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Abstract: Immune infiltration plays a pivotal role in the pathogenesis of ischemic stroke. A novel form 
of cell death known as disulfidptosis has emerged in recent studies. However, there is currently a lack 
of research investigating the regulatory mechanism of disulfidptosis-related genes in immune 
infiltration during ischemic stroke. Using machine learning methods, we identified candidate key 
disulfidptosis-related genes (DRGs). Subsequently, we performed an analysis of immune cell 
infiltration to investigate the dysregulation of immune cells in the context of ischemic stroke. We 
assessed their diagnostic value by employing receiver operating characteristic (ROC) curves. To gain 
further insights, we conducted functional enrichment analyses to elucidate the signaling pathways 
associated with these seven DRGs. We identified two distinct subclusters based on the expression 
patterns of these seven DRGs. The unique roles of these subclusters were further evaluated through 
KEGG analysis and immune infiltration studies. Furthermore, we validated the expression profiles of 
these seven DRGs using both single-cell datasets and external datasets. Lastly, molecular docking was 
performed to explore potential drugs for the treatment of ischemic stroke. We identified seven DRGs. 
The seven DRGs are related to immune cells. Additionally, these seven DRGs also demonstrate 
potential diagnostic value in ischemic stroke. Functional enrichment analysis highlighted pathways 
such as platelet aggregation and platelet activation. Two subclusters related to disulfidptosis were 
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defined, and functional enrichment analysis of their differentially expressed genes (DEGs) primarily 
involved pathways like cytokine-cytokine receptor interaction. Single-cell analysis indicated that these 
seven DRGs were primarily distributed among immune cell types. Molecular docking results 
suggested that genistein might be a potential therapeutic drug. This study has opened up new avenues 
for exploring the causes of ischemic stroke and developing potential therapeutic targets. 
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1. Introduction  

Strokes cause long-term disability worldwide, but there are no effective methods to improve 
functional recovery [1]. Stroke is a medical condition caused by lesions in the cerebral arteries, 
resulting in the formation of a thrombus or blood clot that leads to changes in blood components and 
ultimately causes cerebrovascular damage [2]. Multiple studies have reported an increase in stroke 
incidence, with up to 25% of the global population expected to experience this condition during their 
lifetime [3]. Strokes are primarily classified into two types: hemorrhagic stroke and ischemic stroke. 
It is estimated that approximately 87% of strokes are ischemic in nature [4]. The risk factors for stroke 
include atrial fibrillation, hypertension, hyperlipidemia, diabetes, smoking and alcohol consumption [5]. 
At present, treatment options for ischemic strokes are extremely limited. The current treatment plan 
for stroke aims primarily to minimize damage and facilitate recovery. The major treatment strategies 
available today include intravenous thrombolysis and arterial thrombectomy, both of which are often 
accompanied by cerebral ischemia-reperfusion injury during treatment, further exacerbating brain 
damage [6]. Identifying new and effective therapeutic targets is critical for treating ischemic stroke, as 
developing viable treatment options is essential for improving outcomes in clinical practice. 

Recent studies have revealed a new form of cell death, which has been named disulfidptosis. 
Disulfide stress is a rapid form of cell death that occurs when intracellular cysteine accumulates 
excessively, resulting in the formation of disulfide molecules. In cancer cells with high levels of 
SLC7A11 that are deprived of glucose, the excessive accumulation of disulfide molecules causes 
abnormal disulfide bond formation between actin cytoskeleton proteins. This leads to the disruption of 
their organization and ultimately results in the collapse of the actin network, leading to cell death [7]. 
Reducing the formation of disulfide compounds forms the basis for improving ischemic stroke [8]. In 
addition, correcting the imbalance of thiol-disulfide can be beneficial for ischemic stroke [9, 10]. 
Currently, the role of disulfidptosis in ischemic stroke is not clear. Therefore, blocking or reversing 
disulfidptosis may become an important strategy for the future treatment of ischemic stroke. 

Ischemic stroke occurs when blood vessels that supply the brain become blocked, leading to a 
deprivation of oxygen and nutrients in the affected area. This can cause brain damage and cell death [11]. 
An increasing body of evidence indicates that following acute ischemic stroke, immune cells are 
recruited to engage in neuroinflammatory processes and maintain homeostasis in the central nervous 
system [12, 13]. Immune cells from the peripheral system infiltrate into the affected brain tissue during 
ischemic stroke, where they play a crucial role in maintaining homeostasis through neuroinflammatory 
processes [14]. Upon experiencing such injuries, the body’s immune system will be triggered into 
action, summoning immune cells to the affected site. Although the immune response in ischemic stroke 
is essential for clearing dead cells and promoting tissue restoration, it may also induce inflammation 
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that can worsen the damage done to the brain tissue [15]. Therefore, it is crucial to investigate the 
relationship between the immune system and ischemic stroke further in order to develop effective 
prevention or treatment strategies for this disabling condition. 

We explored the role of disulfidptosis-related genes (DRGs) and immune cells in ischemic stroke. 
We employed the least absolute shrinkage and selection operator (LASSO) method to identify key 
DRGs and calculated the area under the curve (AUC) using receiver operating characteristic (ROC) 
curves. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed 
that DRGs were primarily enriched in the regulation of actin cytoskeleton, adherens junction, tight 
junction and motor proteins signaling pathways. Using consensus clustering, we classified ischemic 
stroke patients into two clusters. Further analysis was conducted on the immune cell variations between 
these clusters. We considered the relationship between DRGs and immune infiltration. Through single-
cell analysis, it was observed that in the ischemic stroke group, DRGs were primarily expressed in 
immune cells compared to the control group. Validation of DRGs expression using external datasets 
confirmed the predictive value of the DRGs prediction model. Finally, molecular docking was 
performed between predicted drugs and DRGs. This study is expected to enhance our understanding of 
ischemic stroke and contribute to the development of innovative approaches for its prevention or treatment. 

2. Materials and methods 

2.1. Data acquisition 

We collected ten DRGs from the Pubmed database. Liu et al. had confirmed the existence of ten 
DRGs [7]. Transcriptome and single-cell datasets on ischemic stroke were obtained from the Gene 
Expression Omnibus (GEO) database. GSE58294 comprises 69 samples of ischemic stroke and 23 
control samples [16]. The GSE16561 dataset comprises 39 stroke samples and 24 control samples [17]. 
The GSE122709 dataset consists of 10 stroke samples and 5 control samples [18]. GSE174574 
comprises three sham operation samples and three ischemic stroke samples [19].  

2.2. LASSO and ROC  

To identify key DRGs in ischemic stroke, we performed screening using the LASSO method with 
the R package “glmnet” [20]. The diagnostic efficacy of DRGs in ischemic stroke was assessed by 
utilizing the “pROC” package to determine AUC [21]. The DRGs were then visualized using boxplots 
created with the “ggplot2” package. 

2.3. Immune infiltration analysis 

We investigated the relationship between DRGs and 22 immune cells using the CIBERSORT 
algorithm. We also constructed a correlation heatmap of DRGs and immune cells. 

2.4. Functional analysis and protein-protein interactions (PPI) 

In order to gain a deeper understanding of the mechanisms driving ischemic stroke, we conducted 
an extensive investigation, focusing on seven DRGs. Employing a systematic analytical approach, 
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Gene Ontology (GO) and KEGG analyses were conducted. Through GO analysis, gene functions were 
delved into from three distinct angles: molecular function, biological process and cellular component. 
Utilization of the KEGG database enabled a methodical exploration of genetic information, enriching 
the understanding of gene functions, biological processes and pathways. These meticulous analyses 
were carried out using R packages, including “ClusterProfile” and “org.Hs.eg.Db”. 

2.5. Consensus clustering analysis  

We performed consensus clustering using the “ConsensusClusterPlus” package [22] to stratify 
ischemic stroke patients into two clusters. 

2.6. Processing of single-cell RNA-sequencing (scRNA-seq) measurement data  

We obtained scRNA-seq data of ischemic stroke from the GEO database and analyzed it with the 
“Seurat” [23] and “SingleR” packages. The “Seurat” package was employed to apply the cross-dataset 
normalization (CCA) method for integrating stroke and control samples. Subsequently, cell profiles 
were filtered based on criteria such as nCountRNA < 5000 and percent.mt < 15. Marker genes were 
then determined for each cluster based on the obtained clustering results, and cell annotation was 
performed using the “SingleR” package and PanglaoDB database. 

2.7. Predicting potential drug candidates  

The DRGs were uploaded to the Drug Signatures Database (DSigDB) [24] for further candidate 
drug prediction. Access to DSigDB is acquired through the Enrichr platform. Candidate drugs are 
sorted in ascending order based on their adjusted P-values, with those having an adjusted P-value less 
than 0.01 considered statistically significant. 

2.8. Molecular Docking 

The crystal structures of proteins associated with the DRGs were obtained from the Research 
Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) [25]. Additionally, the 
three-dimensional structure of drugs was sourced from PubChem [26]. We performed molecular 
docking of predicted drugs and DRGs using the CB-Dock2 tool [27]. 

2.9. Statistical analysis 

Data processing was carried out with R software (version 4.2.2), and significant differences 
between two independent groups were identified using the Wilcoxon rank-sum test. A two-sided P-
value threshold of < 0.05 was considered statistically significant. 

3. Results 

3.1. DRGs in ischemic stroke 
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The flowchart illustrates the sequential steps performed in our study with clear and concise visual 
representations (Figure 1). Based on the GSE58294 dataset, which includes 23 control samples and 69 
ischemic stroke samples, we conducted an analysis of the expression of 10 DRGs. In the ischemic 
stroke group, when compared to the control group, the expression of IQGAP1, TLN1, CAPZB, INF2 
and SLC7A11 was upregulated and statistically significant (Figure 2A). LASSO can effectively select 
the most relevant predictor variables, thereby simplifying the model and improving its interpretability. 
LASSO regression with tenfold cross-validation was further used to screen for DRGs significantly 
associated with ischemic stroke patients. The optimal lambda value was obtained from the minimum 
partial likelihood deviation. Subsequently, the best model with seven DRGs, including ACTB, IQGAP1, 
FLNA, PDLIM1, MYH10, INF2 and SLC7A11, was obtained (Figure 2B-C). Then, a risk score was 
constructed based on the coefficients and categorical values of expression levels as follows: riskscore 
= (-0.08957191 * ACTB) + (0.50853064 * IQGAP1) + (-0.49537563 * FLNA) + (0.07030566 * 
PDLIM1) + (-0.25041386 * MYH10) + (0.10204431 * INF2) + (0.05109314 * SLC7A11). In the 
discovery GSE58294 cohort, the riskscore for each ischemic stroke patient was calculated, and the 
patients were divided into a high-risk group and a low-risk group based on the median risk score 
(Figure 2D). We generated ROC curves for the seven identified DRGs, demonstrating their strong 
diagnostic performance. The AUC values for IQGAP1, FLNA and SLC7A11 were 0.901, 0.849 and 
0.838, respectively (Figure 2E). We’ve generated an correlation heatmap to visually depict the 
associations between DRGs and immune cells. In this context, PDLIM1 is closely linked to CD8+ T 
cells, ACTB is associated with CD8+ T cells, neutrophils, M2 macrophages and eosinophils, MYH10 
primarily correlates with naive B cells and IQGAP1 encompasses a wide range of associations, 
including CD8+ T cells, naive B cells, naive CD4+ T cells, M2 macrophages, eosinophils, neutrophils 
and resting mast cells. SLC7A11 specifically associates with CD8+ T cells, INF2 is related to naive B 
cells and FLNA is correlated with neutrophils, CD8+ T cells and naive CD4+ T cells. This heatmap 
provides a clear representation of the relationships between these genes and various immune cell types 
(Figure 2F).  

3.2. Functional analyses and PPI network of seven DRGs 

 We performed GO, KEGG and PPI network construction for seven DRGs. The findings from 
the GO enrichment analysis revealed that these DRGs were primarily associated with processes such 
as fibroblast migration, platelet aggregation, homotypic cell-cell adhesion, platelet activation and 
regulation of protein localization to membrane (Figure 3A). Based on the gene ratios observed in the 
KEGG enrichment results, we have identified the top five pathways. These pathways consist of the 
regulation of actin cytoskeleton, adherens junction, tight junction, motor proteins and pathogenic 
Escherichia coli infection (Figure 3B). The PPI network analysis underscores potential interactions 
among the seven DRGs. Yellow lines illustrate "textmining" gene interactions, whereas black lines 
indicate "co-expression". Interactions represented by purple lines are based on experimental data, 
while those depicted by blue lines arise from curated databases (Figure 3C). 

3.3. Consensus clustering based on seven DRGs 

Consensus clustering divides the disease samples of a dataset into several subtypes, thereby 
discovering new disease subtypes or conducting comparative analysis on different subtypes. We 
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utilized a consensus clustering approach to partition the samples into two distinct clusters based on the 
differential expression patterns of seven DRGs. There are 34 patient samples in cluster 1, and 35 patient 
samples in cluster 2 (Figure 4A-C). Between the two clusters, there are differential expressions of 
FLNA, MYH10 and SLC7A11. Specifically, the expression levels of MYH10 and SLC7A11 are higher 
in cluster 2 compared to cluster 1 (Figure 4D). In order to examine the disparities in immune cell 
infiltration between the two clusters, we performed an analysis on immune infiltration. Our results 
unveiled variations in the presence of naive B cells, resting mast cells and monocytes across the two 
clusters (Figure 4E). To gain insights into the functional enrichment of DEGs between the two clusters 
in various pathways, we conducted the KEGG analysis. The DEGs between the two clusters can be 
found in the Supplementary Materials. The findings demonstrated that these DEGs were 
predominantly enriched in key pathways such as taste transduction, microRNAs in cancer, intestinal 
immune network for IgA production and cytokine-cytokine receptor interaction (Figure 4F). 

 

Figure 1. The flow chart for this study. 
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Figure 2. Identification of DRGs in ischemic stroke. (A) Boxplots of ten DRGs between 
ischemic stroke and control group. (B–C) Constructed disulfidptosis-signatures using 
LASSO regression. (D) The expression of disulfidptosis-relative riskscores in high and 
low group of ischemic stroke patients. (E) ROC curves of seven DRGs. (F) The correlation 
heatmap of seven DRGs and immune cells (*, P < 0.05; **, P < 0. 01; ***, P < 0.001). 
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Figure 3. Functional analysis and PPI network of seven DRGs. (A) GO enrichment analysis 
of seven DRGs. (B) KEGG analysis of seven DRGs. (C) PPI network of seven DRGs. 



18947 

Mathematical Biosciences and Engineering                                 Volume 20, Issue 10, 18939–18959 . 

 

Figure 4. Consensus clustering and immune cell infiltration analysis. (A) Consensus 
clustering plot with k = 2. (B) Cumulative distribution function curves. (C) Delta area. 
(D) Display the differential expression of DRGs between two clusters. (E) Illustrate the 
differential expression of immune cells between two clusters. (F) KEGG enrichment 
analysis of DEGs between the two clusters. ns, not significant; * P < 0.05; ** P < 0.01; 
*** P < 0.001. 
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3.4. Validation of seven DRGs using single-cell dataset 

We validated the expression of seven DRGs using the single-cell dataset GSE174574 and further 
investigated the primary cell types where these seven DRGs are predominantly distributed. The stroke 
samples consisted of 11,772 cells, while the control samples consisted of 9,980 cells. Quality control 
was performed on the single-cell dataset, filtering out dead cells and doublets. Subsequently, we 
identified 2,000 highly variable genes and merged them using the CCA method (Figure 5A). These 
cells were later divided into 30 clusters, primarily encompassing 12 cell types: Microglia, Endothelial 
cells, Epithelial cells, Astrocytes, Pericytes, Monocytes, Macrophages, Oligodendrocytes, 
Granulocytes, Fibroblasts, NK cells and B cells (Figure 5B). The heatmap displays the top one marker 
gene for each cluster (Figure 5C).  

Compared to the control samples, seven DRGs showed predominant expression in the following 
cell types of stroke samples. Actb exhibited expression in various cell types, while Iqgap1 was 
predominantly expressed in NK cells, monocytes and microglia. Flna showed primary expression in 
NK cells and microglia. Pdlim1 displayed primary expression in fibroblasts cells. Myh10 demonstrated 
low expression in these cell types. Inf2 was mainly expressed in granulocytes and monocytes, while 
Slc7a11 showed predominant expression in granulocytes, monocytes and microglia (Figure 5D). The 
specific distribution of these seven DRGs across twelve cell types can be seen in control and stroke 
samples (Figure 5E-F, Figure 6). 

3.5. Validation with external dataset 

To further understand the expression profiles of seven DRGs in stroke samples and control samples, 
we validated our findings using external datasets, namely GSE16561 and GSE122709. In order to 
explore the diagnostic efficacy of these seven DRGs, we conducted ROC curves analysis, where DRGs 
with an AUC value greater than 0.7 were considered to have higher diagnostic value. In the GSE16561 
dataset, the AUC values for ACTB and IQGAP1 exceeded 0.7. Similarly, in the GSE122709 dataset, 
the AUC values for ACTB, IQGAP1, FLNA, PDLIM1, MYH10, INF2 and SLC7A11 surpassed the 0.7 
threshold (Figure 7A–B). 

Within the GSE16561 dataset, the expression levels of ACTB, IQGAP1 and FLNA were found to 
be elevated in stroke samples as compared to control samples. In the GSE122709 dataset, the 
expression levels of ACTB, FLNA, PDLIM1 and INF2 were observed to be higher in the stroke samples 
(Figure 7C–D). 
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Figure 5. Integration of one stroke sample and one control sample using the CCA method. 
(A) Integrating UMAP of stroke and control samples using CCA method. (B) Identified 12 
cell types. UMAP, Uniform Manifold Approximation and Projection. (C) Heatmap 
displaying the top one marker for each cluster. (D) The dot plot represents the expression 
of seven DRGs in 12 cell types for stroke and control samples. (E-F) UMAP displays the 
expression levels of Actb and Iqgap1. 
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Figure 6. UMAP displays the expression levels of DRGs. (A) Flna. (B) Pdlim1. (C) Myh10. 
(D) Inf2. (E) Slc7a11. 
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Figure 7. Validation of DRGs expression and ROC curves analysis using external datasets. 
(A) ROC curves were employed to analyze the expression of DRGs in the GSE16561 
dataset. (B) ROC curves were employed to analyze the expression of DRGs in the 
GSE122709 dataset. (C) Expression pattern of DRGs within the GSE16561 dataset. (D) 
Expression pattern of DRGs within the GSE122709 dataset. ns, not significant; * P < 0.05; 
** P < 0.01; *** P < 0.001; **** P < 0.0001. 

3.6. Molecular docking of genistein with DRGs 

Using the DSigDB database within the Enrichr platform, we employed a drug prediction approach 
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to identify potential compounds for the seven DRGs. Through adjusted P-values, we extracted the top 
15 candidates. Importantly, genistein has been identified as a drug molecule that interacts with the 
genes ACTB, FLNA and MYH10. Genistein has been reported to emphasize its potential significance 
in preventing and alleviating strokes [28]. Thus, we performed molecular docking experiments to 
assess the binding of genistein with these three DRGs. The results demonstrated binding energies of -
8.9 kJ/mol, -9.1 kJ/mol and -9.0 kJ/mol for genistein with ACTB, FLNA and MYH10, respectively 
(Figure 8). These findings strongly indicate that genistein exhibits a robust binding affinity with ACTB, 
FLNA and MYH10. 

 

Figure 8. Molecular docking analysis was performed for three proteins. (A) ACTB, (B) 
FLNA, (C) MYH10.  
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4. Discussion 

Stroke is a frequent and severe manifestation of cerebrovascular disease that can result in 
significant disability or death [29]. Early diagnosis and effective treatment of ischemic strokes are 
crucial in improving clinical outcomes. Hence, our study establishes a connection between 
disulfidptosis and the pathogenesis of ischemic stroke. Through bioinformatics analysis, we have 
identified potential DRGs and explored prospective therapeutic targets, thus fostering the development 
of more efficacious treatment strategies and novel pharmaceuticals aimed at potential therapeutic 
targets for ischemic stroke. 

In our study, according to GO analysis, it was found that seven DRGs are associated with platelet 
aggregation and platelet activation. The aggregation of platelets has been established as a prognostic 
indicator for unfavorable clinical outcomes in individuals suffering from acute ischemic stroke [30]. 
Platelet activation is linked to a neutrophil-dominated inflammatory response during a stroke [31]. 
After dividing ischemic stroke patients into two clusters, a KEGG analysis was performed on the DEGs 
from these clusters. The results demonstrated significant enrichment, particularly in the cytokine-
cytokine receptor interaction pathway. Studies have shown that cytokine-cytokine receptor interaction 
is an important pathway following a stroke [32]. 

We employed machine learning to select seven DRGs, with the majority of them demonstrating 
high diagnostic capability for ischemic stroke patients. ACTB is a cytoskeleton protein involved in 
maintaining cellular structure and activity [33-35]. ACTB can induce vascular hypertrophy and 
hypertension [36]. The actin cytoskeleton plays a crucial role in neuronal development and activity [37]. 
Prior research has demonstrated the significance of downregulating ACTB expression in the prevention 
and treatment of ischemic stroke [38]. IQGAP1 is a widely expressed protein in cells that plays an 
important role in regulating cellular activity [39]. Studies have shown that IQGAP1 can regulate 
multiple signaling pathways, such as the p38 MAPK and JNK pathways, both of which are involved 
in the development of ischemic stroke [40-43]. FLNA can reduce macrophage activity and 
atherosclerosis [44]. However, the specific mechanism of FLNA in ischemic stroke needs further research. 

PDLIM1 can promote neurite growth, but its role in ischemic stroke is not yet clear [45]. Although 
there is no specific research to support this, it is suggested that MYH10 may contribute to the recovery 
of neuronal damage following stroke by promoting neuronal homeostasis [46].The activation of INF2 
is a key mediator of the neuronal pro-survival cytoskeletal response [47]. Based on the study results, 
the signaling pathway associated with SLC7A11 appears to be a promising target for therapeutic 
intervention in the treatment of ischemic stroke [48]. SLC7A11 can inhibit ferroptosis and reduce 
neuronal damage [49]. Exploring the mechanism of DRGs in ischemic stroke can improve our understanding 
of the molecular basis of this condition and identify novel therapeutic targets for its management. 

In the analysis of immune cell infiltration, seven DRGs are closely linked to various immune cell 
types. Within the two clusters observed in ischemic stroke patients, variations in immune cell levels 
were also detected. At the single-cell level, these seven DRGs are predominantly present in different 
immune cell types. The inflammatory response in the ischemic hemisphere of the brain is mediated by 
both microglia and peripheral immune cells, including mononuclear/macrophage cells, neutrophils and 
lymphocytes. Microglia are a key regulator of homeostasis in the central nervous system and play a 
dual role in mediating both neuronal damage and survival [50, 51]. Neutrophils, specifically circulating 
granulocytes, are the first immune cells to infiltrate stroke-affected tissues [52]. Research indicates 
that the neutrophil-to-lymphocyte ratio may be a useful prognostic marker for ischemic stroke [53]. 
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Following the stroke, macrophages can have anti-inflammatory effects and produce growth factors that 
facilitate functional recovery [54, 55]. Studies have shown that monocytes can promote functional 
recovery after ischemic stroke [56]. In the pathophysiology of stroke, T cells play a crucial role. 
Beyond their detrimental effects in the acute phase following a stroke, T cells also have a significant 
role in regulating inflammation and promoting post-stroke recovery [57-59]. Research suggests that 
eosinophil count may have a significant impact on the prognosis of stroke patients [60]. Previous 
research has found that NK cells accelerate the progression of brain infarction in the acute phase of 
ischemic stroke [61]. Oligodendrocytes have the capacity to stimulate peripheral T cells, potentially 
paving the way for functional recovery following an ischemic stroke [62]. This further underscores the 
significance of immune cells in the progression of ischemic strokes. 

By employing molecular docking techniques, we have identified that genistein demonstrates robust 
binding affinity towards ACTB, FLNA and MYH10 proteins. Genistein is a natural isoflavone that can 
reduce oxidative stress and inflammation damage to the central nervous system [63]. Homocysteine 
has been established as a risk factor for strokes, while Genistein has shown to mitigate the effects 
induced by homocysteine [64, 65]. Increased homocysteine levels during the acute phase of ischemic 
strokes can serve as a prognostic marker for mortality, particularly in patients with the large-vessel 
atherosclerosis subtype of stroke [66]. Genistein holds promise as a potential therapeutic intervention 
for the prevention and treatment of stroke patients. 

Currently, our research primarily centers around bioinformatics analysis, with plans to enhance the 
precision of our analyses through experimental means. Our goal is to explore the association between 
immune infiltration, DRGs and ischemic stroke, aiming to unveil the underlying pathophysiological 
mechanisms and advance disease management. Utilizing transgenic techniques, we will evaluate 
ischemic damage and DRGs expression in mouse brain tissue. Through methods like immunocell 
labeling or flow cytometry, we will validate the relationship between DRGs and immune cells. Clinical 
samples will corroborate the association between DRGs and clinical traits. Single-cell transcriptomics 
will be employed to verify changes in DRGs expression. In vitro experiments will utilize techniques 
to assess the interaction between genistein and DRGs, evaluating their affinity and kinetic properties. 

5. Conclusions 

Through bulk transcription and single-cell transcription technologies, we revealed the association 
between DRGs and infiltrated immune cells. Selecting the characteristics of disulfidptosis based on 
seven DRGs as the best machine learning model, this model can accurately assess the diagnosis of 
ischemic stroke patients. Ischemic stroke patients with different subgroups of disulfidptosis exhibit 
varying immune cell expressions. At the single-cell level, compared to the control group, the seven 
DRGs are primarily expressed in immune cell types from ischemic stroke samples. Molecular docking 
results demonstrate that genistein exhibits a strong binding affinity with ACTB, FLNA and MYH10. 
Our research findings have revealed the role of disulfidptosis in the progression of ischemic stroke and 
provided new insights into potential pathogenic processes and therapeutic strategies for ischemic strokes. 
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