch size to 64. We compared 
the performance of the model when the global training round was 10, 20 and 30, respectively. The test 
condition is shown in Table 2. 

Table 2. Test condition. 

Based on the above test condition, we can get the test results shown in Figure 3.  
Figure 3(a) is the result of directly passing the parameters (named in DP), and Figure 3(b) is the 

execution result of the parameters under HE protection (named in HE). From the result, we know that, 
when the number of global training rounds is small (no overfitting), the prediction accuracy increases 
with the number of training iterations, i.e., the model performance becomes better and better. And, 
when the number of training rounds is large, the change rate of the prediction accuracy slowly becomes 
smaller. In DP mode, the accuracy varies quickly with the number of training increasing, but slowly 
changes in HE mode. 

learning rate privacy budget batch size global training round 
0.01 0.5 64 10 20 30 



2272 

Mathematical Biosciences and Engineering  Volume 20, Issue 2, 2261-2279. 

 

(a) Effect of global training rounds in DP 

 

(b) Effect of global training rounds in HEM 

Figure 3. Effects of global training rounds in DP and HEM. 
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global training number is small, the training effect of a smaller batch size is not as effective as that of 
a larger batch size, because the disadvantage of a smaller batch size is that the model is not guaranteed 
to converge to the global optimum. However, when the batch size is set too large, it leads to problems 
such as poor generalization ability. Usually, the larger the batch size, the more accurate the direction 
of gradient descent and the smaller the oscillation. But, when the batch size is too large, the local 
optimum will be generated. A smaller batch size brings more random factors and it is difficult to 
achieve convergence; in rare cases, it can obtain a better result. 

 

(a) Effect of batch size in DP 

 

(b) Effect of batch size in HEM 

Figure 4. Effects of batch size in DP and HEM. 
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5.3. Effect of learning rate 

For this experiment, the test condition is shown in Table 4. The learning rate represents the scale 
(step size) of the weight parameters in each update, which directly affects the update of the model 
weight parameters. When the learning rate is large, the gradient value is updated faster and it is easy 
to reach the convergence value and overfit the training model; the test results are shown in Figure 5. 
In Figure 5(a), when the learning rate is 0.03 and the global training round is 15, the prediction 
accuracy decreases instead of increasing. Likewise, in Figure 5(b), when the learning rate is 0.03 and 
the global training round is 14, the prediction accuracy is decreasing. 

In most cases, when the learning rate is low, the gradient parameters are updated a little more 
slowly, which makes it easier to capture the optimal solution, just like when the learning rate is 0.01. 

 

(a) Effect of learning rate in DP 

 

(b) Effect of learning rate in HEM 

Figure 5. Effects of learning rate in DP and HEM. 
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Table 4. Test condition. 

5.4. Comparison of convergence speed 

In this experiment, we set the test parameters as below in Table 5. We compared the performance 
of two aggregation algorithms: FedAvg and FedProx. The test results are shown in Figure 6; from the 
results, we can know that the FedProx algorithm converges faster and achieves an accuracy of 67.5% 
after 10 rounds of global training. The FedAvg algorithm tends to deviate from the global optimum 
because of the client’s data heterogeneity and local iterations, which affects the convergence. It leads 
to its model performance being inferior to the FedProx aggregation algorithm. The test results are 
shown in Figure 6. 

Table 5. Test condition. 

 

Figure 6. Comparison of convergence speed. 
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configuration is as follows: privacy budget = 0.5, learning rate = 0.02 and batch size = 128, and it is 
an optimal configuration. 

For this experiment, the parameter configuration is shown in Table 6. This test compared two 
schemes, where one is based on the idea of FedQAS [19], and the other is the scheme of this paper 
(our scheme is named HE). The test results are shown in Figure 7. 

Table 6. Test condition. 

 

Figure 7. Comparison of accuracy of two schemes. 
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not only improves the prediction accuracy, but it also effectively prevents privacy leakage. 

6. Conclusions 

In this study, to improve the accuracy of the prediction and diagnosis of diseases in the medical 
field, we designed and implemented a data security sharing model based on HE with a distributed 
federated learning architecture. It not only considers privacy security at the data level, but it also 
considers the security issues at the client level. At the data level, the original data are kept locally, 
which significantly reduces the risk of data leakage, to prevent parameter leakage in the federated 
learning process; the Paillier algorithm was introduced to protect the model parameters in 
communication. At the client level, the server uses an MPC protocol to select clients who will 
participate in the training and has no way of knowing which one is involved in the training between 
clients, which protects the privacy of the clients. 

The system is based on the C/S communication mode; the server is mainly responsible for issuing 
training parameters, aggregating the local model parameters from the clients and predicting the joint 
diagnostic results. The client mainly uses the stochastic gradient descent algorithm for gradient 
trimming, updating and transmitting the trained model parameters back to the server.  

From the simulation test results, we can know that, when the global training round is 30, the 
lowest prediction accuracy rate is 89.528% and the highest accuracy rate is up to 92.352% for this 
specific test dataset. Therefore, the introduction of HE to federated learning can effectively prevent 
privacy leakage. This scheme realizes data security sharing, completes the accurate prediction of 
diseases and has a good effect. 
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