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Abstract: Cancer driver genes (CDGs) are crucial in cancer prevention, diagnosis and treatment. This 
study employed computational methods for identifying CDGs, categorizing them into four groups. The 
major frameworks for each of these four categories were summarized. Additionally, we systematically 
gathered data from public databases and biological networks, and we elaborated on computational 
methods for identifying CDGs using the aforementioned databases. Further, we summarized the 
algorithms, mainly involving statistics and machine learning, used for identifying CDGs. Notably, the 
performances of nine typical identification methods for eight types of cancer were compared to analyze 
the applicability areas of these methods. Finally, we discussed the challenges and prospects associated 
with methods for identifying CDGs. The present study revealed that the network-based algorithms and 
machine learning-based methods demonstrated superior performance. 

Keywords: cancer driver gene; CDG; computational methods; pathway 
 

1. Introduction 

Cancer is a genetic disease involving the malignant proliferation of cells caused by somatic 
mutations and clonal selection. Somatic mutations occur randomly throughout a person’s life, and 
some specific genes mutate, providing selective growth advantages for normal epithelial cells and 
resulting in slow tumor growth. The number of polyclonal growing cells with other mutations 
continues to increase, eventually forming malignant tumors. Driver mutations provide a selective 
growth advantage for tumor proliferation and directly lead to cancer, while so-called “passenger 



21644 

Mathematical Biosciences and Engineering  Volume 20, Issue 12, 21643–21669. 

mutations” do not confer a direct effect in cancer cell proliferation, and the genes containing the driver 
mutations are “cancer driver genes (CDGs)” [1]. A typical cancer usually has 2–8 CDGs, as of 
September 2019, and 724 driver genes as recorded in the Cancer Gene Census (CGC) [2]. Therefore, 
CDG identification from a large number of genes in the cancer genome is an essential topic in cancer 
research to explore cancer pathogenesis. 

Reviewing current methods can serve as a valuable guide for researchers, offering insights and 
experiences for peers dedicated to developing new methods. Therefore, we reviewed computational 
methods for identifying CDGs, aiming to more effectively analyze the characteristics and areas of 
excellence of various methods. To provide valuable insights to researchers, we categorized and 
summarized our findings systematically. We also traced the evolution of these methods and found that 
mutation frequency, biological networks, high coverage, high mutual exclusivity and machine learning 
algorithms play significant roles at various stages in developing CDG identification methods [3–5]. In 
addition, data are essential for all computational methods [6]. CDG identification methods are 
established based on different data sources, including somatic mutation data, gene expression profiles, 
biological networks stemming from genomics, transcriptomics and metabolomics. High-quality public 
databases help researchers uncover valuable insights. Different types of biological network models are 
constructed based on different relationships between molecules, thus representing different biological 
meanings [7]. Biological networks are usually combined with expression information to extract 
biological features between associated nodes, especially those related to CDGs. Moreover, it is 
essential to compare computational methods across different types of CDG identification methods. 
Such comparisons can further elaborate the performances of various method categories and offer 
valuable guidance to users of CDG identification methods. 

The primary objective of this study was to review the research and progress in the field of CDGs 
based on computational methods. Additionally, we aimed to offer a comparative analysis of different 
CDG identification methods to benefit users. The study is organized as follows. Section 2 summarizes 
the classification of computational methods of CDG identification into four groups and the major 
frameworks of these four groups. Given the essential roles of data and algorithms in various 
computational methods, public databases and biological networks have been systematically compiled. 
Section 3 elaborates on data and associated computational methods for CDG identification. Section 4 
analyzes the algorithms for CDG identification. Section 5 objectively analyzes the prediction fields of 
several methods by comparing and studying nine computational methods across eight different types 
of cancer. The last section discusses the opportunities and challenges of CDG identification. This 
manuscript serves as a valuable reference to researchers and guides those using these methods. 

2. Classification of computational methods 

In the field of CDG identification, mutation frequency is an intuitive feature that plays a 
significant role in identifying CDGs. Early-stage methods, based on statistical algorithms, were used 
to analyze somatic mutation frequency concerning the background mutation rate (BMR) [8–10]. 
However, these methods had limited effectiveness in detecting low-frequency mutations. Biological 
networks, which incorporate prior knowledge of the signaling pathway and can integrate gene 
expression data, proved instrumental in identifying CDGs with low-frequency mutations. 
Consequently, biological network-based methods were developed. Researchers studying the biological 
characteristics of cancer-driving genes observed that mutations in two driver genes could be 
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detrimental to cell proliferation or apoptosis, making them unsuitable for selection [11]. The methods 
were advantageous in terms of high coverage and high mutual exclusivity of CDGs developed and 
proved suitable for specific cancers [12]. Machine learning-based methods adopt more features and 
advanced algorithms to predict CDGs. They use typical biological characteristics of the genome, 
proteome, transcriptome and epigenome. Table 1 presents typical examples and classifications of CDG 
identification methods since 2010. 

Table 1. Typical examples and classifications of CDG identification methods. 

Example Website 
Gene mutation 
frequency-based 
methods 

MutSigCV [8] https://software.broadinstitute.org/cancer/cga/sites/
default/files/data/tools/mutsig/MutSigCV 1.41.zip

MuSiC [9] https://github.com/ding-lab/MuSiC2 
OncodriveCLUST [10] http://bg.upf.edu/oncodriveclust 
driverMAPS [13] None 

Network-based 
methods 

DawnRank [11] https://github.com/MartinFXP/DawnRank 
DriverNet [14] None 
TieDIE [15] None 
HotNet2 [16] https://github.com/raphael-group/hotnet2 
MUFFINN [17] http://www.inetbio.org/muffinn/ 
MaxMIF [18] https://sourceforge.net/projects/maxmif/files/ 
VarWalker [19] None 
DyTidriver [20] https://github.com/weiba/DyTidriver 
OncoIMPACT [21] http://sourceforge.net/projects/oncoimpact 

Coverage and 
mutually 
exclusive feature-
based methods 

RME [22] None 
CoMEt [23] http://compbio.cs.brown.edu/software/comet 
Multi-Dendrix [24] http://compbio.cs.brown.edu/software 
pathTiMEx [25] https://github.com/cbg-ethz/pathTiMEx 
Dendrix [12] http://cs.brown.edu/people/braphael/software.html 
TiMEx [26] www.bsse.ethz.ch/cbg/software/TiMEx 
MEMo [27] None 
nCOP [28] https://github.com/Singh-Lab/nCOP 
EntroRank [29] None 

Machine learning 
methods 

20/20+ [30] https://github.com/KarchinLab/2020plus 
DriverML [31] https://github.com/HelloYiHan/DriverML 
Agajanian etc. [3] None
Moonlight [32] http://bioconductor.org/packages/MoonlightR/
DeepDriver [33] None
GUST [34] https://github.com/liliulab/gust 
DORGE [35] https://github.com/biocq/DORGE 
cTaG [36] https://github.com/RamanLab/cTaG 
CancerMine [37] https://github.com/jakelever/cancermine 
LOTUS [38] https://github.com/LOTUSproject/LOTUS 

Note: The term “None” indicates that this method has no corresponding website. 
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2.1. Gene mutation frequency-based methods 

Gene mutation frequency-based methods involve the analysis of somatic mutation frequency 
concerning the BMR by statistical analysis. These methods identify high-frequency mutations with 
significant differences as CDGs. Several methods have been proposed in this category. MuSiC selects 
high-frequency mutant driver genes that exhibit substantial increases over the BMR, classifying them 
as CDGs. MuSigCV [8] was the first algorithm to consider mutation rate heterogeneity. It can mutate 
more frequently than methods based on the inferred background mutation processes. Thus, it is more 
suitable for low-frequency driver gene identification because it reduces the identified false positives. 
ActiveDriver [39] is based on generalized linear regression to evaluate pairs of hypotheses for specific 
genes and their associated phosphosite regions. dNdScv investigates the synonymous substitutions 
originating from neutral evolution and calculates the nonsynonymous/synonymous variation rate 
(dN/dS) for each gene in the cancer. This method and covariates that affect the variation rate establish 
a null distribution for the expected number of nonsynonymous mutations. GISTIC2 identifies cancer-
driven SCNVs (Signal Copy Number Variations) by estimating the background rate of somatic copy 
number variants. Then, it calculates the score for each region with the likelihood of reflecting the 
observed change frequency under the proposed background model. Genes with high scores are 
identified as driver SCNVs. Contrast rank is used to assess the overall risk score for adenocarcinoma 
based on genetic variants. DriverMAPS [13] stands out for its superior recognition performance and 
its ability to identify oncogenes (OGs) and tumor-suppressor genes (TSGs). 

The accuracy of BMR estimation is the key to gene mutation frequency-based methods. The 
algorithm has low sensitivity and specificity due to the patient’s uniqueness and the type of cancer. 
Hence, they are suitable for identifying high-frequency mutant CDGs. However, genome-wide surveys 
have revealed that most of the mutated genes fall into the low-frequency category (20–23%), limiting 
the performance of frequency-based methods. 

2.2. Network-based methods 

The network or pathway method assumes that the causal gene perturbation signal pathways drive the 
evolution of the cancer genomes. Cancer, being a complex disease, brings about many changes at the 
biological network level, allowing the identification of CDGs from the perspective of intergenic 
interactions. This method relies on prior knowledge of the signaling pathways, such as [40] VarWalker [19], 
HotNet2 [16], MUFFINN [17], MaxMIF [18] and others. VarWalker integrates the cancer genomic 
data and the protein-protein interaction (PPI) network using a random walk band, which restarts the 
algorithm in particular, adjusts gene length bias by resampling mutations in the individual genome and 
employs new network-based hierarchical methods stratifying the cancer subtypes [19]. HotNet2 adopts 
a random walk to spread gene mutation frequency across the PPI network. It identifies subnetworks 
with significant mutations and identifies potential driver genes based on mutation frequency and 
significance scores associated with the corresponding genes. MUFFINN proposes a pathway-centric 
mutation data analysis method, propagates gene mutation frequencies between direct neighbors on the 
PPI network and measures the impact of mutations in the adjacent genes using the sum of the maximum 
and full mutation frequencies of immediate neighbors [17]. MaxMIF ranks potential CDGs based on 
a gravity-based model where the mass and distance correspond to gene mutation scores and the 
relationship weights between the genes in the PPI network, respectively [18]. Shi et al. [41] assessed 
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and compared HotNet2, MaxMIF and MUFFINN using eight benchmark datasets, where HotNet2 
showed the best overall performance. 

As human interactome maps are constructed from mixed large-scale experimental data and are 
not specific to particular cell types, tissue types or conditions, they often suffer from incompleteness 
and errors. Thus, integrating an informative dataset at multiple omics levels (e.g., genome, 
transcriptome and epigenome) and developing an integration framework can provide a more 
comprehensive catalogue to prioritize driver genes at the network or pathway level. 

The massive growth of cancer omics data has led to the emergence of a novel method that 
integrates genomic and transcriptomic data with biological networks. This approach focuses on 
identifying CDGs that affect downstream gene expression and interact to form functional modules. 
Therefore, this approach integrates abnormal gene expression and tissue-specific expression into 
biological network models and examines changes in gene expression to identify CDGs [42]. For 
example, DriverNet establishes a computational framework based on the impact of CDGs on mRNA 
expression levels, retains the mutated and differentially expressed gene nodes, constructs a bipartite 
map of the relationship between mutation and expression and uses a greedy algorithm to identify the 
differential gene combinations [14]. DawnRank trains a model using somatic mutation data, protein 
networks and gene expression profiles based on the random walk approach. It calculates the gene 
influence values based on the connectivity and the amount of differential expression of the downstream 
genes and ranks them at the individual patient level [11]. PARADIGM-SHIFT infers downstream 
pathways in cancer by integrating somatic mutations, CNVs and gene expression into an intact 
pathway using a belief propagation algorithm for breast cancer and pleomorphic glioblastoma [43]. 
TieDIE predicts the connectivity of the transcription factor target genes by integrating genomic and 
transcriptomic data into PPI networks and identifies the cancer-specific networks based on the existing 
literature [15]. DyTidriver identifies CDGs based on the node correlation and topology of the mutant 
network by introducing dysregulated gene expression, tissue-specific expression and variant frequency 
into the human functional interaction network [20]. Shikai et al. proposed a two-step method involving 
network diffusion and aggregation sorting. They combined the correlation of gene mutations, gene 
expression, the relationship between mutant genes and sample heterogeneous characteristics to 
construct a potential CDG sorting algorithm [44]. Suo et al. scored CDGs based on somatic mutations 
and the significance of gene differential expression. They selected high-frequency genes significantly 
differentially expressed from the neighboring nodes in the gene network [45]. Cd-CAP constructs 
subnetworks with conserved alteration patterns using a sample gene matrix based on the mutational 
information and gene-level data [46]. 

2.3. Coverage and mutually exclusive feature-based methods 

These methods are based on mutual exclusivity and coverage of driver genes in signaling 
pathways, suggesting that a single driver gene in a pathway can promote cancer development and that 
two mutated genes are detrimental to cell proliferation or apoptosis and hence will not be selected [47]. 
These methods have advantages in terms of high coverage and mutual exclusivity of CDGs, ensuring 
that genes in a pathway cover as many patient samples as possible and that gene mutations in each 
pathway appear as distinct as possible in a single sample. For example, Dendrix employs the Markov 
Monte Carlo optimization method to suppress the overlap while improving driver gene coverage, 
ensuring exclusivity [12]. MEMO identifies a set of genes with a high frequency of mutations and 
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mutually exclusive properties [27]. Li et al. built functional networks of mutant genes and extracted 
the low-frequency mutant driver modules by integrating the functional similarity, coverage and mutual 
exclusion [48]. Gao Bo et al. proposed a de novo prediction method based on the exclusion, coverage 
and network topology for individual patients [49]. ModulOmics integrates PPIs, mutant 
interoperability, copy number alterations, transcriptional co-regulation and RNA co-expression into a 
single probabilistic model to identify cancer driver pathways or modules [50]. 

MEMO identifies only driver gene sets that are mutually exclusive and in the same pathway in 
the patient population. In contrast, the Dendrix algorithm identifies mutated subpathways that are 
mutually exclusive and have high coverage in the patient population. Most coverage and mutually 
exclusive feature-based methods are designed to identify driven pathways in a specific cancer type. 
However, HotNet2 is used for generalized cancer data and exhibits good recognition performance. 

2.4. Machine learning methods 

Machine learning methods perform excellently in many medical fields, such as coronary artery 
disease diagnosis [51]. Further, machine learning methods have become essential for predicting CDGs 
and mutation functions in modern biomedical research and have gained significant momentum in the 
last decade [52]. This category of methods typically involves extracting features from driver genes and 
training a classifier to predict these genes, such as [53,54]. These methods are trained using either 
pathogenic or neutral mutations. 

Typical machine learning methods, including the support vector machine (SVM), random forest 
and Bayesian algorithm, have been widely used; and with the development of deep learning research, 
algorithms such as convolutional neural networks (CNNs) have also demonstrated strong performance 
in pattern recognition [55]. For example, the 20/20+ method selects features such as gene frequency, 
mutation type, expression level or replication time of genes in different cancer cells and predicts driver 
genes using a random forest approach [30]. DriverML uses the Rao score to calculate the impact of 
mutations on proteins, optimizes weight parameters and maximizes the score statistics of previously 
identified driver genes across pan-cancer training data [31]. Agajanian et al. [3] used 6389 validated 
cancer driver mutations and 12,941 passenger mutations. They utilized a 2570 mutation 
driver/passenger classification. For analysis, this study combined CNN-based learning features with 
embedding-based functional features and used a random forest approach for classification and 
identification purposes. 

Machine learning methods, especially deep learning methods [56,57], have demonstrated 
excellent performance across various fields. For example, DeepDriver uses CNNs to extract 
information from mutation data and similarities, enhancing the driver gene prediction [33]. 

Some deep learning algorithms have also been applied to driver gene identification problems. 
Driver genes can be categorized as TSGs and OGs. OGs are activated by gain-of-function mutations, 
whereas TSGs are inactivated through loss-of-function mutations. Some machine learning methods are 
designed to identify OGs and TSGs. LOTUS identifies genes with high oncogenic potential by 
integrating various data types, including information about gene mutations and PPIs, using an SVM [38]. 
DORGE identifies TSGs and OGs based on the penalized regression method and 75 genetic and 
epigenetic features related to mutation, genomics, phenotype, epigenetics and their complements, as 
well as TUSON and CRISPR screening-only features [35]. GUST discovers OGs and TSGs with high 
accuracy (92%) based on the RF algorithm [34]. On the contrary, CancerMine presents a method for 
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gene-centric clustering of cancer types by weighting gene roles based on the number of supporting 
manuscripts and using a high-precision classifier [37]. 

In the aforementioned methods, GUST, DORGE, cTaG and CancerMine have been developed for 
identifying TSGs and OGs. In contrast, other methods are used to classify cancer driver mutations. In 
terms of performance, the accuracy of GUST is consistently higher than 20/20+ [34]. Additionally, 
three methods, including TUSON, MutSigCV and 20/20+, have demonstrated superior performance 
compared with the five other methods. These include ActiveDriver, MuSiC, OncodriveClust, 
OncodriveFM and OncodriveFML [17]. When comparing network-based algorithms (Moonlight, 
Ncop, OncoIMPACT, HotNet2, MaxMIF, MUFFINN and NetSig,), MutPanning and frequency-based 
algorithms (driverMAPS, WITER and DriverML), HotNet2 and driverMAPS demonstrated the best 
overall performance [42]. Machine learning methods can discover driver genes that are difficult to 
detect using methods based on gene mutation frequency. They can identify many driver genes with 
very low mutation rates. 

Cancer genomics data include somatic mutations, transcriptomes, methylation and proteomics 
from patient tumors and their matched normal tissues. Some methods have been developed by 
integrating multiomics data, indicating an important research direction for the future [52,58–62]. 

The use of various omics data types in different methods highlights the significance of algorithms. 
Therefore, the data and algorithms are introduced in detail next. 

3. Data for CDG identification methods 

3.1. Public database 

The highly credible data were downloaded from a public database and used more than twice in 
the methods discussed earlier. The databases used for CDG identification are listed in Table 2. 

Table 2. Public databases, data types and websites used for CDG identification. 

Database Type Website 

TCGA [63] Genomic variation, mRNA
expression, miRNA expression
and methylation 

http://cancergenome.nih.gov 

GEO [64] Gene expression https://www.ncbi.nlm.nih.gov/geo/ 

cBioPortal Somatic mutations, DNA copy
number alterations, mRNA and
microRNA expression, DNA
methylation, protein abundance
and phosphoprotein abundance 

http://www.cbioportal.org 

COSMIC v98 [2] Somatic mutations http://cancer.sanger.ac.uk/cosmic 

ICGC Release 28 [65] Abnormal gene expression,
somatic mutations, epigenetic
modifications and clinical data 

https://icgc.org 

Continued on next page



21650 

Mathematical Biosciences and Engineering  Volume 20, Issue 12, 21643–21669. 

Database Type Website 

CCLE [66] Gene expression, chromosomal 
copy number and massively 
parallel sequencing data 

https://portals.broadinstitute.org/ccle/ 

DisGeNET v7.0 [67] Gene-disease association and 
variation-disease association 

http://www.disgenet.org/ 

NCG7.1 [68] Cancer genes http://ncg.kcl.ac.uk/ 

TARGET Clinical annotation, gene 
expression, chromosome copy 
number analyses, epigenetics, 
miRNA profiling, whole-
genome sequencing, whole-
exome sequencing and mRNA-
seq 

https://ocg.cancer.gov/programs/target

Cancer3D v2 [69] Somatic missense mutations  http://www.cancer3d.org/ 

dSysMap V2020_05 
[70] 

Gene mutations http://dsysmap.irbbarcelona.org 

ENCODE [71] Chip-seq of transcription factors https://www.encodeproject.org 

NIH Epigenome 
Roadmap [72] 

DNA accessibility, DNA 
methylation and RNA 
expression 

http://www.roadmapepigenomics.org 

FANTOM5 [73] Transcripts, transcription factors 
and promoters 

http://fantom.gsc.riken.jp/5/ 

GTEx [74] Genotype tissue expression http://www.gtexportal.org/ 

3.2. Biological networks 

In recent years, many cancer studies have considered biological networks to interpret driver genes 
in cancer. Biological networks include protein interaction networks, gene transcription regulation 
networks and networks related to biological metabolism and signal transduction. These networks also 
include pathways involved in metabolism, gene expression regulation and signaling transduction. 
Therefore, resource reviews can help researchers choose the right network. Biological networks used 
in the typical CDG identification methods are listed in Table 3. 

TCGA covers multiomics data from 33 types of cancer and over 11,000 patients with cancer [9]. 
GEO stores approximately 112,752 libraries generated by 19,692 laboratories, including 3,027,904 
data samples from over 1600 biological sources [11]. cBioPortal provides multidimensional cancer 
genomics data for over 5000 tumor samples across 20 cancer studies [2]. COSMIC, combined with 
expert knowledge and a genome-wide database, is the largest and most comprehensive resource for 
somatic mutations associated with human cancer [75]. ICGC plays a significant role in cataloguing 
tumor genomic abnormalities across 50 different cancer types and/or subtypes, establishing itself 
as the largest public database of microarray data focusing on the unique genetic characteristics of 
individual tumor types [65]. The Cancer Cell Line Encyclopedia (CCLE) provides genomic data, 
analysis and visualization of 1457 cell lines [66]. DisGeNET contains 21,671 genes associated 
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with 30,170 diseases, features and clinical or abnormal phenotypes. It encompasses data on 369,554 
variant diseases, including 194,515 variants associated with 14,155 diseases, features and phenotypes. 
The extensive dataset significantly contributes to the understanding of 1,134,942 genetic diseases [67]. 
NCG [68] contains information on replicability, evolution, PPI, miRNA-gene interaction, function and 
expression. This information has been extracted from 273 manually curated publications and covers 
data on 2372 cancer genes. Therapeutically Applicable Research to Generate Effective Treatments 
(TARGET) contains genomic, transcriptomic and epigenetic genomic data for the study of pediatric 
cancers. Cancer3D [69] contains 1,457,702 mutations in 9079 samples of 32 cancers mapped to 18,425 
proteins. DSysMap [70] maps gene mutations associated with human diseases to protein structures and 
also includes interactions in the human interaction genome. ENCODE [71] systematically describes 
the transcription region and the associated transcription. The NIH Epigenome Roadmap [72] contains 
maps of DNA methylation in stem cells and primary isolated tissues, histone modifications, chromatin 
accessibility and small RNA transcripts, as well as a normal epigenome. FANTOM5 [73] is a complex 
multicellular biological database consisting of about 400 different cell types. It predominantly features 
primary mammalian cell types as well as a range of cancer cell lines. The dataset also encompasses 
sets of active transcripts, transcription factors, promoters and enhancers in tissues. GTEx [74] provides 
gene sequencing data from normal tissue. Pan-cancer multiomics resources are pivotal, providing 
abundant and comprehensive multidimensional data for the research and identification of CDGs. 

Table 3. Biological networks used in CDG identification methods. 

Biological network Type Website 

HPRD Release 9 [76] Protein interaction network http://www.hprd.org 

BioGRID 4.4 [77] Protein, DNA and drug interaction network http://thebiogrid.org 

STRING12.0 [78] Protein interaction network http://string-db.org 

iRefWeb [79] Protein interaction network ftp://ftp.no.embnet.org/irefindex/data

MINT [80] Protein interaction network http://mint.bio.uniroma2.it/mint/ 

IntAct 1.0.3 [81] Protein interaction network http://www.ebi.ac.uk/intact/ 

PINA [82] Protein interaction network http://cbg.garvan.unsw.edu.au/pina/ 

PhosphoSitePlusv6.7.1.1 [83] Protein interaction network http://www.phosphosite.org/ 

Phospho.ELM [84] Protein interaction network http://phospho.elm.eu.org 

PTMcode 2 [85] Protein interaction network http://ptmcode.embl.de 

Interactome3D 2020_05 [86] Protein interaction network http://interactome3d.irbbarcelona.org

3did [87] Protein interaction network https://3did.irbbarcelona.org/ 

Instruct [88] Protein interaction network http://instruct.yulab.org 

KEGG108.0 [89] Metabolic molecular network http://www.genome.jp/kegg/ 

WikiPathways [90] Metabolic molecular network http://www.wikipathways.org/ 

Reactome [91] Biological pathways http://www.pathwaycommons.org/ 

PID [92] Biological pathways http://pid.nci.nih.gov 

Pathway Common [93] Biological pathways http://pid.nci.nih.gov 

Go 2023-07-27 [94] Cellular component, molecular function and 

biological process 

http://geneontology.org/ 
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HPRD visually depicts and integrates information related to the domain structure of each protein 
in the proteome, posttranslational modifications, interaction networks and disease associations [76]. 
BioGRID contains 2,045,743 protein and genetic interactions from 76,687 publications, 29,093 
chemical interactions and 100 posttranslational modifications of 8257 biological species [77]. STRING 
serves as a functional enrichment analysis platform for PPI networks, containing data from 5090 
organisms, 24.6 million proteins and 2 billion protein interactions [95]. iRefWeb provides 
information on disease-related proteins, genes and their interactions [79]. MINT covers 607 species 
and 117,001 protein interactions [81]. IntAct contains approximately 275,000 molecular interactions 
from over 5000 publications [81]. PINA uses a cluster of interaction modules identified from the 
protein interaction networks, including terms of gene ontology, the KEGG pathway, the Pfam domain 
and chemical and genetic perturbations of MSigDB [82]. PhosphoSitePlus contains information about 
more than 300,000 protein posttranslational modification sites and more than 25,000 protein 
posttranslational modifications affected by variants [83]. Phospho.ELM is a database of 
experimentally validated phosphorylation sites in eukaryotic proteins, containing 1703 
phosphorylation sites for 556 phosphorylated proteins [84]. PTMcode contains 316,546 modification 
sites from 69 different posttranslational protein modification types involving more than 100,000 of 19 
different eukaryotic proteins, totaling 1.6 million sites and 17 million functional associations [85]. 
Interactome3D is a Web service for the structural annotation of PPI networks; it can predict a set of 
proteins or interactions in the organisms based on outcome information [86]. 3did is used as a template 
for interactions between the two globular domains and for novel domain-peptide interactions [87]. 
Instruct is a database of high-quality protein interactome networks with 3D structural resolution. It 
contains data for 6585 individuals, including 644 from Arabidopsis, 166 from Drosophila 
melanogaster, 119 from Mus, 1273 from Saccharomyces cerevisiae and 37 interactions [88]. 

KEGG is a database that helps in understanding the advanced functional and practical 
experimental technologies related to biological systems (cells, organisms and ecosystems) using 
molecular-level information (especially through large-scale molecular datasets generated by genome 
sequencing and other high-throughput sources) [89]. WikiPathways covers an integrated database of 
major genes, proteins and small-molecule systems, and it also includes canonical signaling pathways 
that can represent receptor-binding events, protein complexes, phosphorylation reactions, translocation 
and transcriptional regulation [90]. Reactome is an open database focusing on signaling, metabolic 
molecules and their involvement in biological pathways and process relationships. It encompasses 
various components, including nucleic acids, proteins, complexes, vaccines, anticancer therapeutics 
and small molecules, forming intricate biological interaction networks [91]. The Pathway Common 
database comprises 5772 pathways and 2,424,055 interactions [93]. GO covers the current scientific 
knowledge about gene functions in many different organisms from humans to bacteria. It provides 
insights into the functions of gene-produced proteins and noncoding RNA molecules [94]. 

3.3. Data for CDG identification methods 

Numerous CDG recognition methods have been proposed based on the aforementioned public 
databases and biological networks. The data for typical CDG identification methods are presented in 
Table 4. 
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Table 4. Data for typical CDG identification methods. 

Example Data type Biological 
network 

Database 

Gene 
mutation 
frequency-
based 
methods 

MutSigCV [8] Somatic mutations None TCGA 

MuSiC [9] Somatic mutations None TCGA 

OncodriveCLUS
T [10] 

Somatic mutations None COSMIC and 
TCGA 

driverMAPS 
[13] 

Somatic mutations None TCGA 

Network-
based 
methods 

DawnRank [11] Somatic mutations and 
gene expression 

Reactome, PI, 
KEGG 

TCGA 

DriverNet [14] Somatic mutations and 
gene expression 

PPI network TCGA, 
METABRIC, TN 
and TCGA HGS 

TieDIE [15] Somatic mutations and 
gene expression 

WikiPathways TCGA 

HotNet2 [16] Somatic mutations HINT + 
HI2012 

TCGA 

MaxMIF [18] Somatic mutations STRING TCGA 

VarWalker [19] Somatic mutations HPRD [96, 97] 

DyTidriver [20] Somatic mutations and 
gene expression 

human FIN TCGA and GEO 

OncoIMPACT 
[21] 

Somatic mutation [98] TCGA and CCLE 

Coverage 
and 
mutually 
exclusive 
feature-
based 
methods 

RME [22] Somatic mutations and 
gene expression data 

[98]  Cancer Genome 
Atlas Data Portal 

CoMEt [23] Mutation datasets None TCGA 

Multi-Dendrix 
[24] 

Somatic mutation  [99] 

Dendrix [12] Somatic mutation  TCGA 

TiMEx [26] Somatic mutation  TCGA 

MEMo [27] Somatic mutations and 
gene expression  

[98] Affymetrix U133 
and Agilent 
expression 
platforms 

nCOP [28] Somatic mutation   TCGA 

Continued on next page
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Example Data type Biological 
network 

Database 

Machine 
learning 
methods 

20/20+ [30] Somatic mutation  TCGA [100] 

DriverML [31] Cancer driver mutations, 
passenger mutations and 
gene expression and copy 
number variation

 TCGA and GDC 
[101–103] 

Agajanian etc. [3] Cancer driver mutations 
and passenger mutations

 [104,105] 

Moonlight [32] Gene expression, 
methylation, copy number, 
chromatin accessibility, 
clinical, mutation and cell 
lines data

 https://www.cancer
rxgene.org/downlo
ads 

DeepDriver [33] Somatic mutation and 
gene expression

 GDC and CGC 
[106] 

GUST [34] Mutation data  CGC [106] 

DORGE [35] Somatic mutation and 
population genetics

 TCGA and 
COSMIC 

Epigenetic datasets   
DNA methylation 
information

 gnomAD v2 

CancerMine [37] Somatic mutation and 
gene expression

 COSMIC 

TSGs and OGs  CGC 
LOTUS [38] Somatic mutations  COSMIC and 

TCGA 
(http://cancergeno
me.nih.gov/)

Somatic mutations for 
comparing with DiffMut 
and 20/20+

 [44] 

Somatic mutations for 
comparing MutSigCV

 GenePattern 

TUSON train set for 
training

 [101] 

20/20 train set for 
training

 [30] 

CGCv86 train set for 
training

 COSMIC 

 PPI network HPRD 

4. Algorithms used in computational methods for CDG identification 

Effective computational methods can enhance the accuracy of CDG identification and contribute 
to discovering more novel CDGs. The algorithms used in CDG identification methods are a critical 
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area of focus. Table 5 displays the common algorithms used in these methods and their corresponding 
CDG identification methods. 

Table 5. Algorithms used in computational methods for CDG identification. 

Algorithm Computational method Description 

PageRank  DawnRank [46] The PageRank algorithm was used to rank the genes in the gene 

interaction network 

Decision tree 20/20+ [63] Other ratio measures used mutational function impact bias, 

mutation clustering pattern, or mutation composition pattern, 

unlike the ratio 20/20 rule assessing the proportion of inactivating 

and repeated missense mutations in the gene of interest 

SVM  Ninety-five features were obtained from 10 functional impact-

based algorithms, and SVM models were trained to predict 

missense mutations 

Random forest CanDrA [90] Eighty-six features were used to identify missense mutations 

with tumor cell proliferation functions 

SVM CHASM [91] Integrated Rao’s score testing and supervised machine learning 

to identify CDGs 

Random forest 

classifiers and deep 

convolutional neural 

networks 

DriverML [64] Integrated different machine learning methods, including tree-

based methods, random forest and gradient enhanced tree 

(GBT) classifiers, and networks with deep convolutional nerves 

used to predict cancer driver mutations in genomic datasets 

Statistical models, 

hidden Markov 

models  

Agajanian etc. [65] The method explicitly simulated positive selection at the single-

base level and the highly heterogeneous background mutation 

process. In particular, the selection model used multiple spatial 

clustering of external annotations and mutations to capture high 

mutation rates at functionally important loci 

Convolutional 

neural network 

driverMAPS [45] Convolved the mutational features of the genes and their 

neighbors in the similarity network 

Network control 

strategy 

DeepDriver [67] It was found that driver mutations could drive regulatory 

networks from normal to disease state 

Entropy-based 

methods 

SCS [92] Subcellular localization information and variant frequency 

were mutually exclusive in the network 

Statistical method EntroRank [62] Identified combinations of changes between individuals 

exhibiting mutually exclusive patterns in the same path, 

including an exact statistical test of mutual exclusivity, to 

analyze multiple sets of mutually exclusive and subtype-

specific alterations 

Markov chain 

Monte Carlo  

CoMEt [55] High-weight gene sets were sampled using the Markov chain 

Monte Carlo algorithm 

Statistical machine 

learning methods 

Dendrix [58] Statistical machine learning methods were used to select 

subsets of genes, and modular network analysis methods were 

used to identify potential candidate driver genes 
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Gene mutation frequency-based methods were among the early CDG identification methods used 
to analyze mutation frequencies. These methods used statistical algorithms to identify significant 
differences between CDGs and passenger genes. Some of these methods included HotNet2 [16], 
DriverNet [14], InVEx, OncodriveCLUST [10], MutSigCV [8] and MuSiC [9]. Although these 
methods effectively identify CDGs with high mutation frequencies, they may perform poorly for genes 
with low mutation frequencies. In contrast, dNdScv [107] is a suite of maximum-likelihood dN/dS 
methods designed to quantify selection in cancer and somatic evolution. 

Network-based methods usually use network analysis algorithms, such as random walk [11,19], 
algorithms of complex network feature calculation, greedy algorithm, gravity model [18], belief 
propagation algorithm [43] and so on. 

Coverage and mutually exclusive feature-based methods mainly employ the mutual exclusivity 
and coverage of driver genes in signaling pathways, integer linear programming [24,28], greedy 
algorithms [12,14], Cancer3D [69], probabilistic model [26], correlation analysis and statistical 
analyses [27]. 

Machine learning methods are employed in CDG identification [108,109]. These methods use 
kernel techniques to find the optimal classification surfaces between different sample categories, 
maximizing the interval between them. CDG identification methods such as CanDrA [104], 
SVMerge [110] and DriverML [18] predict well using SVM. These methods effectively address the 
issues related to sample distribution and redundant features in driver genes, especially mitigating 
overfitting problems. However, these methods can be computationally expensive, limiting their 
scalability to large datasets. Random forest, which is composed of multi-decision trees generated 
through a bootstrapped resampling technique, is employed by methods such as CHASM [111] and 
Agajanian [19]. This approach offers benefits like the quantification of feature importance and rapid 
processing, especially beneficial for datasets with partial data loss. Deep learning methods delve into 
the intrinsic rules and representation levels of the CDG sample data for interpreting the CDG data, 
reducing the need for human analysis. Deep learning is a complex machine learning algorithm that far 
exceeds previously relevant techniques in many ways. Agajanian [3] and DeepDriver [33] employ 
deep CNNs to achieve CDG identification. In addition, methods such as FATHMM [112], which uses 
a Bayesian approach, and that suggested by Lu et al. [113], based on Bayesian algorithms, have been 
employed for CDG identification. Markov models involve dual stochastic processes with hidden 
Markov chains representing certain states and a set of displayed random functions. Although these 
models effectively address the labeling issues, they may introduce labeling biases based on 
homogeneous Markov and observed dividend hypotheses. Examples include Dendrix [12] and 
PageRank, the latter being a form of Markov chain used by Google to determine the order of search 
results, and methods such as DawnRank [11]. 

The aforementioned algorithms are widely used in CDG identification. In the latest research on 
computational methods, novel algorithms have been introduced: The MaxMIF [18] method is based 
on a heavy mechanical model; Dendrix [12] and DriverNet [14] use a greedy algorithm; and Multi-
Dendrix [24] and Cancer3D [69] use integer linear planning techniques. Heat has also been explored 
as a CDG identification method [114]. 

5. A comparative study across eight types of cancer using nine computational methods 

We selected nine representative computational methods published since 2014 to investigate the 
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performances of the four categories of CDG identification methods. These methods were compared 
and analyzed using validated CDGs associated with eight different cancer types. The performances 
were evaluated by cumulative number analysis with published CDGs. 

The data used in this study comprised validated CDGs and a feature dataset, including mutation 
data, biological network information and gene expression levels. The validated CDG datasets were 
extracted from the CGC of Gao et al. (https://cancer.sanger.ac.uk/census/#cl_search). They contained 
CDGs from eight different types of cancer: kidney chromophobe (KICH), skin cutaneous melanoma 
(SKCM), breast invasive carcinoma (BRCA), acute myeloid leukemia (LAML), thyroid carcinoma 
(THCA), glioblastoma multiforme, lung squamous cell carcinoma (LUAD) and uterine corpus 
endometrial carcinoma (UCEC). Mutation data and gene expression profiles of eight types of cancer 
were downloaded from TCGA, and STRING was used as the biological network [78]. 

This study compared the performances of nine computational methods from four different types 
of CDG identification methods across eight different types of cancer: (1) frequency-based methods 
(driverMAPS), (2) network-based algorithms (HotNet2, MaxMIF, DNsum, DNmax and 
OncoIMPACT), (3) coverage and mutually exclusive feature-based method (nCOP) and (4) machine 
learning-based methods (MutPanning and DriverML). The computational methods that identified more 
than three CDGs were considered. 

Each computational method was used to predict eight cancers. The top 50 genes from these 
predictions were then analyzed to determine the number of CDG duplications for all 8 cancers using 
the CGC database. The cumulative numbers of known CDGs from the CGC dataset that were 
recovered from among the top 50 candidate genes for the 8 cancer types are presented in Table 6 and 
Figure 1. 

Table 6. Cumulative numbers of known CDGs from the CGC dataset recovered from 
among the top 50 candidate genes across all 8 cancer types. 

Method Number Method Number Method Number 
DNmax 44 DriverML 57 MutPanning 66 
DNsum 46 HotNet2 28 OncoIMPACT 63 
driverMAPS 5 MaxMIF 66 nCOP 37 

The test data underwent prediction and sorting through nine computational methods. The analysis 
focused on the top 50 candidate genes, selecting the top 5 computational methods with the highest 
number of identifications. The cumulative numbers of known CDGs from the CGC dataset were 
recovered from the top 50 candidate genes (Figure 1). 

Venn diagrams of 6 computational methods identified 125 CDGs. Among these, 13 CDGs were 
shared by 5 methods, indicating that 10.4% of CDGs can be identified by these 5 computational 
methods across all 8 types of cancer. Additionally, 16 CDGs were shared by 4 methods, 20 CDGs were 
shared by 3 methods, 32 CDGs were shared by 2 methods, and 45 CDGs were shared by 1 method. 

The cumulative results suggested that the nine computational methods can be ranked in the 
following order based on their identification performance: MaxMIF, MutPanning, OncoIMPACT, 
DriverML, DNsum, DNmax, nCOP, HotNet2 and driverMAPS. Notably, MaxMIF, OncoIMPACT, 
DNsum and DNmax are network-based algorithms, whereas MutPanning and DriverML belong to the 
machine learning-based methods. It is evident that both the network-based algorithms and machine 
learning-based methods exhibited superior identification performance in this analysis. 
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Figure 1. Cumulative numbers of known CDGs from the CGC dataset recovered from the 
top 50 candidate genes across 8 cancer types. (A) Overlapped CDG numbers were 
predicted using five CDG identification methods across all eight cancer types. (B) Top 50 
CDGs identified by each of the 5 computational methods were selected to calculate the 
cumulative number of overlaps with the known CDGs in the CGC dataset across 8 cancer 
types. (C) Number of overlapped genes predicted by n number of CDG identification 
methods (n = 1, 2, 3, 4, 5). For example, 13 overlapping CDGs were identified using 5 
computational methods simultaneously, and 16 overlapping CDGs were identified using 4 
computational methods. 
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Figure 2. Cumulative numbers of known CDGs from the CGC dataset recovered from top-
ranked candidate genes across all eight cancer types. 

Figure 2 shows eight algorithms specific for CDG identification in different cancer types. When 
MaxMIF was used to identify CDGs in BRCA, the cumulative numbers of known CDGs from the 
CGC dataset recovered in the top 50, 100, 150 and 200 candidate genes were 17, 18, 19 and 20, 
respectively. Different algorithms exhibited specific strengths in terms of CDG identification. MaxMIF 
performed best in CDG identification for BRCA, KICH and THCA, while OncoIMPACT performed 
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well in CDG identification for LUAD and SKCM. Additionally, DriverML exhibited the best 
performance in terms of CDG identification for GBM, LAML and UCEC. These findings suggested 
that network-based algorithms and machine learning-based methods consistently outperformed other 
approaches in this study. 

6. Challenges and outlook 

This study extensively reviewed biological knowledge, focusing on typical algorithms and software 
related to CDG research. It also covered various computational methods used to identify CDG-related 
data resources such as biological networks. Despite significant research efforts establishing a robust 
foundation for CDG identification, several bottlenecks and technical challenges persist. 

(1) Although some CDGs exhibit high-frequency mutations (>20%), most cancer mutations occur 
at intermediate frequencies (2–20%) or even lower frequencies [8]. For instance, an analysis of 183 
lung adenocarcinoma samples revealed that 15% of patients lacked mutations in known cancer genes, 
highlighting the heterogeneity of cancer mutations [96]. Because of the heterogeneity of cancer 
mutations, high-frequency mutant CDGs are more vividly identified, while low-frequency genes hold 
significant potential for exploration. Some studies focus on individual samples or specific cancer types, 
inadvertently neglecting low-frequency CDGs due to limited sample coverage. 

(2) Using the biological network modeling method enhances the possibility of identifying low-
frequency CDGs. While the adoption of coverage and mutual exclusivity features is beneficial, the 
approach to identifying network modules often affects the nodal degree of the network. This can result 
in prioritizing nodes with a high number of connections [115]. 

(3) The significance of edges in biological networks is often overlooked. However, cancer omics 
data provide sufficient resources for common modeling based on both the nodes and edges of these 
networks. The correlation between adjacent nodes of CDGs represents their perturbative role in gene 
network pathways. This aspect is not adequately explored in many existing methods. 

In conclusion, research on driver gene identification holds significant importance in 
understanding the function of driver genes. A comprehensive and multi-faceted approach can be 
undertaken through computational methods, paving the way for advancements before progress in 
experimental techniques. It is envisaged that computational methods for identifying CDGs can develop 
in the following directions: 

(1) Using a multiomics data integration method for CDG identification represents a crucial step 
forward. Tumor occurrence and the developmental process rely not solely on a single system. The 
development of multiomics has improved our access to a large amount of omics information, 
encompassing protein networks, gene function annotation databases, gene expression profiles and 
miRNA expression profiles. The multiomics data integration method demonstrates strong consistency 
and performance, albeit requiring a large sample size to achieve relatively high sensitivity. By 
considering the expression of neighboring genes, this method effectively identifies CDGs with low 
frequency. Moreover, the multiomics data integration method is instrumental in capturing specific cancer 
characteristic signals, facilitating the discovery of specific CDGs at the multiomics level. The surge in 
multiomics data availability serves as a significant driving force for the advancement of this approach. 

(2) Research in computational methods for identifying CDGs should focus on specific types and 
individualized approaches. However, the specificity of cancer indicates substantial variations in gene 
characteristics across different types. For example, genes such as EGFR, ALK and MET serve as driver 
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genes in lung cancer, but in other cancer types, they may not hold the same status. Therefore, 
developing computational methods tailored to the identification of CDGs specific to certain cancers 
proves more effective. 

(3) The development of algorithms for quantifying the features of tumor heterogeneity is a crucial 
research area in identifying low-frequency CDGs. Tumor heterogeneity poses a significant challenge 
in CDG identification, primarily manifesting in two aspects. First, the number of mutations varies 
considerably among different samples of the same cancer type. Second, the number of gene mutations 
differs significantly between various tumor samples, with variations up to 100 times between different 
cancer types. In heterogeneous tumors, a large number of samples exhibit only a few CDG mutations, 
while a small number of samples contain a large number of CDG mutations. The genome-wide survey 
showed that the “long tail” phenomenon occurred in the genome frequency distribution, with most CDGs 
exhibiting low population frequencies. Therefore, devising calculation methods based on mutation 
samples to quantify mutation characteristics represents one of the current challenges in this field. 

As specific computer algorithms and software may not be accessible, showcasing comparative 
results using a broader range of algorithms is essential. In addition, leveraging biometrics of cancer 
drivers identified through previous studies or biological experiments is crucial for enhancing the 
identification performance. 
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