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Abstract: In some regions of the Americas, domestic dogs are the host for the tick vector Rhipi-
cephalus sanguineus, and spread the tick-borne pathogen Rickettsia rickettsii, which causes Rocky
Mountain Spotted Fever (RMSF) in humans. Interventions are carried out against the vector via dog
collars and acaricidal wall treatments. This paper investigates the optimal control of acaricidal wall
treatments, using a prior model for populations and disease transmission developed for this particular
vector , host, and pathogen. It is modified with a death term during questing stages reflecting the cost of
control and level of coverage. In the presence of the control, the percentage of dogs and ticks infected
with Ri. rickettsii decreases in a short period and remains suppressed for a longer period, including
after treatment is discontinued. Risk of RMSF infection declines by 90% during this time. In the
absence of re-application, infected tick and dog populations rebound, indicating the eventual need for
repeated treatment.

Keywords: Rocky Mountain Spotted Fever; Rhipicephalus sanguineus; Rickettsia rickettsii;
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1. Introduction

Several species of ticks specialize as parasites of domestic dogs, including both temperate and
tropical Rhipicephalus species [1]. In the U.S., Rhipicephalus sanguineus carries multiple pathogens of
veterinary importance as well as Rickettsia rickettsii, the species that causes Rocky Mountain Spotted
fever (RMSF) in humans [2–6].

Rocky Mountain Spotted fever is caused by one of several Rickettsia species which, together, com-
prise multiple pathogens, have worldwide distribution, and are carried by several vector species [7–9].
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The resulting diseases range from mild to, in the case of RMSF, fatal [10, 11].
Rhipicephalus sanguineus maturation times and death rates are dependent on temperature and hu-

midity [12,13]. Thus it is not surprising that climate has been offered as an explanation of the expansion
of ticks and tick-borne disease northwards [14, 15]. Both temperate and tropical lineages of Rh. san-
guineus have been identified in the U.S. [16–19]. Additionally, the incidence of RMSF has increased
in the the U.S. [20–24].

In general, vector borne pathogens cause a large burden of disease and mortality worldwide, and
are principally controlled by vector suppression, either alone or as part of a holistic approach that may
include wall treatments, dog collars or other interventions [25–27]. As vector control carries a cost
as well as benefits, it is possible to approach the questions of how much and when to apply interven-
tions via the use of optimal control methods [28, 29]. This approach requires a system of differential
equations describing the life cycle of Rh. sanguineus and disease transmission of Ri. rickettsii. Such
a model was developed for populations of ticks and dogs in a community in Sonora, Mexico, and is
used as the basis for the control problem solved for that model [30, 31]. The population/transmission
model takes into account the multiple stages in tick development, including temperature and humidity
dependence [12,32]. It incorporates insecticidal wall treatment and the resulting death rate for questing
ticks.

In the Sonora intervention, a small number of houses were treated with insecticidal wall treatments
[31]. The model created for this intervention indicated that it was likely that sufficient wall coverage
would remove the need for the primary intervention in that situation, which was treated dog collars [30].
Wall treatments in general have a short half-life, requiring re-application. Without re-application it is
possible to compare limitations of treatment using models, as was done in the case of malaria. In this
study we omit decay of the treatment and instead use an optimal control approach to ask how long and
at what level of effectiveness the treatment must remain in place to suppress the vector population.

2. Materials & methods

The numerical approach includes a system of ordinary differential equations describing the life cycle
of Rh. sanguineus, dog population growth and transmission of Ri. rickettsii between these, shown
in equations (2.1-refhumidity). The control problem is framed by a system of ordinary differential
equations for the adjoint variables, in equations (2.44-2.69). Results of numerical simulations are
shown in Figures 2-4.

2.1. Model details

The process based model for Rh. sanguineus life cycle and disease transmission, on which optimal
control is based, is taken from Álvarez-Hernandez et al, parameterized to reflect local conditions in
a town in Sonora, Mexico [30]. The default death rate due to treatment is set at 0.7 to reflect 70%
coverage of walls. That model includes temperature dependent maturation rates for non-questing stages
as well as a temperature and humidity dependent death rate for questing nymphs. A condensed version
of the compartment model is illustrated in Figure 1. Like other hard-bodied ticks, Rh. sanguineus
passes through maturation stages (larva, nymph, adult). These stages conclude with relatively short
questing (searching for a host) and feeding intervals that provide all the needed food and water for the
tick to complete its lifecycle, after which it ovipositions (if female) and dies [32]. During the relatively

Mathematical Biosciences and Engineering Volume 20, Issue 10, 18916–18938.



18918

long intervals between feeding on a host and the next questing event, these ticks sequester in cracks in
walls, floors, and other peri-domestic areas, making them difficult to observe. Parameters are therefore
adjusted to match data for questing and feeding ticks.

During the feeding stages disease transmission can take place from an infected tick to an uninfected
dog, or from an infected dog to an uninfected tick. The disease transmission model is based on the
Ross-Macdonald model for mosquito borne disease, with the additional feature that transmission may
occur during any of the three feeding stages of the vector. There is evidence that vertical transmission
may also occur, as it does in closely related diseases [33–35]. Little, however, is known about the rates
involved or whether it is indeed a characteristic of this particular vector/disease pair, so this aspect of
transmission is omitted from the model.

Eggs                Young larvae                 Questing larvae 

Feeding larvae (on infected or uninfected hosts)

Young nymphs (infected or uninfected)                    Questing nymphs (infected or uninfected)  

Feeding nymphs (infected or uninfected ticks on infected or uninfected hosts)

Young adults (infected or uninfected)               Questing adults (infected or uninfected)

Feeding adults(infected or uninfected ticks on infected or uninfected hosts)

Engorged adults (all)     

Condensed compartment diagram for Rh. sanguineus life cycle and Ri. rickettsii disease dynamics with dog host.

Uninfected
dogs

Infected
dogs

Tick

Host

Figure 1. Diagram of life cycle and infection status of R. sanguineus and dog hosts. Cross
transmission occurs between dogs and feeding nymphs and adults. Transmission arrows are
omitted for clarity.

2.1.1. Differential equations for Population Dynamics & Disease Transmission

Eggs, E
dE
dt

= bA5 − me(metemp)E − deE, (2.1)

Young, hardening larvae, L1

dL1

dt
= me(metemp)E − dULL1 − m1L1, (2.2)

Questing larvae, L2
dL2

dt
= m1L1 − dULL2 − m2L2 − wdWT L2, (2.3)
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Larvae feeding on uninfected host, LU

dLU

dt
= m2L2FdQd − d3LU − m3LU ; (2.4)

Larvae feeding on infected host, LI

dLI

dt
= m2L2F f Q f − d3dLI − m3 f dLI , (2.5)

Uninfected engorged maturing larvae/young nymphs, NU1

dNU1

dt
= m3dLU + (1 − pL)(m3 f LI) − dLNU1 − mL(m3temp)NU1, (2.6)

Infected engorged maturing larvae/young nymphs, NI1

dNI1

dt
= pL(m3 f LI) − dLNI1 − mL(m3temp)NI1, (2.7)

Questing uninfected nymphs, NU2

dNU2

dt
= mL(m3temp)NU1 − dUN NU2 − mn2NU2 − wdWT NU2, (2.8)

Questing infected nymphs, NI2

dNI2

dt
= mL(m3temp)NI1 − dUN NI2 − mn2NI2 − wdWT NI2, (2.9)

Uninfected nymphs feeding on uninfected hosts, FNUU

dFNUU

dt
= mn2NU2GdQd − d f nFNUU − m f nFNUU , (2.10)

Uninfected nymphs feeding on infected hosts, FNUI

dFNUI

dt
= mn2NU2G f Q f − d f nFNUI − m f nFNUI , (2.11)

Infected nymphs feeding on uninfected hosts, FNIU

dFNIU

dt
= mn2NI2GdQd − d f nFNIU − m f nFNIU , (2.12)

Infected nymphs feeding on Infected hosts, FNII

dFNII

dt
= mn2NI2G f Q f − d f nFNII − m f nFNII , (2.13)

Uninfected engorged maturing nymphs/young adults, AU1

dAU1

dt
= m f n(FNUU) + m f n(1 − pN) ∗ (FNUI) − fNDAU1 − (m f ntemp)AU1, (2.14)
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Infected engorged maturing nymphs/young adults, AI1

dAI1

dt
= m f n(FNII) + m f nFNII + m f n(pN)(FNUI) − fNDAI1 − (m f ntemp)AI1, (2.15)

Questing uninfected adult, AU2

dAU2

dt
= (m f ntemp)AU1 − dUAAU2 − mA2AU2 − wdWT AU2, (2.16)

Questing infected adult, AI2

dAI2

dt
= (m f ntemp)AI1 − dUAAI2 − mA2AI2 − wdWT AI2, (2.17)

Uninfected adults feeding on uninfected hosts, FAUU

dFAUU

dt
= mA2AU2Hd ∗ Qd − dA3FAUU − mA3FAU, (2.18)

Uninfected adults feeding on infected hosts, FAUI

dFAUI

dt
= mA2AU2H f Q f − dA3FAUI − mA3FAUI , (2.19)

Infected adults feeding on uninfected hosts, FAIU

dFAIU

dt
= mA2AI2HdQd − dA3FAIU − mA3FAIU , (2.20)

Infected adults feeding on infected hosts, FAII

dFAII

dt
= mA2AI2H f Q f − dA3FAII − mA3FAII , (2.21)

Engorged adults, A4

dA4

dt
= mA3 ∗ (FAUU + FAUI + FAIU + FAII) − (m f ntemp)A4, (2.22)

Gestating adults, A5
dA5

dt
= (m f ntemp)A4 − dA5 ∗ A5, (2.23)

Uninfected hosts (dogs), U

dU
dt

= bH(U + I)(1 − (U + I)/KH) − dHU − JH, (2.24)

Infected hosts (dogs), I
dI
dt

= JH − dHI I, (2.25)
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2.1.2. Auxiliary equations

All nymphs and adults feeding on uninfected hosts, TU

TU = FNUU + FNIU + FAUU + FAIU , (2.26)

All nymphs and adults feeding on infected hosts

TI = FNUI + FNII + FAUI + FAII (2.27)

Percent available space per uninfected host weighted by probability (qL) of larvae finding any host,
Fd

Fd = max(qL(CU − TU)/(CU + ε), 0), (2.28)

Percent available space per infected host weighted by probability (qL) of larvae finding any host, F f

F f = max(qL(CI − TI)/(CI + ε), 0), (2.29)

Percent available space per uninfected host weighted by probability (qN) of nymph finding any host,
Gd

Gd = max(qN(CU − TU)/(CU + ε), 0), (2.30)

Percent available space per infected host weighted by probability (qN) of nymph finding any host,
G f

G f = max(qN(CI − TI)/(CI + ε), 0), (2.31)

Percent available space per uninfected host weighted by probability (qA) of adult finding any host,
Hd

Hd = max(qA(CU − TU)/(CU + ε), 0), (2.32)

Percent available space per infected host weighted by probability (qA) of adult finding any host, H f

H f = max(qA(CI − TI)/(CI + ε), 0), (2.33)

Total number of hosts of all types, S
S = U + I, (2.34)

Fraction of hosts that are uninfected, Qd

Qd = U/(S + P3d), (2.35)

Fraction of hosts that are infected, Q f

Q f = I/(S + P3 f ), (2.36)

Transmission term for host infection, J

J = pUI(FNIU + FAIU)U, (2.37)

Temperature approximation for study area, T

T = 24.84 + −8.501 ∗ cos(t ∗ 0.01721) + −1.668 ∗ sin(t ∗ 0.01721) + (2.38)
−0.08626 ∗ cos(2 ∗ t ∗ 0.01721) + 1.192 ∗ sin(2 ∗ t ∗ 0.01677), (2.39)

Percent humidity approximation for study area, H

H = 62.93 + 9.866 ∗ cos(t ∗ 0.01721) + −10.86 ∗ sin(t ∗ 0.01721) + (2.40)
3.166 ∗ cos(2 ∗ t ∗ 0.01721) + 0.6116 ∗ sin(2 ∗ t ∗ 0.01721), (2.41)
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2.1.3. Properties of the Population Dynamics & Disease Transmission Model

In this section we will obtain the existence, uniqueness, nonnegativity, and boundedness of solutions
to our model in a single theorem.

Theorem 2.1. For nonnegative initial conditions, the model (2.1-2.25) has a unique solution which
exists for all time and is nonnegative in each component.

Proof: Local existence and uniqueness is standard via arguments in [36]. A supersolution argument
establishes that the solutions are bounded on their interval of existence [37]. A subsolution argument
proves that the solutions are bounded below by zero.

2.2. Optimal control

We wish to minimize the tick population during the questing life stages, L2,NU2,NI2, AU2 and
AI2, while also minimizing the death rate caused by the wall treatment intervention, represented by the
coefficient w in equations (2.3, 2.8, 2.9, 2.16,2.17).

J(w) = min
w(t)

∫ T

0

(
L2

2(t) + NU2
2(t) + NI2

2(t) + AU2
2(t) + AI2

2(t) + Kw2(t)
)

dt (2.42)

over the set of admissible controls

V = {w measurable | 0 ≤ w(t) ≤ 1,∀t ∈ [0,T ]} . (2.43)

We use quadratic terms in the cost function, J(w), as is typical for epidemiology control problems,
because linear control does not offer closed-form solutions for the optimal control [38–41]. Often a
linear-quadratic cost function is used as well. These cost functions represent the nonlinear increase in
the effect of each quantity in J(w). The cost of increased infective ticks is probably closer to quadratic
than linear because at low levels ticks would prefer the dog host, while at high levels they might prefer
humans as space on dogs becomes saturated. Similarly, the effects of the wall treatment probably
represent a nonlinear function to the system because after the more willing participants have treated
their walls it becomes increasingly expensive to convince the holdouts.

The quadratic term is multiplied by a coefficient, K, which allows for the relative importance of
the term to be varied. The final time T determines the size of the interval of existence for the optimal
control.

2.3. Existence of optimal control

Theorem 2.2. Given the objective functional (2.42), subject to the system given by Eqs. (2.1-2.25)
with nonnegative initial conditions, and the admissible control set (2.43) then there exists an optimal
control w∗(t) such that

min
w∈V

J(w) = J(w∗).

Proof: In order to apply the theory of Fleming and Rishel, [42], we must show that the following
conditions are met:

1. The class of all initial conditions with a control fnction w(t) in the admissible control set along
with each state equation being satisfied is not empty.
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2. The admissible control set V is closed and convex.
3. Each right hand side of the state system is continuous, is bounded above by a sum of the bounded

control and the state, and can be written as a linear function of the control function w(t) with
coefficients depending on time and the state.

4. The integrand of the objective functional (2.42) is convex on V and is bounded below.

Since all conditions are satisfied in this case, it follows that there exists an optimal control w∗(t)
such that

min
w∈V

J(w) = J(w∗).

2.3.1. Characterization of Optimal Control

Theorem 2.3. Given the optimal controls w∗ and solutions of the corresponding state system, there
exist adjoint variables λ1, λ2, . . . , λ25 satisfying the following:

dλ1

dt
= λ1(me(metemp) + de) − λ2me(metemp) (2.44)

dλ2

dt
= λ2(dw + m1) − λ3m1 (2.45)

dλ3

dt
= −1 + λ3(dw + m2 + wdWT ) − λ4m2FdQd − λ5m2F f Q f (2.46)

dλ4

dt
= λ4(d3 + m3d) − λ6m3d (2.47)

dλ5

dt
= λ5(d3 + m3 f ) − λ6(1 − pL)m3 f + λ7 pLm3 f (2.48)

dλ6

dt
= λ6(dL + mL(m3temp)) − λ8mL(m3temp) (2.49)

dλ7

dt
= λ7(dL + mL(m3temp)) − λ9mL(m3temp) (2.50)

dλ8

dt
= −1 + λ8(dUN + mn2 + wdWT ) − λ10mn2GdQd − λ11mn2G f Q f (2.51)

dλ9

dt
= −1 + λ9(dUN + mn2 + wdWT ) − λ12mn2GdQd − λ13mn2G f Q f (2.52)

dλ10

dt
= λ10(d f n + m f n) − λ14m f n − λ4m2L2

∂Fd

∂FNUU
Qd

−λ10mn2NU2
∂Gd

∂FNUU
Qd − λ12mn2NI2

∂Gd

∂FNUU
Qd

−λ18mA2AU2
∂Hd

∂FNUU
Qd − λ20mA2AI2

∂Hd

∂FNUU
Qd (2.53)

dλ11

dt
= λ11(d f n + m f n) − λ14m f n(1 − pN) − λ15m f n pN

−λ5m2L2
∂F f

∂FNUI
Q f − λ11mn2NU2

∂G f

∂FNUI
Q f − λ13mn2NI2

∂G f

∂FNUI
Q f

−λ19mA2AU2
∂H f

∂FNUI
Q f − λ21mA2AI2

∂H f

∂FNUI
Q f (2.54)
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dλ12

dt
= λ12(d f n + m f n) − λ25 pUIU − λ4m2L2

∂Fd

∂FNIU
Qd

−λ10mn2NU2
∂Gd

∂FNIU
Qd − λ12mn2NI2

∂Gd

∂FNIU
Qd

−λ18mA2AU2
∂Hd

∂FNIU
Qd − λ20mA2AI2

∂Hd

∂FNIU
Qd (2.55)

dλ13

dt
= λ13(d f n + m f n) − λ15m f n

−λ5m2L2
∂F f

∂FNII
Q f − λ11mn2NU2

∂G f

∂FNII
Q f − λ13mn2NI2

∂G f

∂FNII
Q f

−λ19mA2AU2
∂H f

∂FNII
Q f − λ21mA2AI2

∂H f

∂FNII
Q f (2.56)

λ14

dt
= λ14( fND + (m f ntemp) + dWT ) + λ16(m f ntemp) (2.57)

λ15

dt
= λ15( fND + (m f ntemp)) + λ17(m f ntemp) (2.58)

λ16

dt
= −1 + λ16(dUA + mA2 + wdWT ) − λ18mA2HdQd − λ19mA2H f Q f (2.59)

λ17

dt
= −1 + λ17(dUA + mA2 + wdWT ) − λ20mA2HdQd − λ21mA2H f Q f (2.60)

dλ18

dt
= λ18(dA3 + mA3) − λ22mA3 − λ4m2L2

∂Fd

∂FAUU
Qd

−λ10mn2NU2
∂Gd

∂FAUU
Qd − λ12mn2NI2

∂Gd

∂FAUU
Qd

−λ18mA2AU2
∂Hd

∂FAUU
Qd − λ20mA2AI2

∂Hd

∂FAUU
Qd (2.61)

dλ19

dt
= λ19(dA3 + mA3) − λ22mA3

−λ5m2L2
∂F f

∂FAUI
Q f − λ11mn2NU2

∂G f

∂FAUI
Q f − λ13mn2NI2

∂G f

∂FAUU I
Q f

−λ19mA2AU2
∂H f

∂FAUI
Q f − λ21mA2AI2

∂H f

∂FAUI
Q f (2.62)

dλ20

dt
= λ20(dA3 + mA3) − λ22mA3 − λ25 pUIU − λ4m2L2

∂Fd

∂FAIU
Qd

−λ10mn2NU2
∂Gd

∂FAIU
Qd − λ12mn2NI2

∂Gd

∂FAIU
Qd

−λ18mA2AU2
∂Hd

∂FAIU
Qd − λ20mA2AI2

∂Hd

∂FAIU
Qd (2.63)

dλ21

dt
= λ21(dA3 + mA3) − λ22mA3

−λ5m2L2
∂F f

∂FAII
Q f − λ11mn2NU2

∂G f

∂FAII
Q f − λ13mn2NI2

∂G f

∂FAIU I
Q f
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−λ19mA2AU2
∂H f

∂FAII
Q f − λ21mA2AI2

∂H f

∂FAII
Q f (2.64)

dλ22

dt
= λ22(m f ntemp) − λ23(m f ntemp) (2.65)

dλ23

dt
= −λ1b + λ23(dA5) (2.66)

dλ24

dt
= −λ4m2L2

(
∂Fd

∂U
Qd + Fd

∂Qd

∂U

)
− λ5m2L2F f

∂Q f

∂U

−λ10mn2NU2

(
∂Gd

∂U
Qd + Gd

∂Qd

∂U

)
− λ11mn2NU2G f

∂Q f

∂U

−λ12mn2NI2

(
∂Gd

∂U
Qd + Gd

∂Qd

∂U

)
− λ13mn2NI2G f

∂Q f

∂U

−λ18mA2AU2

(
∂Hd

∂U
Qd + Hd

∂Qd

∂U

)
− λ19mA2AU2H f

∂Q f

∂U

−λ20mA2AI2

(
∂Hd

∂U
Qd + Hd

∂Qd

∂U

)
− λ21mA2AI2H f

∂Q f

∂U

−λ24

(
bH

(
1 −

2(U + I)
KH

)
− dH

)
− λ25 pUI(FNIU + FAIU) (2.67)

dλ25

dt
= −λ4m2L2Fd

∂Qd

∂I
− λ5m2L2

(
∂F f

∂I
Q f + F f

∂Q f

∂I

)
−λ10mn2NU2Gd

∂Qd

∂I
− λ11mn2NU2

(
∂G f

∂I
Q f + G f

∂Q f

∂I

)
−λ12mn2NI2Gd

∂Qd

∂I
− λ13mn2NI2

(
∂G f

∂I
Q f + G f

∂Q f

∂I

)
−λ18mA2AU2Hd

∂Qd

∂I
− λ19mA2AU2

(
∂H f

∂I
Q f + H f

∂Q f

∂I

)
−λ20mA2AI2Hd

∂Qd

∂I
− λ21mA2AI2

(
∂H f

∂I
Q f + H f

∂Q f

∂I

)
−λ24bH

(
1 −

2(U + I)
KH

)
− λ25dHI (2.68)

where λ1(T ) = λ2(T ) = · · · = λ25(T ) = 0. Furthermore, the analytic representation of the optimal
control w∗ is given by

w∗(t) = min
(
max

(
0,

(λ3L2 + λ8NU2 + λ9NI2 + λ16AU2 + λ17AI2) dWT

2K

)
, 1

)
(2.69)

Note that
∂Fd

∂U
=

 qL

(
C(TU+ε)
(CU+ε)2

)
if CU − TU > 0

0 otherwise

and
∂Fd

∂FNUU
=

∂Fd

∂FNIU
=

∂Fd

∂FAUU
=

∂Fd

∂FAIU
=

{
−qL

CU+ε
if CU − TU > 0

0 otherwise
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and
∂F f

∂I
=

 qL

(
C(TI+ε)
(CI+ε)2

)
if CI − TI > 0

0 otherwise

and
∂F f

∂FNUI
=

∂F f

∂FNII
=

∂F f

∂FAUI
=

∂Fd

∂FAII
=

{
−qL

CI+ε if CI − TI > 0
0 otherwise

with similar expressions for Gd,G f ,Hd,H f .

Proof: Suppose w∗(t) is the optimal control and that E,Ł1, . . . ,U, I is the corresponding solution
to the system (2.1-2.25). We use standard work in Pontryagin et al. [32] to obtain the result. To find
the analytic representation of the optimal control w∗(t), begin by forming the Lagrangian. Since the
control is bounded, the Lagrangian is

L = H −W1(t) (w(t) − 0) −W2(t) (1 − w(t))

where H is the Hamiltonian given by

H = L2 + NU2 + NI2 + AU2 + AI2 + Kw2 +

25∑
i=1

λi (rhsi)

and Wi(t) ≥ 0 are penalty multipliers such that

W1(t)(w(t) − 0) = 0
W2(t)(1 − w(t)) = 0

}
at w∗(t)

To find the analytic representation for w∗(t),we analyze the necessary conditions for optimality ∂L
∂w = 0.

∂L

∂w
=
∂H
∂w
−W1 + W2 = 0

or

2Kw + λ3(−dWT L2) + λ8(−dWT NU2) + λ9(−dWT NI2) + λ16(dWT AU2 + λ17(−dWT AI2) −W1 + W2 = 0.

By standard optimality techniques for the characterization for the optimal control w∗(t), we find that

w∗(t) = min
(
max

(
0,

(λ3L2 + λ8NU2 + λ9NI2 + λ16AU2 + λ17AI2) dWT

2K

)
, 1

)
2.4. Algorithm

At the optimum w∗, the model differential equations move forward in time from an initial condition,
while the adjoint differential equations move backward in time from a final condition. In some cases,
it is possible to use Matlab’s bvp4c to solve ODE systems with a variety of different types of boundary
conditions like this one [43]. However, there are often convergence problems with this approach. For
this paper, we followed the algorithm developed by Hackbusch [44] and recommended by Lenhart and
Workman [45] to solve our optimality system.

Numerical Scheme:
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1. Initialize the adjoint variables, λ0
1 = λ0

2 = · · · = λ0
25 = 0, and the control w0 = 0.5.

2. Use the current adjoint variables λ j−1
1 , λ

j−1
2 , . . . λ

j−1
25 and control w j−1 to solve the state equations

for the state variables E j, L j
1, . . . , I

j.

3. Use the current state variables E j, L j
1, . . . , I

j.. to solve the adjoint equations for the adjoint vari-
ables λ j

1, λ
j
2, . . . λ

j
25.

4. Update the control w j using the control characterizations.
5. Repeat steps 2–4 until convergence.

The algorithm was implemented in Matlab [43], using ode45 to solve the ODEs and interp1 to pass
the solutions from step to step.

Recall that the objective function is

J(w) = min
w(t)

∫ T

0

(
L2

2(t) + NU2
2(t) + NI2

2(t) + AU2
2(t) + AI2

2(t) + Kw2(t)
)

dt

where we are simultaneously minimizing the tick populations at the questing stages and the cost of the
wall-treatment with the term Kw2.

3. Results

Initial conditions were found by running the original model with an initial number of tick eggs of
E0 = 1, 000, 000, an initial number of uninfected dogs of U = 1248 and one infected dog I = 1. This
simulation was run until T = 1000 days and these steady state population values were used as initial
conditions for all simulations in this paper.

The model with no treatment results in a seasonally fluctuating steady state, with ticks always
present and abundant, seen in Figure2a. Ri. rickettsii prevalence in ticks and dogs reaches steady state
will little seasonal fluctuation, seen in Figure2b. In the absence of control, we note that the percentage
of infected dogs and ticks remains essentially stable, indicating persistence of the disease in the absence
of interventions, seen Figure 2b. With the relatively expensive control at K=100, tick abundance and
disease prevalence decline steadily, as in Figure2c and Figure2d, while the optimal control is allowed
to decline starting at approximately t=100, seen in Figure2d.

Using the same initial conditions as Example 1, we consider simulations with dWT = 0.7, or 70% of
houses treated. Under the assumption that the treatment is more expensive, we set the penalty affecting
the cost of treatment in the objective function J to be K = 1, 10, and K = 100 and run the optimal
control algorithm for two years, T = 730 days seen in Figure 3a,3c and 3e. Control was discontinued
at T = 730, and the subsequent two years tracked in Figure 3b, 3d and 3f for each of the controls
respectively. We were unable to obtain convergence of the algorithm for K = 1000.

The risk of human infection with RMSF depends on the likelihood of contact with an infected
tick, which in turn depends on the abundance of infected ticks, not just pathogen prevalence in the
tick population. The risk of an individual exposure to RMSF depends on the population of infected
questing nymphs and adults. Three scenarios are computed, with the optimal control calculated for
days 1-730, followed by the rebound of tick populations for the following 730 days. Results are shown
in Figure 3 for K=1, 10, and 100.

As the cost of treatment increases from K=1 to K=100, the optimal control goes from always on
at full strength with K=1 as seen in Figure3a, to always on for an initial period, then declining to a
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(a) Questing ticks with no control for two years

0 100 200 300 400 500 600 700 800

day

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

p
e
rc

e
n
t

% infected dogs

% infected questing nymphs

% infected questing adults

(b) Infection levels with no control for two years.
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(c) Questing ticks with control under wall-treatment for
two years, K = 100
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(d) Infection levels and control under wall-treatment
control for two years, K = 100

Figure 2. Population and disease dynamics for questing tick abundance ((a)with no control,
and (c) with optimal control at K=100) and infection prevalence in dogs ((b) with no control,
and (d) with optimal control at K=100) Runs are for two years with and without control under
70% wall-treatment.

lower level, as seen in Figure3c and 3e. In all three cases, Ri. rickettsii prevalence is greatly reduced
at the 2-year point, seen in Figure3a, 3c and 3e. When treatment is removed completely the disease
prevalence increases, seen in Figure3b, 3d and 3f. The treatment is 100% effective for much of the time
interval, although it’s efficacy drops later in the time interval. We note that for K = 1, the treatment is
100% effective for the whole time interval. In the presence of control, we note that the percentage of
infected dogs and ticks decreases dramatically over time, supporting the theory that the wall treatment
is an effective approach to reducing the the number of RMSF infections in both ticks and dogs.

The death rate of questing ticks due to the wall treatment, dWT , can be varied to reflect maximum
coverage of houses in the community. Setting K = 1 and varying dWT gives an example of the effect of
coverage levels in Figure 4. The death rate of questing ticks at full strength of treatment may vary due
to coverage levels or efficacy of the product chosen. The default death rate of 70% of questing ticks
per day (at full control (w=1), Figure4c and 4d) was increased to 100% per day (Figure4a and 4b) and
decreased to 35% (Figure 4e and 4f). Although the control patterns look similar (Figure4b, 4d, 4f) the
resulting decline in pathogen prevalence is more pronounced as the death rate rises (Figure4a, 4c and
4e).
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(b) Rebound infection levels after K = 1 control
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(c) Control for K = 10
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(d) Rebound infection levels after K = 10 control
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(e) Control for K = 100
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Figure 3. Infected questing tick populations during two years of optimal control followed by
two years of no control, for various choices of K ((a)control period for K=1, (b)rebound after
control for K=1, (c)control period for K=10, (d)rebound after control for K=10,(e)control
period for K=100, (f)rebound after control for K=100). Infected nymph and infected adult
populations shown with control in blue. Wall-treatment is at 70%.
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(c) dWT = 0.70
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(e) dWT = 0.35
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Figure 4. Percentage infectious dogs, questing nymphs, questing adults, for various death
rates (left) with corresponding optimal controls (right), as coverage is varied.((a) Infectious
ticks, dWT = 1 (b) Optimal control, dWT = 1 (c) Infectious ticks, dWT = 0.70 (d) Optimal
control, dWT = 0.70 (e) Infectious ticks, dWT = 0.35 (f) Optimal control, dWT = 0.35)
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4. Discussion

Acaricidal wall treatments have the potential to drastically reduce tick populations as seen in Figure
2. It is clear from both Figures 3 and 4 that an optimal wall treatment must remain at full strength
for a considerable period, followed by declining efficacy. Even the shortest duration of high intensity,
shown in Figure 3e, is a year in duration.

4.1. Disease risk

Figure 3 shows the suppression of disease risk for three choices of optimal control (K=1,10,100
respectively). As K increases, the duration of 100% treatment decreases with subsequent decline in
treatment strength for K=10,100, seen in Figure 3c and 3e. This decline is a normal feature of insec-
ticidal treatments [46–48]. For K=1 treatment is at full strength until day 730 and then is abruptly
discontinued. Recall that we assume 70% coverage of surfaces for all three examples. The duration
of full strength treatment is 730, 600, and 450 days respectively for K=1,10,100. In Figures 3b, 3d, 3f
the rebound of infected tick populations is shown. For all three examples there is an immediate drop
in infected tick populations from over 9000 nymphs and 4500 adults on day 1 to less than 10% of this
number by day 9, representing a 90% reduction of disease risk. Suppression of infected tick popula-
tions persists for 1152, 1123, and 1094 days, for K=1,10,100 respectively (1095 days = 1 year). Taken
together, these examples show that if treatment remains at full strength for 450 days or more, with
declining partial strength for the shorter treatments, disease risk is reduced by 90% for 1094 days or
more. These examples show both the effectiveness of wall treatment and the importance of treatments
with effectiveness that persists for a relatively long time. By contrast, note that applications of liquid
deltamethrin, must be reapplied every 8 weeks, so a single treatment does not persist that long [30,31].

4.2. Coverage

When applying an intervention to an entire community, coverage will always be imperfect. Some
households will refuse treatment and some parts of a house may be inaccessible or inappropriate for
treatment.

The model expresses coverage levels in a parameter, dWT , which is varied in Figure 4. The tradeoff

between the duration of maximum treatment, illustrated in the right hand panel, and rate of reduction
of disease prevalence, in the left hand panel, is clear. Interventions that are long lasting are seen to
compensate somewhat for lack of coverage. For example, Figures 4e and 4f show a scenario in which
disease prevalence in dogs is reduced from 90% to 20% in the course of a year of maximal treatment
of 35% of walls. By comparison, with 100% coverage, shown in Figures 4a and 4b, the reduction in
disease prevalence is better and the control is allowed to decline at about 700 days.

Studies of the efficacy of insecticidal wall treatments describe the decline in efficacy in terms of
a half life, similar to linear toxicokinetics of an organism [46–48]. Interestingly, the optimal control
patterns seen in Figures 3 and 4 show a similar decline after 100% of control is discontinued. The rate
of decline of the optimal control seems to be slower than many of the observed rates in the literature,
however.
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4.3. Costs of treatments: an example

Most insecticidal or acaricidal wall treatments lose efficacy within months of application [46–48].
The cost of repeated application may therefore add substantially to the intervention, on top of the cost
of the product used. If a product is inconvenient to apply or must be applied repeatedly, this may have
an effect on coverage levels as well, as households may decline to participate in the intervention.

The model on which this optimal control problem is built was based on an intervention in Sonora,
Mexico in which two treatments were compared [31]. One was application of a liquid acaricide con-
taining 5% deltamethrin, (Bayer K-Othrine WG250, pyrethroid), to the yards and homes of selected
houses in the community. Trained personnel were required as well as oversight by licensed pest ex-
perts, and reapplied every eight weeks for eight months. Deltamethrin has been used on many species,
with emerging resistance in ticks [49].

The other application used in Sonora was a paint developed by Inesfly Corporation that has been
used for a range of vector control applications (Safecolor, Codequim, RSCO-USP-39-2016, carbamate)
[30]. This product contains a slow release formula of 1% Propoxur. It was used to control Triatoma
sp., the vector of Chagas disease [50–54]. It has proven useful against mosquito malaria and dengue
vectors [55–59]. It has been used on nets to control Tsetse fly [60] and sand fly [61]. However,
propoxur itself is not approved for indoor use in the United States. The developer of the slow release
formula claims that the insecticidal effect persists for 2 years on interior walls. Because of the long
residual effect, it is possible that this product could satisfy the treatment protocol produced by an
optimal control problem if shown to be safe for indoor use. If used only on exterior walls, the coverage
level would never be above 50%.

These two interventions are an excellent example of the tradeoffs required in cost versus efficacy.
The deltamethrin treatment is straightforward and the product is readily available, but there is consid-
erable cost for reapplication every eight weeks by professionals. The propoxur paint has longevity, but
the product is likely to be more expensive and, in some locations such as the U.S., coverage might be
limited to exterior walls.

4.4. Future work

The control problem solved here was approached with the assumption that only questing ticks are
susceptible to the acaricide applied to walls. The truth is more complicated, as Rh. sanguineus also
sequesters in cracks in the walls (and other locations) when not questing. Whether the acaricide pene-
trates the cracks, what percent of ticks are not on walls, and other physical and biological uncertainties
might change the answer produced here.

The model developed here is based on a community intervention and the tick data that arose from
it [30], which was not a controlled experiment. The parameters of the model, in particular, would
benefit from a more contained and controlled experiment, perhaps using dogs in kennels that have
been colonized by Rh. sanguineus.

The paint formulation of propoxur seems to be a promising intervention for RMSF. Whether it can
be shown safe for indoor use would affect the coverage that is possible. In addition there is yet no
study of its duration of effectiveness, especially outdoors. Knowing this would allow the model to give
a more dependable prediction of the results of any intervention.
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4.5. Concluding remarks

The numerical experiments in this study demonstrate the value of long lasting acaricidal wall treat-
ments against the tick Rh. sanguineus, vector of Ri. rickettsii , the vector of RMSF. Risk of RMSF
declines by 90% with 70% wall coverage and at least 450 of full strength efficacy. This risk reduction
persists well beyond the window of effectiveness for the wall treatment. This study highlights the need
for further trials of wall treatment interventions against RMSF both in laboratory settings and in the
field.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgements

The model development was funded in part by the National Science Foundation (award 2019609).

Conflict of interest

All authors declare no conflicts of interest in this paper.

References

1. M. B. Labruna, M. Gerardi, F. S Krawczak, J. Moraes-Filho, Comparative biology of
the tropical and temperate species of Rhipicephalus sanguineus sensu lato (Acari: Ixodi-
dae) under different laboratory conditions, Ticks Tick-borne Diseases, 8 (2017), 146–156.
https://doi.org/10.1016/j.ttbdis.2016.10.011

2. M. W. Lineberry, A. N. Grant, K. D. Sundstrom, S. E. Little, K. E. Allen, Diversity and geographic
distribution of rickettsial agents identified in brown dog ticks from across the United States, Ticks
Tick-borne Diseases, 13 (2022), 102050. https://doi.org/10.1016/j.ttbdis.2022.102050

3. R. B. McFee, Tick borne illness-Rocky mountain spotted fever, Disease-a-month DM, 64 (2018),
185–194. https://doi.org/10.1016/j.disamonth.2018.01.006

4. K. T. Duncan, K. D. Sundstrom, D. Hunt, M. W. Lineberry, A. Grant, S. E. Little, Survey on
the Presence of Equine Tick-Borne Rickettsial Infections in Southcentral United States, J. Equine
Veter. Sci., 118 (2022), 104135. https://doi.org/10.1016/j.jevs.2022.104135

5. H. K. Kim, Rickettsia-host-tick interactions: Knowledge advances and gaps, Infect. Immun., 90
(2022), e00621–21. https://doi.org/10.1128/iai.00621-21

6. L. Backus, J. Foley, C. Chung, S. Virata, O. E. Zazueta, A. López-Pérez, Tick-borne pathogens
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Appendix: Parameters

Table 1. Model parameters.

Parameter Description Value Units
b oviposition rate 62.56 eggs per tick per day
de daily death rate of eggs .015 percent per day
d3 daily death rate of feeding larvae = .2 percent per day
d f n daily death rate of feeding nymphs = .01 percent per day
dA3 daily death rate of feeding adults .01 percent per day
dA5 daily death rate of gestating adults .0351 percent per day
m1 young larvae to questing larvae maturation rate .069 percent per day
m2 questing larvae to feeding larvae maturation .1 percent per day
m3 larvae feeding on host maturation rate .232 percent per day
mn2 questing nymph maturation rate .1 percent per day
m f n feeding nymph maturation rate .142 percent per day
mA2 questing adult maturation rate .1 percent per day
mA3 feeding adult maturation rate .1058 percent per day
C per host carrying capacity 50 maximum feeding nymphs and adults per host
bH birth rate of host .0135 per dog per day
KH carrying capacity of hosts 2000 number of dogs
dH death rate of uninfected host 0.0002739726 percent per day
dHI death rate of infected hosts 0.005479 percent per day
pUI probability of host infection by one feeding tick .0001 per infective tick per day
pL percent of feeding larvae infected .1 percent per day
pN percent of feeding nymphs infected .1 percent per day
ε numerical feature .01 no units
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