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Abstract: Based on the Michaelis-Menten reaction model with catalytic effects, a more 
comprehensive one-dimensional stochastic Langevin equation with immune surveillance for a tumor 
cell growth system is obtained by considering the fluctuations in growth rate and mortality rate. To 
explore the impact of environmental fluctuations on the growth of tumor cells, the analytical solution 
of the steady-state probability distribution function of the system is derived using the Liouville 
equation and Novikov theory, and the influence of noise intensity and correlation intensity on the 
steady-state probability distributional function are discussed. The results show that the three extreme 
values of the steady-state probability distribution function exhibit a structure of two peaks and one 
valley. Variations of the noise intensity, cross-correlation intensity and correlation time can modulate 
the probability distribution of the number of tumor cells, which provides theoretical guidance for 
determining treatment plans in clinical treatment. Furthermore, the increase of noise intensity will 
inhibit the growth of tumor cells when the number of tumor cells is relatively small, while the increase 
in noise intensity will further promote the growth of tumor cells when the number of tumor cells is 
relatively large. The color cross-correlated strength and cross-correlated time between noise also have 
a certain impact on tumor cell proliferation. The results help people understand the growth kinetics of 
tumor cells, which can a provide theoretical basis for clinical research on tumor cell growth. 
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1. Introduction 

Tumor cells are different from other cells in the body, as they are immortal, not controlled by 
the growth and proliferation of the body and invade the surrounding tissues. It is precisely because 
of these characteristics of tumor cells that people are helpless in the treatment and prevention of 
tumor cells [1]. Many scientists in these fields have tried to change this situation using their expertise, 
thus recording excellent research results, among which is the effects of noise and its connections to 
nonlinear systems [2]. The growth and change process of tumor cells is a complex nonlinear dynamic 
process; therefore, many researchers consider the influence of noise and its association on the growth 
process of tumor cells [3]. 

More and more facts have proven that tumors are considered a global disease that causes human 
death, mostly characterized by unnatural cell growth, rapid spread and obstruction of normal cell 
function [4]. With the increasing number of cancer patients, tumor research and treatment have become 
a major challenge in the fields of clinical medicine and biology. In recent decades, various mathematical 
and physical models for describing tumor growth have emerged, such as Logistic models, Gomperztion 
models, Self-limiting models and Eden models [5]. Due to the enormous pain and economic pressure 
that surgery, chemotherapy and radiation therapy can bring to patients and their families in clinical 
treatment, as well as their adverse effects on their lives, the understanding of immunotherapy has 
received considerable attention [6]. In practical situations, the growth process of tumor cells is always 
influenced by some random factors (such as temperature, radiation therapy, chemotherapy, drugs, etc.), 
and the appearance and growth of tumors are the result of a very complex interaction between the tumor 
and the immune system, which is likely to be nonlinear and time-varying [7]. 

Given the complexity of the growth process of tumor cells, a large number of researchers have 
begun to explore a more comprehensive and high-dimensional predator-prey model or a catalytic 
Michaelis Menten reaction model, striving to find a dynamic model that is closer to the growth process 
of tumor cells and has immune surveillance [8]. Zhong et al. [9] investigated the effect of multiplicative 
noise on tumor cell growth and confirmed that multiplicative noise has a differentiation effect on the 
growth law of tumor cells. Fiasconaro et al. [10] examined the effect of noise on the mobility of tumors 
under immune surveillance and the effect of noise on tumor apoptosis. Fang et al. [11] considered the 
correlation state between noise, and obtains that in some cases there is a certain form of correlation 
between noise, and this correlation state has a large influence on the state of the nonlinear system. 
After the results of these studies were brought up, Ai et al. [12] considered the influence of the 
association between additive white noise and multiplicative white noise on the growth state of tumor 
cells, which showed that the association strength of additive noise and multiplicative noise can affect 
the survival of tumor cells. Hua et al. [13] found the transition in a delayed tumor growth model with 
non-Gaussian colored noise. Alsakaji et al. [14] studied stochastic tumor-immune interaction model 
with external treatments and time delays, and they developed a stochastic optimality system to reduce 
tumor cells using some control variables. Rihan et al. [15] investigated the dynamics of a time-delay 
differential model for tumor-immune interactions with random noise, and they proved that in contrast 
to the deterministic model which shows no stable tumor-free state, the white noise can either lead to 
tumor dormancy or tumor elimination. 

All these studies confirmed that noise and its association have a great impact on the complex 
nonlinear kinetic process of tumor cell proliferation and decay [16]. Although the immune system of 
the body cannot remove all the tumor cells in the body, the body will produce the corresponding tumor 
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immune mechanism against the abnormal proliferation of tumor cells [17]. As the tumor immune 
mechanism is nonlinear, and the temperature, humidity and nutrients in the body can promote the 
proliferation of tumor cells in some cases [18]. In the process of treatment, external factors such as 
radioactive substances, drug dose and intensity of radioactive substances can also promote the 
proliferation of tumor cells [19]. Under the simultaneous action of multiple different factors, whether 
tumor cells proliferate or die needs specific analysis [20]. 

Based on the non-linear growth of tumor cells under the immune mechanism of the organism, the 
practical one-dimensional Langevin equation is obtained through the catalytic Michaelis-Menten 
reaction model [21,22]. In this paper, external and internal factors affecting the proliferation and decay 
of tumor cells were introduced into the model in the form of multiplicative and additive noise, 
respectively [23]. The effects of two kinds of noise on tumor cell proliferation and decay in the case 
of different color association strength and color association time were considered using the linearized 
approximation method and the fastest descent method [24]. Finally, the steady-state probability 
distribution function of the calculated system is derived [25]. By observing the changes in noise 
intensity, as well as the correlation strength and correlation time between noises, we aim to explore 
whether tumor cell therapy mainly manifests as proliferation or decay [26]. We hope to provide a more 
clinical theory for the treatment of tumor diseases by studying the proliferation and decay of tumor 
cells in such a complex environment. Based on this theory, clinical treatment can establish reasonable 
and effective treatment plans. 

2. Model construction 

Human immune mechanisms can recognize and remove a certain number of tumor cells in the 
human body [27]. In the past years, there were large number of related studies on tumor cell growth 
process under the effects of human immune mechanism, and some researchers proposed tumor cell 
immune surveillance model [28]. Considering the fact that the human immune mechanism is an 
indispensable influencing factor for the growth and proliferation of tumor cells, the growth and 
proliferation status of tumor cells under the influence of human immune mechanism is represented by 
enzymatic reactions as follows [29]. 

XN
A

2cells ormal                                  (1) 

2X X                                   (2) 

1 2K KX Y Z Y P                                (3) 

where X in the above equation indicates the tumor cells, Y indicates the immune cells, Z indicates 
the compounds of tumor cells and immune cells, P indicates dead or unproductive cells, A shows the 
conversion rate of the normal cells, λ represents the replication rate of the tumor cells, K1 indicates 
the binding rate of immune cells bound cancer cells and K2 represents the decomposition rate of 
compound Z [30]. 

According to Michaelis-Menten theory, the above equations can be transformed into a univariate 
system, and the evolution equation of tumor cell over time can be simplified as the following Langevin 
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equation [31]. According to existing theories, this equation is more suitable for the actual growth and 
proliferation process of tumor cells [32]. It is expressed as follows. 

 
1

dx x
x x

dt x
   


（1- ）-                           (4) 

where x represents the number of tumor cells, α and β denote variables related to tumor cell 
proliferation, in which β is the specific immune coefficient and satisfies β ≥ 0 [33]. 

On the basis of the above equation, the expression of the definite theoretic potential function can 
be obtained as follows [34]. 

 2 31
( ) ln( 1)

2 3
V x x x x x x

                             (5) 

The variables α in the above expression is related to the proliferation of the tumor cells. In the 
existing studies, α = 0 was taken, that is, the tumor cell proliferation was not considered [35]. As can 
be seen from the V (x) given in Figure 1, the value of α has an impact on the properties of the system. 
Therefore, in order to reduce the theoretical error, it is reassigned in the later study [36]. In other words, 
we used α ≠ 0 to modify the parameters related to tumor cell birth rate, making the model closer to the 
real situation [37]. 

It can be known that the process of tumor cell growth and proliferation are inevitably affected 
by external environmental factors, and the environmental factors that affect tumor cells exist in all 
aspects [38]. In this study, we focus on the effects of drugs, radioactive substances and drug dosage 
during treatment on the growth and proliferation of tumor cells [38,39]. 

As we can see, Equation (4) is a deterministic differential equation. Due to differences in 
individual genetics, behavior and abilities, or treatment methods such as surgery, chemotherapy and 
radiotherapy, the growth of tumor cells exhibits randomness, which affects the specific immune 
coefficient in the form of multiplicative noise [40]. Furthermore, considering the impact of 
environmental fluctuations on birth rate, such as temperature, oxygen and nutrient supply and host 
immune status, they belong to external noise and are added to the system in the form of additive 
noise [41]. For example, certain uncertain physical and chemical factors, the temperature of the body’s 
survival, the supply of nutrients in the cell survival environment and fluctuations in the psychological 
state of patients with tumor diseases, sudden accidents leading to physiological discomfort, and the 
random effects of different treatment methods in different treatment plans, may lead to certain 
fluctuations in the growth rate of tumor cells and immune factors of the body [42]. These factors 
become additive noise terms and are added to the system. 

From the perspective of mathematical statistics and signal processing, additive noise generally 
refers to thermal noise, shot noise, etc. [43]. Or in some cases, it is also referred to as external noise, 
which refers to the noise caused by external interference entering the system [44]. Their relationship 
with signals is additive, and noise exists regardless of whether there is a signal or not. In general 
communication, additive randomness is considered as the background noise of the system [45]. 
Multiplicative noise is generally caused by imperfect channels. Their relationship with the signal is 
multiplication, where the signal is present and the noise is present [46]. If the signal is not present, the 
noise will disappear. Multiplicative randomness is seen as a result of the time-varying or nonlinear 
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nature of the system. It is easy to know that in most cases, multiplicative noise actually exists in the 
form of internal noise in nonlinear systems, and it represents the noise caused by the internal 
components of the system, such as mutual interference between internal components. Multiplicative 
noise is widely present in real-world image applications [47]. 

Taking these factors into account, the impact of multiplicative noise ξ(t) is introduced into the tumor 
cell proliferation system and it acts on the specificity coefficient β; thus, one can obtain β→β + ξ(t). 
Similarly, the additive noise η(t) is introduced into Eq (4) to describe the fluctuations in a parameter 
related to tumor cell birth rate and mortality rate α, hence it can be rewritten as α→α + η(t) [48]. After 
bringing the above influencing factors into the equation, the Langevin equation is more consistent with 
the change of tumor cell growth [49]. It can be expressed as follows 

 (1 ) ( ) ( )
1

dx x
x x t t

dt x
        


                   (6) 

where ξ(t) and (t) represent multiplicative Gaussian white noise and additive white Gaussian noise 
with a mean of zero, and they satisfy the following statistical properties as follows [50,51]. 
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 
                (10) 

where the magnitude of the D and Q represents the noise intensity, λ represents the color cross-
correlated strength between multiplicative Gaussian white noise and additive white Gaussian noise, t 
and t’ denote time and τ represents the color correlation time between the two kinds of noise [51]. 

3. Fokke-Planck equation and its steady-state solutions 

According to the method of reference, make an equivalent transformation to Eq (6) and rewrite it 
as follows [52]. 

 1 2( ) ( ) ( ) ( ) ( )
dx

f x g x t g x t
dt

                          (11) 
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According to the Liouville equation, the following results can be obtained. 

),()]()()()()([
),(

21 txtxgtxgxf
xt

tx 









                 (14) 

In terms of the theory of nonlinear dynamics, the Liouville equation and the VAN Kampen 
Lemma, it can be inferred that the ensemble average is as follows. 
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and finally the following equation can be obtained. 
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According to Novikov theorem [53], 
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the following equation can be obtained. 
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By solving the above equation, the corresponding Fokker-Planck equation is obtained and it can 
be expressed as follows [54]. 
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where P(x, t) in the above equation represents the steady-state probability distribution function in the 
model, and A(x) and B(x) can be indicated as follows [55]. 
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Since the number of tumor cells cannot be negative, it can be determined that x ≥ 0 in Eq (19). 
According to the reflection boundary conditions, the steady-state solution of the Fokker-Planck 
equation can be obtained as follows [56]. 

}.
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The steady-state probability distributional function Pst(x) is the solution to Eq (19) obtained under 
steady-state conditions, which is used to describe the probability of the number of tumor cells 
appearing in a certain number of distributions in the dynamic stochastic differential equation given by 
Eq (19) under steady-state conditions. N indicates the normalization constant, and the value of N is 
determined by the normalization conditions as follows. 





0

.1)( dxxPst                               (23) 

In the exponential part of Eq (22), its calculation result is defined as a modified potential function 
and represented by U(x), and its specific form is as follows. 
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The generalized potential function is a generalized concept used to discuss the relationship 
between the potential function and the generalized velocity. The modified potential function U(x) of 
the system is also known as the generalized potential function. The changes in the modified potential 
function are shown in Figure 2. 

4. Discussion 

In the previous theoretical analysis, the factors that affect the study results have been considered, 
and the relevant variables have been integrated together. By keeping other variables constant and only 
changing the value of noise intensity D, numerical simulation is performed on the steady-state 
probability distribution function Pst(x), and the results are shown in Figure 3. 

The steady-state distribution of a system refers to the probability distribution of each state in the 
system remaining unchanged after a series of state transitions. If we simply consider from a physical 
perspective, when there is a phase particle with an initial position of x in the phase space, the steady-
state probability density distribution function of the system shows a maximum value, which means 
that the cumulative probability of the particle appearing at position x is the highest. Figure 3(a) shows 
the overall variation of the steady-state probability distribution function, Figure 3(b) shows the third 
steady-state point in the steady-state probability distribution function image, which is the magnified 
image of the most obvious peak. Figure 3(c) shows the image near the first steady-state point after 
changing the noise intensity value D. In the subsequent figures, similar processing is performed. From 
a mathematical perspective, the steady-state probability distribution function has three extreme points, 
with two maxima and one minimum, representing three states in the tumor system, i.e., tumor outbreak, 
disappearance and being in an intermediate state. 
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Figure 1. Potential function of the tumor cells. α = 0.5, β = 2.8, λ = 0.5. The above 
deterministic potential function equation has one unstable solution and two stable solutions. 

 

Figure 2. Modified potential function of the tumor cells. α = 0.5, β = 2.8, λ = 0.5. The 
modified potential function of the system is also known as the generalized potential 
function. The generalized potential function is a generalized concept used to discuss the 
relationship between the potential function and the generalized velocity. 

According to Figure 3, it can be seen that the steady-state probability distribution function shows 
a trend of two peaks and one valley. It is obvious that when the value of x is around 7, the extreme 
value of the steady-state probability distribution function Pst(x) reaches its maximum, indicating the 
maximum probability of tumor cell growth and proliferation at this time. It can be concluded that 
reducing the intensity of the multiplicative noise increases the value of the steady-state probability 
distribution function Pst(x) before it reaches the second peak. However, when the value of x is greater 
than 7, the value of the steady-state probability distribution function increases with the multiplicative 
noise intensity. When the state variable x is at an unstable point, it indicates that the number of tumor 
cells can transition to two states, i.e., cell death or tumor eruption. 

Preliminary analysis shows that when the number of tumor cells in the body is small, the 
multiplicative noise intensity has less effect on tumor cell proliferation. When the number of tumor 
cells reaches a certain value, the multiplicative noise intensity has a large influence on the tumor cell 
proliferation. As previously described, in treatment methods such as surgery, chemotherapy and 
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radiation therapy, the growth of tumor cells exhibits randomness. These nonlinear factors will affect 
the specific immune coefficient in the form of multiplicative noise and further affect the growth status 
of tumor cells. When the number of tumor cells is relatively small, the increase of multiplicative noise 
intensity will inhibit the growth of tumor cells, thereby preventing their spread. However, when the 
number of tumor cells is relatively large, the increase in multiplicative noise intensity will further 
increase the probability of growth of tumor cells. 

 

Figure 3. Effect of the multiplicative noise intensity D on the steady-state probability 
distribution function. (a) α = 0.5, β = 2.8, θ = 0.1, λ = 0.5, Q = 0.09, τ = 0.1; (b) α = 0.5, 
β = 2.8, θ = 0.1, λ = 0.5, Q = 0.09, τ = 0.1. The variation of multiplicative noise intensity 
has a certain impact on the proliferation process of tumor cells. When the number of tumor 
cells is relatively small, the increase of multiplicative noise intensity will inhibit the growth 
of tumor cells, thereby preventing their spread. However, when the number of tumor cells 
is relatively large, the increase in multiplicative noise intensity will further increase the 
probability of tumor cell growth. 

However, long-term treatment can lead to tumor cells establishing tolerance to treatment methods 
and drugs. In addition, radiation therapy and the use of chemicals during the treatment process can 
cause normal cells to transform into cancer cells, leading to an increase in the probability of tumor cell 
growth and proliferation in subsequent treatment. That is to say, the multiplicative noise intensity D 
cannot be fixed throughout the treatment process. Reasonably changing the magnitude of 
multiplicative noise intensity D during the treatment process is more conducive to promoting the decay 
of tumor cells and achieving satisfactory treatment results. 
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Figure 4. Effect of the additive noise intensity Q on the steady-state probability 
distribution function. (a) α = 0.5, β = 2.8, θ = 0.1, λ = 0.5, D = 0.04, τ = 0.1; (b) α = 0.5, 
β = 2.8, θ = 0.1, λ = 0.5, D = 0.04, τ = 0.1. The increase of additive noise intensity will 
inhibit the growth of tumor cells when the number of tumor cells is relatively small, while 
the increase in additive noise intensity will further promote the growth of tumor cells when 
the number of tumor cells is relatively large. 

Next, the effect of the additive noise intensity on the value of tumor cell growth is discussed when 
the multiplicative noise intensity is fixed, as shown in Figure 4(a). Figure 4(b) shows the image where 
the maximum peak of the Pst(x) function varies with different additive noise intensity Q. Figure 4(c) 
shows a magnified image of the steady-state probability distribution function Pst(x) when changing the 
additive noise intensity Q at the relatively insignificant peak of the change. 

As can be seen from Figure 4, the structure of the steady-state probability distribution function in 
this case is similar to that when changing the value of the multiplicative noise intensity D. However, 
at the relatively small x value, the effect of changing the multiplicative noise intensity Q is greater than 
changing the additive noise intensity D before the second peak of the steady-state probability 
distribution function appears. In addition, the value of the magnitude of the additive noise intensity Q 
does not change significantly when the value of x is around 7. When the noise intensity changes, it can 
be seen from the image of the corresponding steady-state probability distribution function that if the 
number of tumor cells in the body is small, the impact of changing the intensity of the two types of 
noise on the probability of tumor cell proliferation is not significant. 
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Figure 5. Effect of the correlation strength λ on the steady-state probability distribution 
function. (a) α = 0.5, β = 2.8, θ = 0.1, D = 0.01, Q = 0.09, τ = 0.1; (b) α = 0.5, β = 2.8, 
θ = 0.1, D = 0.01, Q = 0.09, τ = 0.1. For a small number of tumor cells, the strong cross 
correlation between noise can maintain a low probability level of tumor cell numbers. For 
a larger number of tumor cells, the stronger the cross correlation, the higher the 
corresponding probability, indicating a higher probability of the occurrence of a large 
number of tumor cells. 

It is known from the above analysis that additive and multiplicative noise intensity have similar but 
different effects on tumor cell growth and proliferation. However, we cannot ignore the fact that the 
treatment of tumor diseases is done under the combined action of two kinds of noise, so the effect of two 
kinds of noise on the growth and proliferation of tumor cells is studied in the following. Figure 5(b) 
shows a locally enlarged image of the steady-state probability distribution function Pst(x) as a function 
of the cross-correlated intensity of the noise. 

As can be seen in Figure 5, when the value of x is relatively small, the extreme value of the steady-
state probability distribution function shifts to the left as the additive noise intensity Q increases. 
Overall, the value of the steady-state probability distribution function changes very little, and the 
overall value of the image is approaching 0 indefinitely, indicating that the size of the correlation 
strength between noise has little effect on the steady-state probability distribution function. However, 
when the value of x is about 7, the steady-state probability distribution function appears as the most 
obvious peak. Additionally, the greater the strength of correlation between noise, the greater the peak 
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of the steady-state probability distribution function. When the value of x is close to this value, reduce 
the strength of the color association between the noise can promote the decay of tumor cells. 

 

 

Figure 6. Effect of the cross-correlated time τ on the steady-state probability distribution 
function. (a) α = 0.5, β = 2.8, θ = 0.1, D = 0.01, λ = 0.5, Q = 0.09; (b) α = 0.5, β = 2.8, θ 
= 0.1, D = 0.01, λ = 0.5, Q = 0.09. The steady-state probability distribution function 
generally exhibits a structure of two maxima and one minimum. The probability 
distribution function decreases with the increase of correlation time when the number of 
tumor cells is relatively small, while the probability distribution function increases with 
the increase of correlation time when the number of tumor cells is relatively large. 

Figure 6 shows the effect of the cross-correlated time between the noise on tumor cell 
proliferation and death when other conditions are fixed. It can be seen that the maximum and minimum 
values of the steady-state probability distribution function are the same as those shown in the figure 
above, and one can conclude that the cross-correlated time between noise affects tumor cell 
proliferation and decay more strongly than the association strength. When the value of x is relatively 
small, reducing the cross-correlated time between noise has a similar effect to prolonging the cross-
correlated time between noise when the x value is relatively large, which can inhibit the proliferation 
of tumor cells, but the degree of inhibition is different. 
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5. Conclusions 

Considering factors such as the body’s immunity and external therapeutic environment, a 
stochastic Langevin equation is obtained to describe the proliferation and death of tumor cells based 
on the catalytic Michaelis-Menten reaction model. Throughout the analysis process, these internal and 
external nonlinear influencing factors were introduced into the tumor cell proliferation system in the 
form of noise. Subsequently, a series of algorithms such as Liouville equation, VAN Kampen Lemma 
and Novikov theory, are used to obtain the Fokker-Planck equation. Under steady-state conditions, an 
analytical solution to the steady-state probability distribution function is obtained, and the impact of 
changes in noise parameters on the steady-state probability distribution function is analyzed to 
characterize the clinical efficacy of different treatment methods for tumor cell therapy. 

Research results show that the multiplicative noise intensity, the additive noise intensity, the color 
cross-correlated intensity and the color cross-correlated time can promote the growth or death of tumor 
cells, but the patterns of effects are not the same. From a mathematical perspective, the steady-state 
probability distribution function has three extreme points, with two maxima and one minimum, 
representing three scenarios in the tumor system, i.e., tumor outbreak, disappearance and being in an 
intermediate state. When the number of tumor cells is relatively small, the increase of noise intensity 
will inhibit the growth of tumor cells, thereby preventing their spread. However, when the number of 
tumor cells is relatively large, the increase in noise intensity will further increase the probability of 
growth of tumor cells. If the cross-correlated time and cross-correlated intensity between noises are 
changed, it can be observed that the steady-state probability distribution function will also change.  

Compared with previous studies, the proliferation of tumor cells in the original model was not 
taken into account. However, the parameters related to tumor cell birth rate are modified to make the 
model closer to the real situation in our study. Moreover, the form of color cross-correlated between 
multiplicative and additive white noise has not been discussed before. The above results indicate that 
different treatment plans should be given according to different stages of treatment to achieve relatively 
satisfactory treatment results. This conclusion provides some theoretical support for the application of 
treatment means and treatment intensity. 
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