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Abstract: The chronological age used in demography describes the linear evolution of the life of a
living being. The chronological age cannot give precise information about the exact developmental
stage or aging processes an organism has reached. On the contrary, the biological age (or epigenetic
age) represents the true evolution of the tissues and organs of the living being. Biological age is not
always linear and sometimes proceeds by discontinuous jumps. These jumps can be negative (we then
speak of rejuvenation) or positive (in the event of premature aging), and they can be dependent on
endogenous events such as pregnancy (negative jump) or stroke (positive jump) or exogenous ones
such as surgical treatment (negative jump) or infectious disease (positive jump). The article proposes a
mathematical model of the biological age by defining a valid model for the two types of jumps (positive
and negative). The existence and uniqueness of the solution are solved, and its temporal dynamic is
analyzed using a moments equation. We also provide some individual-based stochastic simulations.

Keywords: Nonlocal transport equations; Equation of moments of distributions; Rejuvenation and
Premature aging; Biological age

1. Introduction

Over the past decade, scientists have studied several indicators of the health status of individuals.
Chronological age, the time since birth, can be considered one of them. Several other indicators are
required to improve the understanding of the health status of individuals. These indicators will combine
CpG, DNA methylation (DNAm) and age (chronological age), health, and lifestyle outcomes. In the
present article, we will call this indicator biological age, or epigenetic age [1, 2].

Aging is generally considered irreversible due to the severe damage to the cell resulting in a gradual
loss of functions and increasing fragility until final death. Recent publications proved that this process
can be reversible. For example, biological age increases due to stress or traumatism and decreases in
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the recuperation phase during post-partum or after stress-induced or surgery-induced cell aging [3] (for
mice).

This possibility of forward and backward changes in biological age due to specific events during
an individual’s life (pregnancy, stress, surgery, traumatism, etc.) has been considered in various ap-
proaches. For example, in [4], the calculation of biological age is based on estimating the time left
to live depending on the number of undifferentiated cells remaining in the stem cell reservoir of the
organs providing the patient’s vital functions.

The present article aims to present a model for a population of patients. Our model mainly consists
of continuous growth of the biological age together with some models for jumps (forward and back-
ward) in the biological age to derive a mean behavior at a population’s level. The continuous growth
of the biological age corresponds to the biological age when no accidents or jumps occur. Therefore,
in this case, the biological age grows at the same speed as the chronological age. In our model, the
difference between biological age and chronological age consists of modeling random jumps forward
or backward when the patient becomes sick or recovers from a disease such as cancer. In our model,
the disease’s severity corresponds to the jumps’ amplitude. Here it is assumed to increase linearly
with biological age. In conclusion, we will propose a larger model class for the jumps. The general
framework of models is the so-called Levy process [5, 6]. In Huang et al.[7], a mathematical model
based on a stochastic differential equation is proposed to model the dynamic of biological age at the
level of a single patient.

The plan of the paper is the following. Section 2 is devoted to the biological background of aging.
In section 3, we present an aging model with a rejuvenation mechanism only. In section 4, we present
an aging model with a premature aging mechanism only. In section 5, we combine rejuvenation and
premature aging mechanisms. Section 6 is devoted to numerical simulation, and section 7 is to the
discussion.

2. Biological background

Due to microscopic cellular events, the health status of patients the life is first able to regenerate the
tissue destroyed. When the chronological age increases, the patients are less capable of repairing such
a tissue, leading to phenotypic medical symptoms. The severity of the medical symptoms is also more
and more severe when patients’ chronological age increases. The medical symptoms result from an
accumulation threshold at the microscopic level of cell delations. This justifies the model with jumps
(aging and rejuvenating jump) in biological age with an amplitude that increases in the life course.

We can consider that, even if in fine a loss of function is due to the dysfunctioning (or even death)
of organs or even to the death of the whole organism, it results from a continuous disappearance of
differentiated cells not replaced by undifferentiated cells (which are finite in number at birth and whose
proliferation is bounded by Hayflick’s limit), the event signaling accelerated aging or rejuvenation is
a discrete phenomenon linked to a phenotypic symptom appearing at a precise moment corresponding
to a biological age jump in the proposed mathematical models.

Due to microscopic cellular events, the health status of patients the life is first able to regenerate
the tissue destroyed. When the chronological age increases, the patients are less capable of repairing
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such tissue, leading to phenotypic medical symptoms. The gravity of these medical symptoms is also
more and more severe when patients’ chronological age increases. The medical symptoms result from
an accumulation at the microscopic level of cell deletions.

The determination of longevity is a problem that affects all species. The determining factors are
multiple and are of two kinds, endogenous and exogenous. Among the endogenous determinants, we
find, for example, i) the microbiome, whose importance has been demonstrated for species that have
longevity comparable to the human species, such as crocodiles with a maximal life span of about 100
years [8] and ii) the genome, whose influence is decisive in family diseases such as progeria, a rare
genetic disorder [9]. Progeria accelerates aging, reduces the maximal human life span, and presents
early symptoms like osteoporosis and hair loss. The exogenous factors are due to the environment and
come from the food, which often contains pesticides and oxidizing components, the stress (especially
occupational stress and emotional stress), infectious diseases, chronic diseases (namely diabetes, neu-
rodegenerative and cardiovascular diseases), cancer, accidental musculoskeletal trauma, and surgical
operations, etc.) [3]. For example, an acute viral disease can cause a loss of 3 109 cells in 1 day, equiv-
alent to 2 weeks of additional aging, because normal aging causes only a loss of 2 108 cells per day
[10]. Another example is given by the pre-dementia, in which the observed loss of cells can be caused
by multiple etiologies, among which the loss of limbic and hypothalamic cell connections contributing
to altering the sense of satiety (causing the adipocytes depletion), alterations in cardiomyocytes insulin
sensitivity, or age-related regulatory changes in carbohydrate metabolism of the liver cells [11]. The
loss of cells due to apoptosis (not compensated by the mitoses remaining before the Hayflick’s limit
[4][12]) in the different organs (brain, heart, liver, etc.) involved in these dysfunctions causes not the
marginal organ death, but the whole organism death due to an involution (in cell size and number) of
these organs incompatible with the survival of the whole organism.

As the accelerating aging factors, the rejuvenation factors also have two sources: the endogenous
origin comes from cellular repair processes, in particular DNA repair mechanisms [13, 14] which
prevent the abnormal apoptosis due to DNA damages (caused by radiations, abortive mitoses, etc.).
The heterogeneous origin is due to recovery processes during the healing time after a disease or an
exhausting physiological event like pregnancy [15, 3, 16].

The chronological age is the commonly used age which is the time since birth. To describe a more
realistic lifetime expectancy, we now focus on the biological age, which is much more difficult to define
since it is multi-factorial.

According to Gerdhem et al. [17], biological age is a commonly used term without clear definitions
but is routinely used to describe patients. Biological age may differ from chronological age and corre-
lates to gait, muscle strength, and balance. The general appearance is considered when estimating the
biological age.

In Demongeot [4], the biological age is defined as the real age of interface tissues (like intestinal
endothelium, alveoli epithelium, and skin epithelium) and differs from the chronological age classically
used in demography, but unable to give useful information about the exact stage in development or
aging an organ or more globally an organism has reached. Biological age is essentially determined
by the number of divisions remaining before Hayflick’s limit (the maximal number of mitoses for
a cell lineage inside a dedicated differentiated cellular population) of the tissues of a critical organ
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(critical in the sense that its loss causes the death of the whole organism). We refer to Shay and Wright
[18] for more information. The critical organs have vital functions in interaction with the environment
(protection, homeothermy, nutrition, and respiration) and present a rapid turnover (the total cell renewal
time is in mice equal to 3 weeks for the skin, 1.5 days for the intestine, 4 months for the alveolate and
11 days for mitochondrial inner membrane) conditioning their biological age.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

years

s
u

rv
iv

a
l 
p

ro
b

a
b

il
it

y

s
2
(t)

s
1
(t)

Figure 1. Kaplan-Meier survival confidence (95%) curves. The region in between the curve
s1(t) and the curve s2(t) corresponds to 95% of individuals having their probability of survival
to time t between s1(t) and s2(t) (95% confidence limits).

Another estimation of the biological age is the epigenetic age based on the expression level of cer-
tain genes like ELMSAN1 (also known as MIDEAS) and their transcription factors (e.g., mir4505 for
MIDEAS) [1]. Figure 2 gives the statistical relationship between the epigenetic age and the chrono-
logical age showing that the probability of observing backward or forward jumps in epigenetic age and
the intensity of these jumps increase linearly with chronological age. We refer to [19] and [20] for
more results on this subject.

Figure 2. The statistical relationship between chronological and epigenetic ages (top) with an
indication of absolute error (bottom) in the prediction of epigenetic age by the chronological
one. This figure is taken from [1].
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3. Aging model with rejuvenation mechanism only

To describe the rejuvenation of a population of individuals structured with respect to biological age
b ∈ [0,+∞), we consider b 7→ n(t, b) the population density at time t. That is∫ b2

b1

u(t, b) db

is the number of individuals at time t with biological age between b1 and b2.

To model the rejuvenation, we will use the following system of partial differential equations
∂tu(t, b) + ∂bu(t, b) = −τ+u(t, b) + τ+ (1 + δ+) u (t, (1 + δ+) b) ,

u(t, 0) = 0,

u(0, b) = u0(b) ∈ L1
+ ((0,∞),R) ,

(3.1)

where τ+ > 0 is the rate of rejuvenation (i.e.
1
τ+

is for a single individual, the average time between

two rejuvenations jumps), δ+ ≥ 0 is the fraction of biological age b (after rejuvenation) that should be
added to b to obtain b̂ = (1 + δ+) b the biological age before rejuvenation.

In this above model, the term ∂bu(t, b) corresponds to a drift term with a constant velocity (which
represents the classical chronological aging in the absence of perturbations jumps), the term τ+u(t, b)
corresponds to the flow of individuals which rejuvenate (i.e. having a jump in biological age) at time
t. This flow is given by τ+

∫ ∞
0

u(t, b) db. That is,∫ t2

t1
τ+

∫ ∞

0
u(t, b) db dt

is the number of individuals which rejuvenate in between t1 and t2.

More precisely, when a rejuvenation occurs an individual having a biological age b after a rejuve-
nation’s jump, its biological age was

b̂ = (1 + δ+) b > b + δ+b > b,

before the rejuvenation’s jump.

In other words, a rejuvenating individual with a biological age b after a rejuvenation’s jump, was an
older individual with biological age b̂ = (1 + δ+) b before rejuvenation’s jump. That is also equivalent
to say that, rejuvenating individual starting from the biological age b̂ end-ups with a biological age

b =
1

1 + δ+

b̂ after rejuvenation. So this individual looses a fraction

1 −
1

1 + δ+

=
δ+

1 + δ+

of its biological age b̂ before rejuvenation’s jump.
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Setting
g+ = 1 + δ+, (3.2)

the system (3.1) becomes
∂tu(t, b) + ∂bu(t, b) = −τ+u(t, b) + τ+g+u (t, g+b) ,

u(t, 0) = 0,

u(0, b) = u0(b) ∈ L1
+ ((0,∞),R) .

(3.3)

Integral formulation of the solutions: By integrating the first equation of (3.3) along the character-
istics (i.e. t − a constant) we obtain the following

u(t, b) =

 e−τ+tu0(b − t)+ v(t, b), if t < b,

v(t, b), if t > b,
(3.4)

where

v(t, b) =


∫ t

0
e−τ+(t−σ)τ+g+u

(
σ, g+ (b − t + σ)

)
dσ, if t < b,∫ b

0
e−τ+(b−σ)τ+g+u

(
t − b + σ, g+σ

)
dσ, if t > b.

(3.5)

As a consequence of the above formula (3.4) and (3.5), and by applying fixed argument in suitable
subspaces of L1 with compact supports, we obtain the following lemma.

Lemma 3.1. If
Support (u0) ⊂ [0, b?],

then
Support (u(t, .)) ⊂ [0, b? + t],∀t > 0.

Abstract Cauchy problem formulation: We refer to [21] [22] [23] [24] [25] for more results on
semigroup theory and their application to age structured models. We consider

X = L1 ((0,∞) ,R) ,

endowed its standard norm
‖φ‖L1 =

∫ ∞

0
|φ (σ) | dσ.

We consider A : D(A) ⊂ X → X the linear operator defined by

Aφ = −φ′

with
D(A) =

{
φ ∈ W1,1 ((0,∞) ,R) : φ (0) = 0

}
.

We consider B : X → X the bounded linear operator defined by

Bgφ(x) = g φ (g x) , for x ≥ 0.,
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where g > 0. Then Bg is an isometric bounded linear operator. That is

‖Bgφ‖L1 = ‖φ‖L1 ,∀φ ∈ L1 ((0,∞) ,R) .

The problem (3.3) can be reformulated as an abstract Cauchy problem
u′(t) = Au(t) − τ+u(t) + τ+Bg+

u(t), for t ≥ 0,

with

u(0) = u0 ∈ L1
+ ((0,∞) ,R) .

(3.6)

Lemma 3.2. The linear operator A is the infinitesimal general of {TA (t)}t≥0 the strongly continuous
semigroup of linear operators, defined by

TA (t) (φ) (a) =

 φ (a − t) , if a > t,

0, if a < t.
(3.7)

Definition 3.3. We will say that u ∈ C
(
[0,∞) , L1

+ ((0,∞) ,R)
)

is a mild solution of (3.6) if∫ t

0
u(σ) dσ ∈ D(A),∀t ≥ 0,

and

u(t) = u0 + A
∫ t

0
u(σ) dσ +

∫ t

0
−τ+u(σ) + τ+Bg+

u(σ) dσ,∀t ≥ 0.

Theorem 3.4. For each u0 ∈ L1
+ ((0,∞) ,R) , the Cauchy problem (3.6) admits a unique mild solution

which is the unique continuous function u ∈ C
(
[0,∞) , L1

+ ((0,∞) ,R)
)

satisfying the fixed point problem

u(t) = TA−τ+I(t)u0 +

∫ t

0
TA−τ+I(t − σ)τ+Bg+

u(σ) dσ,∀t ≥ 0, (3.8)

where
TA−τ+I(t) = e−τ+tTA(t),∀t ≥ 0. (3.9)

Remark 3.5. The variation of constant formula (3.8) is an abstract reformulation of the formulas (3.4)
and (3.5).

Moments’ formulation of the PDE: Define

Ek(u(t)) =

∫ ∞

0
σku(t, σ) dσ,∀k ≥ 0,

with
E0(u(t)) =

∫ ∞

0
u(t, σ) dσ,

assuming that the integrals are well defined.
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Theorem 3.6. The rejuvenation model (3.1) has a unique non-negative mild solution. We have

d
dt

E0(u(t)) = 0, (3.10)

and the model preserves the total mass (number) of individuals. That is∫ ∞

0
u(t, σ) dσ =

∫ ∞

0
u0(σ) dσ,∀t ≥ 0, (3.11)

Moreover, the higher moment satisfies the following system of ordinary differential equations

d
dt

Ek(u(t)) = k Ek−1(u(t)) − χk Ek(u(t)),∀k ≥ 1, (3.12)

where

χk = τ+

(
1 −

1
(1 + δ+)k

)
> 0,∀k ≥ 1,

and
lim

k→+∞
χk = τ+ > 0.

If we denote the equilibrium solution of (3.12) by

Ek =

 k∏
j=1

j
χ j

 ∫ ∞

0
u0(σ) dσ,∀k ≥ 1,

consequently from (3.12), we have the following convergence result

lim
t→∞

Ek(u(t)) = Ek,∀k ≥ 1.

Proof. ∫ ∞

0
σk∂tu(t, σ) dσ +

∫ ∞

0
σk∂bu(t, σ) dσ = −τ+

∫ ∞
0
σku(t, σ) dσ

+τ+

∫ ∞
0
σku (t, g+σ) g+ dσ,

by integrating by parts the second integral, and by making a change of variable in the last integral, we
obtain

d
dt

Ek(u(t)) = k Ek−1(u(t)) − τ+

(
1 −

1
(1 + δ+)k

) ∫ ∞

0
Ek(u(t)).

�

4. Aging model with premature aging mechanism only

To model the premature aging, we will use the following system of partial differential equations
∂tu(t, b) + ∂bu(t, b) = −τ−u(t, b) + τ− (1 − δ−) u (t, (1 − δ−) b) ,

u(t, 0) = 0,

u(0, b) = u0(b) ∈ L1
+ ((0,∞),R) ,

(4.1)
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where τ− > 0 is the rate of premature aging (i.e.
1
τ−

is for a single individual, the average time between

two premature aging jumps), δ− ∈ (0, 1) is the fraction of biological age b (after premature aging) that
should be subtracted to b to obtain b̂ = (1 − δ−) b the biological age before premature aging.

In this above model, the flow of individuals with premature aging (i.e. having a jump in biological
age) at time t is given by τ−

∫ ∞
0

u(t, b) db. That is,∫ t2

t1
τ−

∫ ∞

0
u(t, b) db dt

is the number of individual with premature aging in between t1 and t2.

More precisely, when a rejuvenation occurs an individual having a biological age b after a premature
aging’s jump, its biological age was

b̂ = (1 − δ−) b > b − δ−b < b.

before the premature aging’s jump.

In other words, a premature aging individual with a biological age b after a premature aging’s jump,
was an younger individual with biological age b̂ = (1 − δ−) b before premature aging’s jump. That is
also equivalent to say that, premature aging individual starting from the biological age b̂ end-ups with

a biological age b =
1

1 − δ−
b̂ after premature aging. So this individual gains a fraction

1
1 − δ−

− 1 =
δ−

1 − δ−

of its biological age b̂ before premature aging’s jump.

Setting
g− = 1 − δ−, (4.2)

the system (4.1) becomes
∂tu(t, b) + ∂bu(t, b) = −τ−u(t, b) + τ−g−u (t, g−b) ,

u(t, 0) = 0,

u(0, b) = u0(b) ∈ L1
+ ((0,∞),R) .

(4.3)

5. Aging model

The full model with both rejuvenation and premature aging reads as follows

∂tu(t, b) + ∂bu(t, b) = − (τ− + τ+) u(t, b)

+τ− g− u (t, g− b)

+τ+ g+ u (t, g+ b) ,

u(t, 0) = 0,

u(0, b) = u0(b) ∈ L1
+ ((0,∞),R) .

(5.1)

and we make the following assumption on the parameters of the system.
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Assumption 5.1. We assume that

τ+ > 0, τ− > 0, and g+ > 1 > g− > 0.

Volterra integral formulation: By integrating the first equation of (5.1) along the characteristics (i.e.
t − a constant) we obtain the following

u(t, b) =

 e−(τ−+τ+)tu0(b − t)+ v+(t, b) + v−(t, b), if t < b,

v+(t, b) + v−(t, b), if t > b,

where

v+(t, b) =


∫ t

0 e−(τ−+τ+)(t−σ)τ+g+u
(
σ, g+ (b − t + σ)

)
dσ, if t < b,∫ b

0 e−(τ−+τ+)(b−σ)τ+g+u
(
t − b + σ, g+σ

)
dσ, if t > b,

and

v−(t, b) =


∫ t

0 e−(τ−+τ+)(t−σ)τ−g−u
(
σ, g− (b − t + σ)

)
dσ, if t < b,∫ b

0 e−(τ−+τ+)(b−σ)τ−g−u
(
t − b + σ, g−σ

)
dσ, if t > b.

Abstract Cauchy problem reformulation: The problem (5.1) can be reformulated as an abstract
Cauchy problem 

u′(t) = Au(t) − (τ− + τ+) u(t) +
(
τ−Bg− + τ+Bg+

)
u(t), for t ≥ 0,

with

u(0) = u0 ∈ L1
+ ((0,∞) ,R) .

(5.2)

Definition 5.2. We will say that u ∈ C
(
[0,∞) , L1

+ ((0,∞) ,R)
)

is a mild solution of (5.2) if∫ t

0
u(σ) dσ ∈ D(A),∀t ≥ 0,

and for each t ≥ 0,

u(t) = u0 + A
∫ t

0
u(σ) dσ +

∫ t

0
− (τ− + τ+) u(σ) +

(
τ−Bg− + τ+Bg+

)
u(σ) dσ.

Theorem 5.3. Let Assumption 5.1 be satisfied. For each u0 ∈ L1
+ ((0,∞) ,R) , the Cauchy problem (5.2)

admits a unique mild solution u ∈ C
(
[0,∞) , L1

+ ((0,∞) ,R)
)

which is the unique continuous function
satisfying the fixed point problem for each t ≥ 0,

u(t) = TA−(τ−+τ+)I(t)u0

+
∫ t

0
TA−(τ−+τ+)I(t − σ)

(
τ−Bg− + τ+Bg+

)
u(σ) dσ,

where
TA−(τ−+τ+)I(t) = e−(τ−+τ+)tTA(t),∀t ≥ 0.
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Moments formulation: We obtain the following result using similar arguments in for Theorem 3.6.

Theorem 5.4. Let Assumption 5.1 be satisfied. The rejuvenation and premature aging model (5.1) has
a unique non-negative mild solution. We have

d
dt

E0(u(t)) = 0,

and the model preserves the total mass (number) of individuals. That is∫ ∞

0
u(t, σ) dσ =

∫ ∞

0
u0(σ) dσ,∀t ≥ 0. (5.3)

Moreover, the higher moment satisfies the following system of ordinary differential equations

d
dt

Ek(u(t)) = k Ek−1(u(t)) − χk Ek(u(t)),∀k ≥ 1, (5.4)

where

χk = τ+

(
1 −

1
(1 + δ+)k

)
+ τ−

(
1 −

1
(1 − δ−)k

)
,∀k ≥ 1, (5.5)

and
lim

k→+∞
χk = −∞. (5.6)

Remark 5.5. For k = 1, and τ+ = τ− = τ/2, and δ+ = δ− = δ ∈ (0, 1), then by using the formula (5.5)
we obtain

χ1 = τ+

(
1 −

1
(1 + δ+)

)
+ τ−

(
1 −

1
(1 − δ−)

)
= τ/2

[
δ

1 + δ
−

δ

1 − δ

]
= τ/2

[
δ(1 − δ) − δ(1 + δ)

1 − δ2

]
and

χ1 = −τ
δ2

1 − δ2 .

Next, by using formula (5.7), we obtain

d
dt

E1(u(t)) = E0(u0) + τ
δ2

1 − δ2 E1(u(t)),∀k ≥ 1. (5.7)

The means value of the distribution is

M(u(t)) =
E1(u(t))
E0(u(t))

and since t → E0(u(t)) is a constant function we obtain consequently, we obtain

M(u(t))′ = 1 + τ
δ2

1 − δ2 M(u(t)).

We conclude that,
lim
t→∞

M(u(t)) = +∞,

and the smaller δ is, the closer the mean value M(u(t)) growth like the time t.
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Lemma 5.6. Let Assumption 5.1 be satisfied. Define

xmax =
ln (τ+ ln q+) − ln (−τ− ln q−)

ln g+ − ln g−
.

Consider the function χ : [0,+∞)→ R defined by

χ(x) = τ+

(
1 − g−x

+

)
+ τ−

(
1 − g−x

−

)
.

There we have the following alternative

(i) If τ+ ln g+ +τ− ln g− > 0, then the map χ is first increases from χ(0) = 0 to χ(xmax) > 0 on [0, xmax],
and then decreases from χ(xmax) > 0 to −∞ on [xmax,∞).

(ii) If τ+ ln g+ + τ− ln g− ≤ 0, then the map χ decreases from 0 to −∞ on [0,∞).

Proposition 5.7. Assume that there exists k0 ∈ N, such that

χk > 0,∀k = 1, . . . , k0,

and
χk < 0,∀k > k0.

If we denote the equilibrium solution of (5.7) by

Ek =

 k∏
j=1

j
χ j

 ∫ ∞

0
u0(σ) dσ,∀k = 1, . . . , k0, (5.8)

consequently from (5.7), we have the following convergence result

lim
t→+∞

Ek(u(t)) = Ek,∀k = 1, . . . , k0, (5.9)

and
lim

t→+∞
Ek(u(t)) = +∞,∀k > k0. (5.10)

Equilibrium solution: An equilibrium solution satisfies some delay equation with both advance and
retarded delay. That is, 

u′(b) = − (τ− + τ+) u(b)

+τ− g− u (g− b)

+τ+ g+ u (g+ b) ,

u(0) = 0,

(5.11)

and the difficulty of solving such an equation comes from the following

g+ b > b > g− b, ∀b > 0.

It follows that, even the existence of equilibrium solution is not a classical problem to investigate.

Non existence result for exponentially decreasing equilibrium solution of (5.1): Assume that b 7→
u(b) is a non-negative continuously differentiable map satisfying system (5.11).
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Assumption 5.8. Assume that the map b 7→ u(b) is non-negative, and non null, and continuously differ-
entiable map, and satisfies the system (5.11). Assume in addition that u(b) is exponentially decreasing.
That is, there exist two constants M > 0, and γ > 0, such that

u(b) ≤ Me−γb,∀b ≥ 0.

By using the first equation of (5.11), we deduce that

|u′(b)| ≤ M̃e−γ min(1,g+,g−) b,∀b ≥ 0,

for some suitable M̃ > 0.
So, under Assumption 5.8, all the moments of u(b) and u′(b) are well defined. Moreover, by using

the first equation of (5.11), we obtain for each k ≥ 1∫ ∞

0
σku′(σ) dσ = − (τ− + τ+)

∫ ∞
0
σku(σ) dσ + τ+

∫ ∞
0
σku (t, g+σ) g+ dσ

+τ−
∫ ∞

0
σku (t, g−σ) g− dσ,

and since u(0) = 0, we obtain by integrating by parts

−k
∫ ∞

0
σk−1u(σ) dσ = − (τ− + τ+)

∫ ∞
0
σku(σ) dσ + τ+

∫ ∞
0
σku (t, g+σ) g+ dσ

+τ−
∫ ∞

0
σku (t, g−σ) g− dσ,

and we obtain
kEk−1(u) = χk Ek(u),∀k ≥ 1,∀k ≥ 1, (5.12)

where χk is define by (5.5).
Under Assumption 5.8, we must have

Ek−1(u) > 0,∀k ≥ 0,

and by using (5.6), we deduce that (5.12) can not be satisfied for all k ≥ 1 large enough. Therefore we
obtain the following proposition.

Proposition 5.9. The system (5.11) has no exponential decreasing solution. That is a solution of (5.11)
satisfying the Assumption 5.8.

6. Numerical simulations

6.1. Simulation of PDE (5.1)

By setting
τ+ = τ p, and τ− = τ (1 − p),

where τ is the rate at which individual either rejuvenates of prematurely ages, and p ∈ [0, 1] is the
probability of rejuvenation and (1 − p) ∈ [0, 1] is the probability of premature aging. The parameter
p can be interpreted as the probability of being cured in the event of illness or injury. The parameter
1 − p at the opposite is the probability of getting injured or sick.
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By using these new parameters, we obtain a probabilistic interpretation of the model (5.1), and the
model (5.1) becomes 

∂tu(t, b) + ∂bu(t, b) = −τ u(t, b)

+τ (1 − p) g− u (t, g− b)

+τ p g+ u (t, g+ b)

u(t, 0) = 0,
u(0, b) = u0(b) ∈ L1

+ ((0,∞),R) ,

(6.1)

and
g+ > 1 > g− > 0.

In order to run a simulation of model (6.1), we use stochastic simulations. We consider a population
composed of a finite number N = 100 000 of individuals. We start the simulation a time t = 0
with all individuals with the same age a = 20 years. The time to the next event (rejuvenation or
premature aging) follows an exponential law with parameters 1/τ. The principles of the simulations
are as follows: When an event occurs we choose randomly one individuals; and we compute a random
value between 0 and 1. If this value is less or equal to p, rejuvenation occurs, and premature aging
occurs otherwise. At each time step, the biological age increases by one-time step.

In Figure 3, we present some simulation of the model (6.1) whenever p = 0.5, 1/τ = 1 years,
g+ = 1 + δ+ = 1.1 and g− = 1 − δ− = 0.9. In Figure 3, we can observe that starting from a single
cohort of individuals with biological age 20 at time t = 0, the mean value of the distribution follows
the chronological age (thanks to the fact that p = 1/2, and δ+ = δ− = 0.1, and the remark 5.5). But the
density of the population deviates more and more with time. One also needs to interpret the biological
age by saying that the larger the biological age is, the more people are likely to die. Therefore the
more the population is dispersed around the means value, the more people (with larger ages) are likely
to die earlier. People with a large biological age can be understood as people suffering from a lack of
treatment for their illnesses or injuries.

In the Figures 4 and 5, we investigate the influence of the parameter p = 0.25 in Figure 4, and
p = 0.75 in Figure 5. In Figures 4 and 5, we can see that due to the dissymmetric value of p the
mean value no longer follows the chronological age. We can observe that the parameter p plays very
important in the aging process.

6.2. Simulation of the moments equation (5.7)

We choose
τ+ = τ− = 0.1, δ+ = 0.1, δ+ = 0.01,

and we obtain
g+ = 1 + δ+ = 1.1, and g− = 1 − δ− = 0.99.

We use the initial distribution with compact support

u0(b) =
2
5

max (0, b (1 − b/10)) .
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(a) (b)

(c) (d)

Figure 3. In this figure, we plot some stochastic numerical simulations of the model (6.1)
whenever p = 0.5, 1/τ = 1 years, g+ = 1.1 and g− = 0.9. We start the simulations with a
cohort of 100 000 individuals all with biological age 20 years old. The figures (a) (b) (c) (d)
are respectively the distribution after 1 year, 10 years, 20 years and 30 years.

(a) (b)

(c) (d)

Figure 4. In this figure, we plot some stochastic numerical simulations of the model (6.1)
whenever p = 0.25, the rest is the same as in Figure 3.
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(a) (b)

(c) (d)

Figure 5. In this figure, we plot some stochastic numerical simulations of the model (6.1)
whenever p = 0.75, the rest is the same as in Figure 3.

In Figure 6, the initial values k 7→ Ek(u0) increase with k (see (b)). Moreover, the components
k 7→ Ek(u(t)) keep the same order for all t > 0 (see (d)). Moreover by using (c) and the Theorem 5.3,
we deduce that k0 ∈ [60, 80], such that if k is below k0 the components converge to Ek, and if k is above
k0 the components go to +∞.

7. Discussion

In the case of chronic diseases or environmental processes that continuously degrade patients’
health, the implementation of therapy or the cessation of risk factors, even if they begin at a spe-
cific moment, only have delayed effects in the short or medium term. A good example is the smoking
cessation. After stopping smoking, there is a rapid (one or two weeks) improvement, at the genetic
level, of the pathologic cell markers involved in the respiratory system [26], and, at the physiological
level, an increase in muscle resistance and a reduction in tissue inflammatory signs [27]. This early
short-term effect is consistent with the model of a very rapid rejuvenation, as in a jumping process. The
return to a completely normal state, with a very significant reduction in the risks linked to smoker’s
pathologies, takes about a year longer [28]. This middle-term normalization concerns the reduction
of risk of numerous diseases and pathologic symptoms as the disappearance of cravings, restlessness,
weight gain, and fatigue [29], a decline of chronic obstructive pulmonary disease, lung emphysema, in-
flammation, oxidative stress [30], and pulmonary cancers [31]. Stopping smoking speeds up recovery
surgical operations [32]. Therefore, the rejuvenation is accelerated.

Despite this, an idealization of the phenomenon consists of marking the beginning of the rehabili-
tation phase with a jump and then, in a more complicated model whose parameters should evolve over
time, taking into account the favorable evolution, particularly the reduction risk factors, on an ongoing
basis. The example of maternity allows us to understand this process better. Hormonal impregnation
[33] provides a rapid tissue rejuvenation well described in the literature. The muscle regeneration ben-
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Figure 6. (a) b 7→ u0(b); (b) k 7→ Ek(u0) for k = 0, . . . , 100 (with y axis log scale); (c) k 7→ χk

for k = 0, . . . , 100; and (d) t 7→ Ek(u(t)) for k = 0, . . . , 100 (with y axis log scale);

efit effect appears immediately from the start of the pregnancy. But, this effect is transient, lasting up
to 2 months after delivery. This is consistent with the hypothesis that pregnancy induces activation of
muscle progenitor cells through the Notch genetic pathway [34, 35]. The short and long-term effects
can be measured by the extension of longevity of the multiparous women (e.g., in a study on more than
20,000 women [36]), even if some works show a short-term aging effect on certain blood-derived cell
lines by shortening their telomere length and accelerating DNA damage [37].

Organ transplantations give an example of immediate rejuvenation. For example, thymus rejuvena-
tion is brought by autologous hematopoietic stem cell transplantation and considerably increases the
life expectancy of patients with autoimmune diseases [38]. Conversely, an infectious disease due to a
virus like HIV drastically reduces the lifespan of affected patients [39].

Consequently, an improvement of the model requires taking into account adapted to each rejuve-
nation phenomenon, the short- and medium-term effects of the founding event causing improvement
or damage of genetic expression or physiological function. The continuous part of the rejuvenation
equation, dependent on time through the model parameters, can only be very specific to the problem
addressed and will be considered in subsequent works dedicated to precise rejuvenation phenomena
for which the data concerning short- and medium-term improvements are available.

This article proposes a new class of models describing the aging process. The model is based on
the notion of biological age, which is a quantity reflecting the aging due to cells failing to repair DNA
damages, illness, injuries, or, more generally speaking, corresponding to the body’s aging. The key
features of the model are the following:

1) a drift term with a constant velocity describing the aging process at the cellular level;
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2) a rejuvenation operator describing the repair, recovery and healing processes during life;
3) a premature aging operator corresponds to the medical care of injuries and illness.

In this work, we consider the simplest version of the model. The model can be extended in several
directions. To conclude the paper, we propose some possible extensions.

7.1. Aging model with birth and death processes

The full model with both rejuvenation and premature aging with birth and death processes is the
following 

∂tu(t, b) + ∂bu(t, b) = −µ(b) u(t, b) + β(t) Γ(b),

−(τ− + τ+)u(t, b)

+τ− g− u (t, g− b)

+τ+ g+ u (t, g+ b)

u(t, 0) = 0,
u(0, b) = u0(b) ∈ L1

+ ((0,∞),R) .

(7.1)

In the above model, the function −µ(b) is the mortality rate for individuals with biological age b. That
is

exp
(
−

∫ b2

b1

µ (b) db
)

is the probability for an individual to survive from the biological b1 to the biological age b2.
The term β(t) is the flow of new born at time t, that is∫ t2

t1
β (σ) dσ

is the number of newborn between t1 and t2.
The map b→ Γ(b) is the density of probability to have a biological age b at birth. That is∫ b2

b1

Γ(b)db

is the probability to obtain a newborn with biological age b between b1 and b2. Moreover,∫ ∞

0
Γ(b)db = 1.

Assumption 7.1. We assume that b 7→ µ(b) and t 7→ β(t) are constant functions. We also assume that

µ > 0 and β > 0.

We assume that the biological age of newborns follows a gamma density of probably. That is,

Γ(b) =
δα bα−1 exp (−δ b)

(α − 1)!
for b > 0,

where α > 1, δ > 0, and the gamma function (α − 1)! corresponds here to a constant of normalization,
and is defined by

(α − 1)! =

∫ ∞

0
bα−1 exp (−b) db.

In Appendix 7.3, we discuss a aging model with birth and death processes.
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7.2. Model with generalized jumps functions

The full model with both rejuvenation and premature aging reads as follows

∂tu(t, b) + ∂bu(t, b) = −(τ− + τ+)u(t, b)

+τ− f ′−(b) u (t, f−(b))

+τ+ f ′+(b) u (t, f+(b))

u(t, 0) = 0,

u(0, b) = u0(b) ∈ L1
+ ((0,∞),R) .

(7.2)

We can extend the above model by setting

f−(b) = (1 − δ−(b)) b ≤ b ≤ (1 + δ+(b)) b = f+(b).

To assure the total mass preservation of the model we assume that

f−(0) = f+(0) = 0

and to preserve the positivity of the solutions we assume that

f ′−(b) ≥ 0 and f ′+(b) ≥ 0,∀b ≥ 0.

For example, we could use
f+(b) = (1 + δ+bm) b, with m ≥ 0,

where δ+(b) = δ+bm could be any positive polynomial in b, that would model the average amplitude of
rejuvenation jumps.

The premature aging jumps f−(b) must remain below b (the biological age after the jump) therefore,
we could use

f−(b) =

(
1 −

δ−
1 + χ bm

)
b, with m ≥ 0 and 0 ≤ χ ≤ δ− < 1.

7.3. Model with both chronological age and biological age

It is unrealistic to get younger than 20 years because puberty and post-pubertal growth are irre-
versible events, nor after 80 years when the stock of undifferentiated stem cells is exhausted. Likewise,
it is unreasonable to exceed the age of more than 120 years, which is the physiological limit of the
human lifespan. Hence the rate of rejuvenation or premature aging should not be constant in the func-
tion of the chronological age. Therefore it would be important for this problem to consider both the
biological and chronological ages.

We could also combine the biological and chronological age. Consider a as the chronological age
(i.e. the time since birth) then we can combine both the chronological and the biological age and we
obtain 

∂tu + ∂au + ∂bu = −µ(a, b)u(t, a, b)

−τ+u(t, a, b) + τ+ (1 + δ+) u (t, a, (1 + δ+) b)

−τ−u(t, a, b) + τ− (1 − δ−) u (t, a, (1 − δ−) b)

u(t, 0, b) = b(t)Γ(b), for b ≥ 0,

u(t, a, 0) = 0, for a ≥ 0,

(7.3)
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with an initial distribution
u(0, a, b) = u0(a, b) ∈ L1

+

(
(0,∞)2,R

)
.

The function u(t, a, b) is the density of population at time t with respect to the chronological age a and
the biological age b. This means that if 0 ≤ a1 ≤ a2 and 0 ≤ b1 ≤ b2 then∫ a2

a1

∫ b2

b1

u(t, a, b) da db

is the number of individuals with chronological age a in between a1 and a2 and the biological b in
between b1 and b2.

This problem can be reformulated as follows

∂tu + ∂au = Au(t, a, b) − µ(a, b)u(t, a, b)

−τ+u(t, a, b) + τ+ (1 + δ+) u (t, a, (1 + δ+) b)

−τ−u(t, a, b) + τ− (1 − δ−) u (t, a, (1 − δ−) b)

u(t, 0, b) = b(t)Γ(b), for b ≥ 0,

(7.4)

We refer to Magal and Ruan [25] for more results about age-structured models combined with an extra
structuring variable.
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Appendix

Aging model with birth and death processes

Abstract Cauchy problem reformulation: The problem (7.1) can be reformulated as an abstract
Cauchy problem 

u′(t) = Au(t) + Bu(t) − µu(t) + βΓ(.), for t ≥ 0,

with

u(0) = u0 ∈ L1
+ ((0,∞) ,R) .

(7.5)

where
Bu = τ−Bg−u + τ+Bg+

u − (τ− + τ+) u.

Theorem 7.2. Let Assumption 5.1 and Assumption 7.1 be satisfied. Then the mild solution (7.5) is
given by

u(t) = TA+B−µI(t)u0 +

∫ t

0
TA+B−µI(t − σ)βΓ(.) dσ,∀t ≥ 0,

where
TA+B−µI(t) = e−µtTA+B(t),∀t ≥ 0.

Moreover
lim
t→∞

u(t) = u ≥ 0,

where

u =

∫ ∞

0
TA+B−µI(σ)βΓ(.) dσ. (7.6)

Moments formulation: We obtain the following result using similar arguments to Theorem 3.6.
By using change of variable, we obtain

Ek(Γ) =

∫ ∞

0

δαbα+k−1 exp (−δb)
(α − 1)!

db = δ−k (α + k − 1)!
(α − 1)!

.
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Theorem 7.3. Let Assumption 5.1 be satisfied. The rejuvenation and premature aging model (5.1) has
a unique non-negative mild solution. We have

d
dt

E0(u(t)) = −µ E0(u(t)) + β,

and the model preserves the total mass (number) of individuals. That is

lim
t→+∞

E0(u(t)) =
β

µ
. (7.7)

Moreover, the higher moment satisfies the following system of ordinary differential equations for each
k ≥ 1,

d
dt

Ek(u(t)) = k Ek−1(u(t)) − (µ + χk) Ek(u(t)) + β δ−k (α + k − 1)!
(α − 1)!

. (7.8)

Proposition 7.4. Let k1 be an integer such that

χk < −µ,∀k > k1.

Then
lim

t→+∞
Ek(u(t)) = +∞,∀k > k1, (7.9)

whenever Ek(u0) < +∞.

Equilibrium solution: An equilibrium solution satisfies some delay equation with both advance and
retarded delay. That is, 

u′(b) = βΓ(b) − (µ + τ− + τ+) u(b)

+τ− g− u (g− b)

+τ+ g+ u (g+ b) ,

u(0) = 0,

(7.10)

and the difficulty of solving such an equation comes from the following

g+ b > b > g− b, ∀b > 0.

It follows that, even the existence of equilibrium solution is not a classical problem to investigate.

Non existence result for exponentially decreasing equilibrium solution of (5.1): Assume that b 7→
u(b) a non-negative continuously differentiable map satisfying system (5.11).

Assumption 7.5. Assume that the map b 7→ u(b) is non-negative, and non null, and continuously differ-
entiable map, and satisfies the system (7.10). Assume in addition that u(b) is exponentially decreasing.
That is, there exist two constants M > 0, and γ > 0, such that

u(b) ≤ Me−γb,∀b ≥ 0. (7.11)
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By using the first equation of (5.11), we deduce that

|u′(b)| ≤ M̃e−γ min(1,g+,g−,δ/2) b,∀b ≥ 0,

for some suitable M̃ > 0.
So, under Assumption 5.8, all the moments of u(b) and u′(b) are well defined. Moreover, by using

the first equation of (5.11), we obtain for each k ≥ 1∫ ∞

0
σku′(σ) dσ =

∫ ∞
0
βΓ(b) db − (µ + τ− + τ+)

∫ ∞
0
σku(σ) dσ

+τ+

∫ ∞
0
σku (t, g+σ) g+ dσ

+τ−
∫ ∞

0
σku (t, g−σ) g− dσ,

and since u(0) = 0, we obtain by integrating by parts

−k
∫ ∞

0
σk−1u(σ) dσ = β δ−k (α + k − 1)!

(α − 1)!
− (µ + τ− + τ+)

∫ ∞
0
σku(σ) dσ

+τ+

∫ ∞
0
σku (t, g+σ) g+ dσ

+τ−
∫ ∞

0
σku (t, g−σ) g− dσ,

and we obtain

0 = β δ−k (α + k − 1)!
(α − 1)!

+ kEk−1(u) − (χk + µ) Ek(u),∀k ≥ 1,∀k ≥ 1, (7.12)

where χk is defined by (5.5).
Under Assumption 7.5, we must have

Ek−1(u) > 0, and Ek(u) > 0,∀k ≥ 0,

and by using (5.6), we deduce that (7.12) can not be satisfied for all k ≥ 1 large enough. Because
− (χk + µ) > 0, for all k ≥ 1 large enough.

Therefore we obtain the following proposition.

Proposition 7.6. The equilibrium u defined by (7.6) is not an exponentially decreasing function. That
is, for each M > 0, and γ > 0,, the function u does not satisfy (7.11).

The above proposition is surprising because the proposition shows that it is sufficient to perturb
an age-structured model with a non-local term −τ−u(t, b) + τ− (1 − δ−) u (t, (1 − δ−) b) to obtain an
equilibrium solution which is not exponential bounded.
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