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Abstract: The dynamics of two-plant competitive models have been widely studied, while the effect of
chemical heterogeneity on competitive plants is rarely explored. In this study, a model that explicitly
incorporates light and total phosphorus in the system is formulated to characterize the impacts of
limited carbon and phosphorus on the dynamics of the two-plant competition system. The dissipativity,
existence and stability of boundary equilibria and coexistence equilibrium are proved, when the two
plants compete for light equally. Our simulations indicate that, with equal competition for light (b12 =

b21) and a fixed total phosphorus in the system (T ), plants can coexist with moderate light intensity
(K). A higher K tends to favor the plant with a lower phosphorus loss rate (d1 vs d2). When K is held
constant, a moderate level of T leads to the dominance of the plant with a lower phosphorus loss rate
(d1 vs d2). At high T levels, both plants can coexist. Moreover, our numerical analysis also shows
that, when the competition for light is not equal, the low level of total phosphorus in the system may
lead the model to be unstable and have more types of bistability compared with the two-dimensional
Lotka-Volterra competition model.
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1. Introduction

The two-dimensional Lotka-Volterra competition model has been widely studied [1–4]. Murray
discussed a simple model on competition between two species and explains the biological conclusion
implied by the competition exclusion principle, namely, when two species compete for the same limited
resources, one of the species usually becomes extinct [1]. Song et al. considered the Lotka-Volterra
competitive system with two delays and studied the dynamical properties of the system [2]. Jin et al.
considered a nonautonomous two-dimensional competitive Lotka-Volterra system with impulse and
gave an extension of the principle of competition exclusion [3]. Zhang and Chen studied the effects
of linear and nonlinear diffusion of the competitive Lotka-Volterra model [4]. Hsu and Zhao analyzed
the stability of a monotone dynamical system and obtained the global dynamics of the Lotka-Volterra
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two-species competition model with seasonal succession [5]. Wang and Zhao investigated two free
boundary problems of a Lotka-Volterra type competition model in a one-dimension space to understand
the asymptotic behavior of the two competing species spreading through a free boundary [6]. Liu and
Fan proposed a new definition of permanence for stochastic population models, which overcame some
limitations and deficiency of the existing ones [7]. Ren and Liu considered the two-species chemotaxis
system with Lotka-Volterra competitive kinetics in a bounded domain with smooth boundary [8].

In fact, all organisms are composed of multiple chemical elements such as carbon, nitrogen and
phosphorus (Loladze et al. [9]). Ecological stoichiometry is the balance of multiple chemical
substances in ecological interactions and processes, or the study of such balances (Sterner and
Elser [10]). From the stoichiometric point of view [9, 10], both food quantity and quality need to be
explicitly modeled in producer-consumer interactions, as it has been observed that the plant quality
and quantity can greatly affect the growth rate of herbivorous grazers [11–17]. Loladze et al. applied
stoichiometric principles to construct a two-dimensional Lotka-Volterra type model (LKE model) that
links energy flow with element cycling and explains the Rosenzweig’s paradox of enrichment [9].
Wang et al. proposed a stoichiometric producer-grazer model, which extended the LKE model by
taking P into account in both the prey and the media [18]. The results show that as the uptake rate of P
by producer becomes infinite, LKE models become the limiting case of this model. Peace et al.
formulated a model to explicitly track free P in the stoichiometric knife-edge model. The model
shows that the fate of the grazer population can be very sensitive to excessive nutrient
concentrations [19].

Furthermore, the growing study of ecological stoichiometry also further facilitates more insights
on mechanisms of competitive systems between the two species. For example, Tilman et al. explained
the mechanism of plant competition for nutrients by giving the expression of plant competition for
nutrients [20]. Ji and Wang incorporated stoichiometry into a competition model in chemostat
settings [21] and considered two species competing for a single nutrient, and investigated how
stoichiometry, dilution rate and concentration of phosphorus input affected the result of competition
between algae species. However, for the system with both interspecific and interspecific competition
in [1], the effect of nutrients on the growth of both species was unclear and an ecological
stoichiometric model was essential.

In this study, by considering the ecological stoichiometry of nutrient elements, we formulate a new
stoichiometric competition model to investigate the dynamics among two plants in section two. Here,
the phosphorus in the system is divided into three pools: Phosphorus in the first plant, phosphorus in
the second plant and free phosphorus. We analyze the positive invariant region of the model and derive
the existence and stability conditions of the equilibria. In section three, we first study the stability of
boundary equilibria in Case 1, then, we provide the solution curves of the model and verify the results
of theoretical analysis. Finally, we study the bifurcation diagram of the system about K and T , and the
bistability of the system with interspecific competition is employed to investigate how total phosphorus
in the system and light intensity affect the competition outcomes. Section four concludes and discusses
the implications of our mathematical findings.
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2. Modeling the competition between two plants

In this section, we present how we formulate the mathematical model for the competition of two
plants. Next, we derive the equilibria of the model and analyze the stability.

2.1. Model formulation

In this work, we integrate stoichiometry into the competition model of two plants. We start with a
two-species Lotka-Volterra competition model [1]:

dx1
dt = r1x1

(
1 − x1

K1
− b12

x2
K1

)
,

dx2
dt = r2x2

(
1 − x2

K2
− b21

x1
K2

)
.

(2.1)

In model (2.1), xi (i = 1, 2) describe the biomasses of the plant measured in terms of carbon. r1,
r2, K1, K2, b12 and b21 are all positive constants, ri (i = 1, 2) are the linear birth rates and Ki (i = 1, 2)
are the carrying capacities. We use b12 and b21 to measure the competitive effect of x1 on x2 and x2 on
x1, respectively. Model (2.1) only considers the energy flow in a species. However, element cycling
cannot be ignored in a competition model. Hence, it is realistic to take into account the stoichiometric
competition model.

We assume that plants are composed of two main elements, carbon and phosphorus, and we consider
two plants, plant one and plant two. Let T represent the total phosphorus in the system. pi (i =
1, 2) denotes the total phosphorus in plant i, and its unit is (mg P)/L. b12 and b21 are the competition
coefficients between two plants. Following the main assumptions used in the LKE model [9], we
assume

(i) The total phosphorus in the system (T ) in the entire system is fixed.
(ii) Phosphorus to carbon ratio (P:C) varies in plants, but it never falls below a minimum ratio for
plant one and plant two, denoted by q1 and q2, respectively.

Recall that P:C in the plants should be at least qi (i = 1, 2) ((mg P)/(mg C)), and one obtains that the
plant density cannot exceed pi/qi ((mg P)/L). We consider the competition of plants for carbon (light)
and the restriction of phosphorus on the growth of each plant. The internal phosphorus dependent
growth function follows the empirically well tested Droop form, 1 − qi

pi/xi
(i = 1, 2) [22]. Then, the

growth is restricted by the light intensity (K) and the total phosphorus in the system (p1/q1, p2/q2).
The model takes the form of

dx1
dt = r1x1 min

{
1 − x1 + b12x2

K , 1 − q1
p1/x1

}
,

dx2
dt = r2x2 min

{
1 − b21x1 + x2

K , 1 − q2
p2/x2

}
,

dp1
dt = g1(T − p1 − p2)x1 − d1 p1,

dp2
dt = g2(T − p1 − p2)x2 − d2 p2.

(2.2)

Here, T − p1 − p2 is the free phosphorus in the environment. Let di (i = 1, 2) be the loss rate
of phosphorus in the plants, then the phosphorus element metabolized by plants is di pi (i = 1, 2).
Hence, the biological significance of other parameters is explained below. Parameter values estimated
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by Wang et al. (2008) [18] are listed in Table 1. The replenishment rate functions gi(y) are increasing,
nonnegative for nonnegative variables. In general, gi(y) is a bounded smooth function that satisfies the
following assumptions:

gi(y) = 0, g′i(y) > 0, and g′′i (y) ⩽ 0, for y ⩾ 0. (2.3)

Table 1. The parameters of (2.2) and their values used for numerical simulations.

Parameter Interpretation Value Unit
r1 Intrinsic growth rate of plant one 0.93 day−1

r2 Intrinsic growth rate of plant two 1.2 day−1

K light intensity 0.25-2.0 (mg C)/L
q1 Minimal cell quota of plant one 0.003 (mg P)/(mg C)
q2 Minimal cell quota of plant two 0.004 (mg P)/(mg C)
T Total phosphorus in the system 0.025 mgP/L
c1 Maximal phosphorus uptake rate of plant one 0.2 (mg P)/(mg C)/day
c2 Maximal phosphorus uptake rate of plant two 0.18 (mg P)/(mg C)/day
d1 Plant one loss rate of phosphorus 0.05 day−1

d2 Plant two loss rate of phosphorus 0.06 day−1

b12 Influence coefficient of plant two on plant one 1.0 dimensionless
b21 Influence coefficient of plant one on plant two 1.0 dimensionless
a1 Half-saturation constant of phosphorus for plant one 0.008 (mg P)/L
a2 Half-saturation constant of phosphorus for plant two 0.01 (mg P)/L

To prevent the orbits from entering the origin where the system is undefined, we devise a
transformation to generate a new system in [15]. The transformation converts variables plant C and
plant P to variables plant C and plant P:C ratio. We introduce Q1 = p1/x1 and Q2 = p2/x2, which are
the cell quota (intracellular P:C ratio) in two plants. We set the transformation

Φ : Ω→ Φ(Ω), (x1, x2, p1, p2) 7→ (x1, x2,Q1 = p1/x1,Q2 = p2/x2),

which converts (2.2) in Ω into the following system

dx1
dt = r1x1 min

{
1 − x1 + b12x2

K , 1 − q1
Q1

}
,

dx2
dt = r2x2 min

{
1 − b21x1 + x2

K , 1 − q2
Q2

}
,

dQ1
dt = g1(T − Q1x1 − Q2x2) − d1Q1 − Q1r1 min

{
1 − x1 + b12x2

K , 1 − q1
Q1

}
,

dQ2
dt = g2(T − Q1x1 − Q2x2) − d2Q2 − Q2r2 min

{
1 − b21x1 + x2

K , 1 − q2
Q2

}
.

(2.4)

Here, Φ(Ω)={(x1, x2,Q1,Q2): 0 < x1 < min{K,T/q1}, 0 < x2 < min{K,T/q2}, Q1 > q1, Q2 > q2,
Q1x1 + Q2x2 < T}.

More details of mathematical analysis can be found in Appendix A.
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3. Numerical dynamics and the implications

In this section, we first analyze the stability of the two boundary equilibria in Case 1, and then
we analyze the bifurcation of (A.1). Finally, we study the stability of the system with interspecific
competition. The initial conditions in our simulations are chosen inside the biologically meaningful
region.

3.1. Stability analysis of the boundary equilibria in Case 1

In this subsection, we analyze the stability of the two boundary equilibria in Case 1. The model
(A.2) has two boundary equilibria

E1 =

(
0,K,

c1Td2

d1(c2K + d2)
,

c2T
c2K + d2

)
, E2 =

(
K, 0,

c1T
c1K + d1

,
c2Td1

d2(c1K + d1)

)
.

Based on the study of Theorem 2, the first two equations of (A.2) do not contain variables Q1 and Q2.
Here, we consider the submodel of (A.2)

dx1
dt = r1x1

(
1 − x1 + x2

K
)
= f (x1, x2),

dx2
dt = r2x2

(
1 − x1 + x2

K
)
= g(x1, x2).

(3.1)

Figure 1. The phase diagram of the submodel (3.1).

We present the phase diagram of (3.1). In Figure 1, r1 = 0.93, r2 = 1.2 and K = 10. If the
initial value starting from the inside will eventually tend to the straight line composed of the internal
equilibrium family of (3.1), then the boundary equilibria E1 and E2 are unstable. However, when the
initial value starts from the boundary, the solution starting from the boundary eventually tends to the
boundary equilibria. Since the forward invariant domain of (3.1) does not contain boundaries, the
boundary equilibria of (3.1) are unstable. Therefore, the boundary equilibria of (A.2) are unstable in
Φ(Ω).
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3.2. Solution curve of the model

In this subsection, we validate the results of the theoretical analysis by plotting the solution curve
of (A.1) and marking the corresponding situations for Case 1 to Case 4 in the solution curve. We select
the initial value x1(0) = 0.005, x2(0) = 0.005, Q1(0) = 0.001 and Q2(0) = 0.001. In Figures 2–4,
the blue dot represents the solution of (A.1) in Case 1, the red dot represents the solution of (A.1) in
Case 2, the green dot represents the solution of (A.1) in Case 3 and the black dot represents the solution
of (A.1) in Case 4.

Figure 2 shows that, initially, the biomasses of the two plants increased. When t ∈ (0, 11), the
solution of (A.1) corresponds to the solution in Case 4. When t = 11, the solution of (A.1) changes
from Case 4 to Case 2. When t = 12, the solution of (A.1) changes from Case 2 to Case 1. Finally,
the solution of (A.1) converges to a stable state. This result confirms the conclusion that the internal
equilibrium E∗ in Case 1 is globally asymptotically stable.
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Figure 2. Solution curve of (A.1) when r1 = 0.93, r2 = 1.2, q1 = 0.003, q2 = 0.003, c1 = 0.2,
c2 = 0.18, d1 = 0.05, d2 = 0.06, T = 0.03 and K = 8.

Figure 3 shows that the biomasses of two plants increasing over time. When t ∈ (0, 11), the solution
of (A.1) corresponds to the solution in Case 4. When t = 10, the solution of (A.1) transitions from
Case 4 to Case 3. When t = 11, the solution of (A.1) transitions from Case 3 to Case 1. When t = 49,
the solution of (A.1) transitions from Case 1 to Case 2. Finally, the solution of (A.1) converges to
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a stable state. This result verifies the conclusion that the internal equilibrium E1
∗ in Case 2 is locally

asymptotically stable.
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Figure 3. Solution curve of (A.1) when r1 = 1.2, r2 = 0.93, q1 = 0.003, q2 = 0.003, c1 = 0.2,
c2 = 0.18, d1 = 0.05, d2 = 0.06, T = 0.03 and K = 8.

Figure 4 shows that the biomasses of two plants increases over time. When t ∈ (0, 10), the solution
of (A.1) corresponds to the solution in Case 4. When t = 10, the solution of (A.1) changes from Case 4
to Case 2. When t = 11, the solution of (A.1) changes from Case 2 to Case 1. When t = 49, the solution
of (A.1) changes from Case 1 to Case 3. Finally, the solution of (A.1) converges to a stable state. This
result verifies the conclusion that the internal equilibrium E2

∗ in Case 3 is locally asymptotically stable.

According to Figures 2–4, it can be observed that the solution of (A.1) will appear in three stable
states (Cases 1–3). However, no stable solution appears in Case 4, which is consistent with the
theoretical analysis above.

3.3. Impact of light intensity and total phosphorus in the system on competition dynamics

In this subsection, we investigate how the light intensity (K) and the total phosphorus in the system
(T ) affect the competition outcomes by plotting bifurcation diagrams of (A.1), with respect to K and
T . The phosphorus uptake rates are chosen as gi(y) = ciy (i = 1, 2), where y = T − p1 − p2. Figure 5
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Figure 4. Solution curve of (A.1) when r1 = 0.93, r2 = 1.2, q1 = 0.003, q2 = 0.003,
c1 = 0.18, c2 = 0.2, d1 = 0.06, d2 = 0.05, T = 0.03 and K = 8.

presents the bifurcation diagrams where the densities of both plants are plotted along the gradient of
K. In the bifurcation diagrams, the solid lines represent stable equilibria and the dashed lines signify
unstable equilibria. BP means a bifurcation point, at which the existence or stability of the equilibria
will be transformed. From Figure 5, one observes that when T = 0.03, K ∈ (0, 8.61), the internal
equilibrium E∗ is stable and other equilibria (E0, E1, E2) are unstable. This means that these two plants
can coexist, even if the light is low (K ∈ (0, 8.61)), when the total phosphorus in the system is adequate.
Then, at K = 8.61 (point BP), the transcritical bifurcation occurs; that is, E∗ changes its stability from
being stable to unstable, while the boundary equilibrium E2 changes from being unstable to stable.
When K further increases (K > 8.61), there is only one stable equilibrium E2. It indicates that only
plant one can survive. The reason for this phenomenon is that the biomasses of both plants increase
with the increase of light intensity (K), and there is not enough phosphorus in the ecosystem to support
the growth of both plants. Hence, the plant with the lower phosphorus loss rate can adapt to the low
total phosphorus in the system conditions and win the competition, and, thus eventually survives.

In particular, through Figure 6, we find that when the parameters of both plants are equal the model
has no bifurcation and there is a unique stable equilibrium E∗. This means that two plants will coexist
with the same phosphorus loss rate. The biomasses of plants will increase with the increase of light.
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Figure 5. Bifurcation diagrams for (A.1) with respect to K. (a) the density of plant one vs.
K; (b) the density of plant two vs. K; (c) the cell quota of plant one vs. K; (d) the cell quota of
plant two vs. K. The solid line signifies stable equilibria and dashed lines represent unstable
equilibria. Here, T = 0.03, d1 < d2 and the values of other parameters are defined in Table 1.
BP represents the bifurcation point.

Due to the total phosphorus constraints in the system, the biomasses of both plants will not continue
increasing with the increase of light.

From Figure 7, we can observe that when K = 0.25, T ∈ (0, 0.735×10−3), the boundary equilibrium
E0 is stable and other equilibria (E∗, E1, E2) are unstable. Hence, both plants will go extinct under low
total phosphorus in the system (T ∈ (0, 0.735 × 10−3)). Then, at T = 0.735 × 10−3 (point BP), the
transcritical bifurcation occurs, where E0 changes from being stable to unstable and E2 changes from
being unstable to stable. It indicates that only plant one can survive. This is because the biomasses
of both plants increase with the increase of total phosphorus in the system (T ), and the plant with the
lower phosphorus loss rates has a competitive advantage and eventually survives. When T ≈ 0.98×10−3

(point BP), the transcritical bifurcation occurs (E1 becomes unstable). When T continues increasing
until T ≈ 1.86 × 10−3 (point BP), a transcritical bifurcation occurs, where E2 changes its stability
from being stable to unstable and E∗ changes from being unstable to stable. When T further increases
(T > 1.86×10−3), there is only one stable equilibrium E∗. This indicates that the two plants will coexist
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Figure 6. Bifurcation diagrams for (A.1) with respect to K. (a) the density of plant one vs.
K; (b) the density of plant two vs. K; (c) the cell quota of plant one vs. K; (d) the cell quota
of plant two vs. K. The solid line signifies stable equilibria and dash lines represent unstable
equilibria. Here, T = 0.03, d1 = d2 = 0.05, r1 = r2 = 1.2, c1 = c2 = 0.2 and q1 = q2 = 0.003.

as adequate phosphorus. To conclude, when the light intensity is at a low level, low total phosphorus
in the system (T ∈ (0, 0.735 × 10−3)) will lead to the extinction of both plants, and when the total
phosphorus in the system is at a moderate level (0 ≤ 0.735 × 10−3 ≤ 0.98 × 10−3), only the plant with
the lower phosphorus loss rate will survive. When the total phosphorus in the system is sufficient, both
plants can survive and coexist (0.98× 10−3 ≤ T ≤ 1.86× 10−3). However, the biomasses of both plants
no longer increases because of the limitation of light intensity.

3.4. Impact of interspecific competition on competition dynamics

In this subsection, we consider the interspecific competition between the two plants and discuss the
effect of competition coefficients (b12, b21) on the dynamics of (2.2), and we expound the details for
the high, intermediate and low level of total phosphorus in the system with T = 0.03, T = 0.001 and
T = 0.0009, respectively. We choose gi(y) as Michaelis-Menten (Monod) function; that is, gi(y) =
ciy

ai+y (i = 1, 2) in (2.2), where y = T − p1 − p2.
For T = 0.03, we observe from Figure 8(a) that the dynamics are similar to those of Lotka-Volterra
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Figure 7. Bifurcation diagrams for (A.1) with respect to T . (a) the density of plant one vs.
T ; (b) the density of plant two vs. T ; (c) the cell quota of plant one vs. T ; (d) the cell quota of
plant two vs. T . The solid line signifies stable equilibria and dashed lines represent unstable
equilibria. Here, K = 0.25, d1 < d2 and the values of other parameters are defined in Table
1. BP represents the bifurcation point.

competition model [1]. That is, when b12 < 1 and b21 < 1, the competition between the two plants
is not intense and both plants coexist (E∗ is stable); when b12 < 1, b21 > 1, x2 goes extinct, x1

excludes x2 during competition (E1 is stable); when b12 > 1, b21 < 1, x1 goes extinct, x2 excludes x1

during competition (E2 is stable); when b12 > 1, b21 > 1, the bistability occurs between two boundary
equilibria (E1 and E2). Which plant wins the competition depends on the initial values of the two
plants.

When T is decreased to 0.001 (see Figure 8(b)), the dynamics in the region 0 < b12 < 1 and
0 < b21 < 1 are the same as those in Figure 8, implying that the coexistent regions of these two plants
are the same. However, the stable regions of E1 and E2 are both larger than that in Figure 8(a), and the
area of the bistability of E1 and E2 is smaller than that with the adequate total phosphorus in the system.
Note that b12 and b21 are the competition coefficients of the two plants, which represent the ability of
competing against light, and the higher the value of the two coefficients indicates greater intensity of
competition. When the total phosphorus in the system is limited and the competition intensity is high,
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the survival of the plants depends more on their own competition ability for light than on the initial
state of the plants. For example, the species with greater competitive ability (b12 > b21 > 1) (plant two)
will always win the competition, while the other plant becomes extinct (i.e., E2 is stable).

As is shown in Figure 8(c), when T is further decreased to 0.0009, the coexistent region of the two
plants is larger than that when T = 0.03 and T = 0.001, while there are also two areas of bistability
(E1 and E∗, E2 and E∗). This suggests that when the total phosphorus in the system is insufficient, less
intense competition for light is more favorable for the coexistence of the two plants. Moreover, the
limitation of nutrient elements also makes the system unstable, and bistability occurs. In addition, the
area of bistability of E1 and E2 is smaller than that in Figure 6. This further confirms our findings that
when the total phosphorus in the system is limited, the survival of plants is more dependent on their
competition ability for light.

(a) (b)

(c)

Figure 8. Subfigures (a), (b) and (c) show the parameter space corresponding to four
conditions of (2.2) with T = 0.003, T = 0.001 and T = 0.0009, respectively. Parameters:
r1 = r2 = 1.2, q1 = q2 = 0.0005, c1 = c2 = 0.2, d1 = d2 = 0.05, a1 = a2 = 0.01 and K = 2.0.
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Figure 9. Bifurcation diagrams for (A.1) with respect to K and T . (a) the density of plant one
vs. K and T ; (b) the density of plant two vs. K and T ; (c) the cell quota of plant one vs. T and
K; (d) the cell quota of plant two vs. K and T . The solid line signifies stable equilibria and
dashed lines represent unstable equilibria. Here, b12 < b21 and the values of other parameters
are defined in Table 1.

3.5. Impact of light intensity and total phosphorus in the system on competition dynamics

In this subsection, we investigate how the light intensity (K) and the total phosphorus in the system
(T ) affect the competition outcomes by plotting bifurcation diagrams of (A.1) with respect to K and
T . The phosphorus uptake rates are chosen as gi(y) = ciy

ai+y (i = 1, 2), where y = T − p1 − p2. Figure 9
presents the bifurcation diagrams where the densities of both plants are plotted along the gradients of
K and T .

Figure 9 depicts the scenario that the influence coefficient of plant one on plant two is less than
the influence coefficient of plant two on plant one, i.e., b12 < b21. In this condition, plant one will
always survive, and its biomass is the highest when both light intensity and total phosphorus are high.
Plant two is quite different; the biomass of plant two tends to go extinct even when light intensity is
high, and its biomass reaches a maximum when light intensity is low and total phosphorus is high (see
Figure 9(a),(b)). In addition, the cell quotas of both plants will tend to be zero with the increase of light
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Figure 10. Bifurcation diagrams for (A.1) with respect to K and T . (a) the density of plant
one vs. K and T ; (b) the density of plant two vs. K and T ; (c) the cell quota of plant one
vs. T and K; (d) the cell quota of plant two vs. K and T . The solid line signifies stable
equilibria and dashed lines represent unstable equilibria. Here, b12 > b21 and the values of
other parameters are defined in Table 1.

intensity (see Figure 9(c),(d)). This is because plant one has a higher competition ability for light and a
lower phosphorus loss rate compared to plant two (b12 < b21, d1 < d2). As a result, when light intensity
increases and phosphorus becomes limited, plant one gains a competitive advantage, while plant two
suffers from a light and nutrient deficiency, leading to its extinction. The cell quotas of both plant one
and plant two tends to be zero due to excessive light intensity and insufficient phosphorus. Hence, even
though the biomass of plants remains high under phosphorus limitation, the available “nutrition” for
their predators is insufficient, which is consistent with the paradox of enrichment.

Similarly, Figure 10 illustrates the changes in plant biomasses and quotas with K and T when
b12 > b21. From Figure 10 (a),(b), it can be observed that plant one and plant two alternate in their
competitive dominance. When light intensity is low, plant two is more likely to dominate, and with
increasing T , the dominant range of K expands. On the other hand, when light intensity is high, plant
one is more likely to dominate. This could be because plant two has a higher competitive ability for
light compared to plant one. Therefore, when light intensity is low, plant two is capable of absorbing
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more light and gaining a competitive advantage. However, as light intensity increases and phosphorus
becomes limiting, the lower phosphorus loss rate of plant one helps it retain more nutrients and allows
it to dominate in the competition.

In summary, the light intensity (K), total phosphorus (T ), interspecific competition ability
(b12, b21) and loss rate of phosphorus (d1, d2) all affect the coexistence and competition of two plants.
Additionally, excessive light intensity may reduce the cell quotas for both plants, which is in good
agreement with the findings of the stoichiometric competition model involving two predators and one
prey [26], where both predators were limited by the prey’s phosphorus content.

4. Discussion

In this study, we established a stoichiometric competition model between two plants that explicitly
incorporated the impact of the element cycle on plants. We systematically discussed the effects of light
intensity and total phosphorus in the system on the dynamics of the model.

In mathematical analysis, when the competition for lights between two plants is equal with b12 =

b21, we give the existence and stability analysis of the equilibria of this model in four conditions.
When the growth of two plants is only limited by light intensity, the two boundary equilibria are
unstable and the coexistence equilibrium is globally asymptotically stable. When the growth of plant
one is limited by light intensity and plant two is limited by the total phosphorus in the system, the
boundary equilibrium is unstable and the coexistence equilibrium is locally asymptotically stable if
d2 <

c2d1
c1

. When the growth of plant one is limited by the total phosphorus in the system and plant two
is limited by light intensity, the boundary equilibrium is unstable and the coexistence equilibrium is
locally asymptotically stable if d1 <

c1d2
c2

. When the growth of two plants are only limited by the total
phosphorus in the system, the model does not have coexistence equilibrium and we give the conditions
for the existence and stability of boundary equilibria.

When the competition for lights between two plants is equal with b12 = b21, the numerical results
indicate that light intensity and total phosphorus in the system play important roles in the growth and
coexistence of two plants. When the total phosphorus in the system T is fixed, moderate light intensity
and sufficient total phosphorus in the system are beneficial for the coexistence of two plants. However,
excessive light intensity can disrupt this kind of balance. Due to the limitation of the total phosphorus
in the system, the loss rate of phosphorus determines the outcome of competition. Plants with a lower
phosphorus loss rate will win the competition. This means that a higher light intensity can help plants
with lower phosphorus loss rates win. In particular, when the parameters of both plants are equal, the
two plants will coexist under sufficient light and nutrients. Moreover, as the light intensity increases,
the quality of both plants will deteriorate. When the light intensity K is fixed, two plants will go extinct
due to the low total phosphorus in the system. With the enhancement of the total phosphorus in the
system, the plant with the lower phosphorus loss rate can survive. This means that both plants cannot
survive with lower total phosphorus in the system, while moderate total phosphorus in the system
can help plants with lower phosphorus loss rates win. As the total phosphorus in the system further
increases, the two plants will coexist. However, due to light limitation, the biomasses of the two plants
will not continue increasing. At the same time, the increase in nutrients will improve the quality of two
plants.

When the competition for light between two plants is not equal with b12 , b21, the numerical
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simulation results also show that for a high level of total phosphorus in the system (T = 0.03), the
dynamic properties of our model are the same as those in [1]. That is, when two plants have different
competitive abilities the model exhibits bistability (E1 and E2 are stable). At this time, the competition
results of the two plants depend on their initial values. For a moderate level of the total phosphorus in
the system (T = 0.001), the bistable region of E1 and E2 will decrease. When two plants have a great
competition ability, the competitive outcome of the two plants depends on their ability to compete for
light. At a low level of total phosphorus in the system (T = 0.0009), the model becomes unstable,
resulting in more types of bistability (E1 and E∗ are stable, E2 and E∗ are stable). At this time, the
bistable region of E1 and E2 continues decreasing, and the coexistence area of the two plants becomes
larger. Meanwhile, the survival of the two plants depends on their competition for light; the smaller
the competition for light, the more favorable for the coexistence of the two plants. We conclude that
when the total phosphorus in the system is at moderate or low level, competitive results depend on a
plant’s ability of competing for light rather than its initial state.

Our study still has several limitations. First, in order to facilitate the mathematical analysis of
the model, we assumed that b12 = b21. However, from a biological perspective, equal competition
for light (b12 equals b21) is improbable, as no two plants possess identical parameters. Second, due
to the complexity of the model, we didn’t obtain the global asymptotic stability of the coexistence
equilibrium. Third, for the mathematical analysis, we assumed that the phosphorus uptake rate function
was linear, while for the nonlinear scenario, we used numerical simulations to investigate the dynamics
of the model, which will be studied in future work.
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Appendix A. Mathematical analysis of (2.4)

In this section, we verify the dissipativity of (2.4), then derive the equilibria and analyze their
stabilities. For the convenience of subsequent analysis of the model, we let b12 = b21 = 1.

Theorem 1. The solutions with initial conditions in the set

Φ(Ω) =
{
(x1, x2,Q1,Q2) : 0 < x1 < min{K,T/q1}, 0 < x2 < min{K,T/q2},Q1 > q1,Q2 > q2,

Q1x1 + Q2x2 < T
}

remain there for all forward times.

Proof We consider a solution X(t) = (x1(t), x2(t),Q1(t),Q2(t)) of (2.2) with initial condition in Φ(Ω).
Hence, 0 < x1(0) < min{K,T/q1}, 0 < x2(0) < min{K,T/q2},Q1(0) > q1,Q2(0) > q2,Q1(0)x1(0) +
Q2(0)x2(0) < T . We assume that ∃ t1 > 0, such that X(t) touches or crosses the boundary of Ω̄ (closure
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of Φ(Ω)) for the first time, then (x1(t), x2(t),Q1(t),Q2(t)) ∈ Φ(Ω) for 0 ≤ t < t1. We discuss the
following cases:
(i) x1(t1) = 0. Q1(t) > q1, Q2(t) > q2, Q1(t)x1(t)+Q2(t)x2(t) < T for 0 ≤ t ≤ t1. Let a1=min{Q1(t) : t ∈
[0, t1]}> 0. Then, for 0 ≤ t ≤ t1, we have

dx1

dt
=r1x1 min

{
1 −

x1 + x2

K
, 1 −

q1

Q1

}
≥r1x1 min

{
1 −

min{K,T/q1} +min{K,T/q2}

K
, 1 −

q1

a1

}
=

[
r1 min

{
1 −

min{K,T/q1} +min{K,T/q2}

K
, 1 −

q1

a1

}]
x1 ≡ µx1,

(ii) x2(t1) = 0. The proof is the same as that for (i).
(iii) x1(t1) = min{K,T/q1}. 0 < x2(t) < min{k,T/q2}, Q1(t)x1(t) + Q2(t)x2(t) ≤ T for 0 ≤ t ≤ t1 implies
Q1(t)x1(t) ≤ T for 0 ≤ t ≤ t1. Then, for 0 ≤ t ≤ t1, we have

dx1

dt
= r1x1 min

{
1 −

x1 + x2

K
, 1 −

q1

Q1

}
,

if dx1
dt = r1(1 − x1+x2

K ), then x1(t) + x2(t) < K, x1(t) < K. Moreover, Q1(t)x1(t) ≤ T , then x1(t) < T/q1.
Therefore, x1 < min{K,T/q1} for all 0 ≤ t ≤ t1, which is a contradiction.
(iv) x2(t1) = min{K,T/q2}. The proof is the same as that for (iii).
(v) Q1(t1) = q1. Q(t) = Q1(t) − q1 then Q(t1) = 0 and Q(t) > 0 for 0 ≤ t < t1. For 0 ≤ t ≤ t1, we have

dQ
dt
=g1(T − Q1x1 − Q2x2) − d1Q1 − Q1r1 min

{
1 −

x1 + x2

K
, 1 −

q1

Q1

}
,

≥ − d1Q1 − Q1a,

where a is a constant. Thus, Q(t) ≥ Q1(0)e−d1−at > 0 for 0 ≤ t ≤ t1, which is a contradiction.
(vi) Q2(t1) = q2. The proof is the same as that for (v).
(vii) Q1(t1)x1(t1) + Q2(t1)x2(t1) = T . z(t) = T − Q1(t)x1(t) + Q2(t)x2(t) then z(t1) = 0 and z(t) > 0 for
0 ≤ t < t1. Then, for 0 ≤ t ≤ t1, we have

dz
dt
= −

dQ1

dt
x1 −

dx1

dt
Q1 −

dQ2

dt
x2 −

dx2

dt
Q2

= − g1(z)x1 − g2(z)x2 + d1Q1x1 + d2Q2x2

≥ − g
′

1(0)z min{K,T/q1} − g
′

2(0)z min{K,T/q2}

= − [g
′

1(0) min{K,T/q1} − g
′

2(0) min{K,T/q2}]z ≡ −ṽz,

where ṽ > 0 is a constant. Thus, z(t) ≥ z(0)e−ṽt > 0 for 0 ≤ t ≤ t1, which is a contradiction. □
For simplicity, we assume that gi(x) = cix, i = 1, 2. In this case, (2.4) becomes

dx1
dt = r1x1 min

{
1 − x1 + x2

K , 1 − q1
Q1

}
,

dx2
dt = r2x2 min

{
1 − x1 + x2

K , 1 − q2
Q2

}
,

dQ1
dt = c1(T − Q1x1 − Q2x2) − d1Q1 − Q1r1 min

{
1 − x1 + x2

K , 1 − q1
Q1

}
,

dQ2
dt = c2(T − Q1x1 − Q2x2) − d2Q2 − Q2r2 min

{
1 − x1 + x2

K , 1 − q2
Q2

}
.

(A.1)
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We analyze the stability of the equilibrium of (A.1) in the following four cases.
Case 1. x1 + x2

K >
q1
Q1

, x1 + x2
K >

q2
Q2

dx1
dt = r1x1

(
1 − x1 + x2

K
)
,

dx2
dt = r2x2

(
1 − x1 + x2

K
)
,

dQ1
dt = c1(T − Q1x1 − Q2x2) − d1Q1 − Q1r1

(
1 − x1 + x2

K
)
,

dQ2
dt = c2(T − Q1x1 − Q2x2) − d2Q2 − Q2r2

(
1 − x1 + x2

K
)
.

(A.2)

In Case 1, the boundary equilibria are E1 = (0,K, c1Td2
d1(c2K+d2) ,

c2T
c2K+d2

) and E2 = (K, 0, c1T
c1K+d1

, c2Td1
d2(c1K+d1) ).

The coexistence equilibrium is E∗ = (x̃1, x̃2, Q̃1, Q̃2), where

x̃1 =
d1Q̃1 + c1Q̃2K − c1T

c1(Q̃2 − Q̃1)
, x̃2 =

d2Q̃2 + c2Q̃1K − c2T
c2(Q̃1 − Q̃2)

,

x̃1 + x̃2 = K.

The Jacobian matrix at (x1, x2,Q1,Q2) is

J(x1, x2,Q1,Q2)=


r1

(
1 − 2x1+x2

K

)
−

r1 x1
K 0 0

−
r2 x2

K r2

(
1 − 2x2+x1

K

)
0 0

Q1

(
r1
K − c1

)
Q1r1

K − c1Q2 M −c1x2
Q2r2

K − c2Q1 Q2

(
r2
K − c2

)
−c2x1 N

.
where

M =
r1(x1 + x2)

K
− c1x1 − d1 − r1,

N =
r2(x1 + x2)

K
− c2x2 − d2 − r2.

The boundary equilibria, E1 and E2, are unstable and their stability is complex. We will discuss
their stability in the numerical simulation.

Next, we explore the globally asymptotic stability of E∗. The main approach involves the theory of
asymptotic autonomous systems and Dulac’s criterion [25]. We shall first summarize a few concepts
and results of asymptotic autonomous system from Markus (2016) [12]. Consider the following
differential equations

dx
dt
= f (t, x), (A.3)

dy
dt
= g(y). (A.4)

Equation (A.3) is asymptotically autonomous with limit equation (A.4) if

f (t, x)→ g(x), t → ∞, locally uniformly in x ∈ Rn,

i.e., for x in any compact subset of Rn. Assume that f (t, x), g(x) are continuous functions and locally
Lipschitz in x.
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Lemma 1. ([23]) The ω-limit set Ω of a forward bounded solution x to (A.3) is not empty, compact
and connected. Moreover, Ω attracts x, i.e.,

dist(x(t),Ω)→ 0, t → ∞.

Hence, Ω is invariant under (A.3). In particular, any point in Ω lies on an orbit of (A.4) in Ω.

Lemma 2. ([23]) Let Ê be a locally asymptotically stable equilibrium of (A.4) and let Ω be the ω-limit
set of forward bounded solution x of (A.3). If Ω contains a point y0, such that the solution y of (A.4)
with y(0) = y0 converges to Ê when t → ∞. Then, Ω = {Ê}, i.e., x(t)→ Ê when t → ∞.

The existence and stability of coexistence equilibrium E∗ = (x̃1, x̃2, Q̃1, Q̃2) is analyzed below,
where

x̃1 =
d1Q̃1 + c1Q̃2K − c1T

c1(Q̃2 − Q̃1)
, x̃2 =

d2Q̃2 + c2Q̃1K − c2T
c2(Q̃1 − Q̃2)

,

x̃1 + x̃2 = K.

Theorem 2. If Q̃1 > q1, Q̃2 > q2 and c2d1Q̃1
2
−c1d2Q̃2

2

c1c2(Q̃2−Q̃1) < 0, E∗ exists and it is globally asymptotically
stable.

Proof The Jacobian matrix at E∗ is

J(E∗)=


−

r1 x̃1
K −

r1 x̃1
K 0 0

−
r2 x̃2

K −
r2 x̃2

K 0 0
Q̃1

(
r1
K − c1

)
Q̃1r1

K − c1Q̃2 −c1 x̃1 − d1 −c1 x̃2
Q̃2r2

K − c2Q̃1 Q̃2

(
r2
K − c2

)
−c2 x̃1 −c2 x̃2 − d2

.
The eigenvalues of J(E∗) are

λ1 = 0, λ2 = −
r1 x̃1 + r2 x̃2

K
< 0,

λ3 = −
c1 x̃1 + c2 x̃2 + d1 + d2

2
+

√
(c1 x̃1 + c2 x̃2 + d1 + d2)2 − 4(c2 x̃2d1 + c1 x̃1d2 + d1d2)

2
< 0,

λ4 = −
c1 x̃1 + c2 x̃2 + d1 + d2

2
−

√
(c1 x̃1 + c2 x̃2 + d1 + d2)2 − 4(c2 x̃2d1 + c1 x̃1d2 + d1d2)

2
< 0.

We divide (A.2) into two subsystems. Next, we consider the following submodel of (A.2)
dx1
dt = r1x1

(
1 − x1 + x2

K
)
= f (x1, x2),

dx2
dt = r2x2

(
1 − x1 + x2

K
)
= g(x1, x2).

(A.5)

Let
B(x1, x2) =

1
x1x2
,

then

∂(B f )
∂x1

+
∂(Bg)
∂x2

= −
r1

Kx2
−

r2

Kx1
< 0.
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Therefore, (A.5) has no limit cycle by Dulac’s criterion [25]. Both boundary equilibria of (A.5) are
unstable. Therefore, the solution of (A.5) will tend to the globally asymptotically stable internal
equilibrium, implying that the solution of (A.5) will approach the line x1 = K − x2.

Note that the first two equations of (A.2) are independent on Q1 and Q2. Moreover, (x̃1, x̃2) is
globally asymptotically stable. Next, we analyze the last equations of (A.2)

dQ1
dt = g1(T − Q1x1(t) − Q2x2(t)) − d1Q1,

dQ2
dt = g2(T − Q1x1(t) − Q2x2(t)) − d2Q2.

(A.6)

According to the above analysis in (A.5), the solution of the (A.5) will approach the line x1 = K − x2.
Let limt→∞ x1(t) = m, limt→∞ x2(t) = K − m = n. Here, m < min{K,T/q1} and n < min{K,T/q2}.
Moreover, Q1m + Q2n < T . Then, the limiting system of (A.6) is

dQ1
dt = c1T − (c1m + d1)Q1 − c1nQ2 = P1(Q1,Q2),

dQ2
dt = c2T − c2mQ1 − (c2n + d2)Q2 = P2(Q1,Q2).

(A.7)

Let
D(x1, x2) =

1
Q1Q2

,

then
∂(DP1)
∂Q1

+
∂(DP2)
∂Q2

=
c1Q2(nQ2 − T ) + c2T (mQ1 − T )

Q2
1Q2

2

.

Clearly, nQ2 < T and mQ1 < T . It implies that ∂(DP1)
∂Q1
+
∂(DP2)
∂Q2

< 0. Therefore, it can be concluded
that (A.7) has no limit cycle by applying Dulac’s criterion [25] and the solution of (A.7) will tend
to be globally asymptotically stable. This means that the solution of (A.6) will approach the line
Q1 =

c1d2
c2d1

Q2. By the theory of asymptotic autonomous systems, the internal equilibrium (Q̃1, Q̃2) of
(A.6) is globally asymptotically stable. Hence, (A.2) has no nontrivial periodic solutions in Φ(Ω). The
internal equilibrium E∗ of (A.2) is globally asymptotically stable.

Case 2. x1 + x2
K >

q1
Q1

, x1 + x2
K <

q2
Q2

dx1
dt = r1x1

(
1 − x1 + x2

K
)
,

dx2
dt = r2x2

(
1 − q2

Q2

)
,

dQ1
dt = c1(T − Q1x1 − Q2x2) − d1Q1 − Q1r1

(
1 − x1 + x2

K
)
,

dQ2
dt = c2(T − Q1x1 − Q2x2) − d2Q2 − Q2r2

(
1 − q2

Q2

)
.

(A.8)

In Case 2, the boundary equilibrium is E1
1 =
(
0, T

q2
−

d2
c2
,

c1Kd2q2
2

c2q2K(d1+r1)−r1(c2T−d2q2) , q2

)
and the coexistence

equilibrium is E1
∗ = (x∗11 , x

∗1
2 ,Q

∗1
1 ,Q

∗1
2 ), where

x∗11 = K −
d2q2(d1 + c1K) − c2d1T

q2(d2c1 − d1c2)
, x∗12 =

d2q2(d1 + c1K) − c2d1T
q2(d2c1 − d1c2)

,

Q∗11 =
d2q2c1

c2d1
, Q∗12 = q2.

The Jacobian matrix at (x1, x2,Q1,Q2) is
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J(x1, x2,Q1,Q2)=


r1

(
1 − 2x1+x2

K

)
−

r1 x1
K 0 0

0 r2

(
1 − q2

Q2

)
0 r2 x2q2

Q2
2

Q1

(
r1
K − c1

)
Q1r1

K − c1Q2
r1(x1+x2)

K − c1x1 − d1 − r1 −c1x2

−c2Q1 −c2Q2 −c2x1 −c2x2 − d2 − r2

.
Theorem 3. If 0 < T

q2
−

d2
c2
< K and K < (c2T−d2q2)(c1d1q2+r1q1c2)

q1q2c2
2(d1+r1) , E1

1 exists and it is unstable.

Proof The Jacobian matrix at E1
1 is

J(E1
1)=


r1

(
1 − x2

K

)
0 0 0

0 0 0 r2 x2
q2

Q1

(
r1
K − c1

)
Q1r1

K − c1q2
r1 x2

K − d1 − r1 −c1x2

−c2Q1 −c2q2 0 −c2x2 − d2 − r2

.
The eigenvalues of J(E1

1) are

λ1 = r1

(
1 −

T
q2
−

d2
c2

K

)
> 0, λ2 =

r1

K

( T
q2
−

d2

c2

)
− d1 − r1,

λ3 =

−
(

c2T
q2
+ r2

)
−

√(
c2T
q2
− r2

)2
+ 4r2d2

2
< 0,

λ4 =

−
(

c2T
q2
+ r2

)
+

√(
c2T
q2
− r2

)2
+ 4r2d2

2
.

Since λ1 > 0, E1
1 is unstable.

The existence and local stability of coexistence equilibrium E1
∗ = (x∗11 , x

∗1
2 ,Q

∗1
1 ,Q

∗1
2 ) is analyzed

below, where

x∗11 = K −
d2q2(d1 + c1K) − c2d1T

q2(d2c1 − d1c2)
, x∗12 =

d2q2(d1 + c1K) − c2d1T
q2(d2c1 − d1c2)

,

Q∗11 =
d2q2c1

c2d1
, Q∗12 = q2.

Theorem 4. For the case of d2 >
c2d1q1
c1q2

, 0 < d2q2(d1+c1K)−c2d1T
q2(d2c1−d1c2) < K, d2c1 − d1c2 , 0, E1

∗ exists. E1
∗ is

locally asymptotically stable if d2 <
c2d1
c1

.

Proof The Jacobian matrix at E1
∗ is

J(E1
∗)=


−

r1 x∗11
K −

r1 x∗11
K 0 0

0 0 0 r2 x∗12
q2

Q∗11

(
r1
K − c1

) Q∗11 r1

K − c1q2 −c1x∗11 − d1 −c1x∗12

−c2Q∗11 −c2q2 −c2x∗11 −c2x∗12 − d2 − r2

.
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The corresponding characteristic equation is

f (λ) = λ4 + A1λ
3 + A2λ

2 + A3λ + A4,

where

A1 =
r1x∗11

K
+ c1x∗11 + c2x∗12 + d1 + d2 + r2,

A2 =
r1x∗11 (c1x∗11 + d1 + c2x∗12 + d2 + r2)

K
+ c1x∗11 d2 + c1x∗11 r2 + c2x∗12 d1 + c2r2x∗12 + d1d2 + d1r2,

A3 =
r1x∗11 (c1x∗11 d2 + c1x∗11 r2 + c2x∗12 d1 + c2r2x∗12 + d1d2 + d1r2)

K
+ r2c2d1x∗12 ,

A4 =
r1r2c2x∗11 x∗12 d1(q2 − Q∗11 )

Kq2
.

We verify that

A1 > 0, A1A2 − A3 > 0, and A1A2A3 − A2
1A4 − A2

3 > 0.

If d2 <
c2d1
c1

, A4 > 0. According to the Routh-Hurwitz criterion [24], E1
∗ is locally asymptotically stable.

Case 3. x1 + x2
K <

q1
Q1

, x1 + x2
K >

q2
Q2

dx1
dt = r1x1

(
1 − q1

Q1

)
,

dx2
dt = r2x2

(
1 − x1 + x2

K
)
,

dQ1
dt = c1(T − Q1x1 − Q2x2) − d1Q1 − Q1r1

(
1 − q1

Q1

)
,

dQ2
dt = c2(T − Q1x1 − Q2x2) − d2Q2 − Q2r2

(
1 − x1 + x2

K
)
.

(A.9)

In case 3, the boundary equilibrium is E2
2 =
(

T
q1
−

d1
c1
, 0, q1,

c2Kq2
1d1

Kq1c1(d2+r2)−r2(c1T−d1q1)

)
and the coexistence

equilibrium is E2
∗ = (x∗21 , x

∗2
2 ,Q

∗2
1 ,Q

∗2
2 ), where

x∗21 =
d1q1(d2 + c2K) − c1d2T

q1(d1c2 − d2c1)
, x∗22 = K −

d1q1(d2 + c2K) − c1d2T
q1(d1c2 − d2c1)

,

Q∗21 = q1, Q∗22 =
d1q1c2

c1d2
.

The Jacobian matrix at (x1, x2,Q1,Q2) is

J(x1, x2,Q1,Q2)=


r1

(
1 − q1

Q1

)
0 r1 x1q1

Q2
1

0

−
r2 x2

K r2

(
1 − 2x2+x1

K

)
0 0

−c1Q1 −c1Q2 −c1x1 − d1 − r1 −c1x2
Q2r2

K − c2Q1 Q2

(
r2
K − c2

)
−c2x1

r2(x1+x2)
K − c2x2 − d2 − r2

.
It is verified that E2

0 and E2
1 do not exist.

Theorem 5. If 0 < T
q1
−

d1
c1
< K and K < (c1T−d1q1)(c2q1d1+c1r2q2)

c2
1q1q2(d2+r2) , E2

2 exists and it is unstable.
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Proof The Jacobian matrix at E2
2 is

J(E2
2)=


0 0 r1 x1

q1
0

0 r2

(
1 − x1

K

)
0 0

−c1q1 −c1Q2 −c1x1 − d1 − r1 0
Q2r2

K − c2q1 Q2

(
r2
K − c2

)
−c2x1

r2 x1
K − d2 − r2

.
The eigenvalues of J(E2

2) are

λ1 = r2

(
1 −

T
q1
−

d1
c1

K

)
> 0, λ2 =

r2

K

( T
q1
−

d1

c1

)
− d2 − r2,

λ3 =

−

(
c1T
q1
+ r1

)
−

√(
c1T
q1
− r1

)2
+ 4r1d1

2
< 0,

λ4 =

−

(
c1T
q1
+ r1

)
+

√(
c1T
q1
− r1

)2
+ 4r1d1

2
.

Thus, λ1 > 0 and E2
2 is unstable.

The existence and local stability of coexistence equilibrium E2
∗ = (x∗21 , x

∗2
2 ,Q

∗2
1 ,Q

∗2
2 ) is analyzed

below, where

x∗21 =
d1q1(d2 + c2K) − c1d2T

q1(d1c2 − d2c1)
, x∗22 = K −

d1q1(d2 + c2K) − c1d2T
q1(d1c2 − d2c1)

,

Q∗21 = q1, Q∗22 =
d1q1c2

c1d2
.

Theorem 6. For the case of d1 >
c1d2q2
c2q1

, 0 < d1q1(d2+c2K)−c1d2T
q1(d1c2−d2c1) < K, d1c2 − d2c1 , 0, E2

∗ exists. E2
∗ is

locally asymptotically stable if d1 <
c1d2
c2

.

Proof The Jacobian matrix at E2
∗ is

J(E2
∗)=


0 0 r1 x∗21

q1
0

−
r2 x∗22

K −
r2 x∗22

K 0 0
−c1q1 −c1Q∗22 −c1x∗21 − d1 − r1 −c1x∗22

Q∗22 r2

K − c2q1 Q∗22

(
r2
K − c2

)
−c2x∗21 −c2x∗22 − d2

.
The corresponding characteristic equation is

f (λ) = λ4 + B1λ
3 + B2λ

2 + B3λ + B4,

where

B1 =
r2x∗22

K
+ c1x∗21 + c2x∗22 + d1 + d2 + r1,

B2 =
r2x∗22 (c1x∗21 + d1 + c2x∗12 + d2 + r1)

K
+ c2x∗22 d1 + c2x∗22 r1 + c1x∗21 d2 + c1r1x∗21 + d1d2 + d2r1,
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B3 =
r2x2(c2x∗22 d1 + c2x∗22 r1 + c1x∗21 d2 + c1r1x∗21 + d1d2 + d2r1)

K
+ r1c1d2x∗21 ,

B4 =
c1r1r2x∗21 x∗22 d2(q1 − Q∗22 )

q1K
.

We verify that

B1 > 0, B1B2 − B3 > 0, and B1B2B3 − B2
1B4 − B2

3 > 0.

If d1 <
c1d2
c2

, B4 > 0. According to the Routh-Hurwitz criterion [24], if d1 <
c1d2
c2

, E2
∗ is locally

asymptotically stable.
Case 4. x1 + x2

K <
q1
Q1

, x1 + x2
K <

q2
Q2

dx1
dt = r1x1

(
1 − q1

Q1

)
,

dx2
dt = r2x2

(
1 − q2

Q2

)
,

dQ1
dt = c1(T − Q1x1 − Q2x2) − d1Q1 − Q1r1

(
1 − q1

Q1

)
,

dQ2
dt = c2(T − Q1x1 − Q2x2) − d2Q2 − Q2r2

(
1 − q2

Q2

)
.

(A.10)

In Case 4, (A.10) does not have coexistence equilibrium. The boundary equilibria are

E3
0 =

(
0, 0,

c1T + r1q1

d1 + r1
,

c2T + r2q2

d2 + r2

)
,

E3
1 =

(
0,

T
q2
−

d2

c2
,

c1d2q2 + c2r1q1

c2(d1 + r1)
, q2

)
,

E3
2 =

( T
q1
−

d1

c1
, 0, q1,

c2d1q1 + c1r2q2

c1(d2 + r2)

)
.

The Jacobian matrix at (x1, x2,Q1,Q2) is

J(x1, x2,Q1,Q2)=


r1

(
1 − q1

Q1

)
0 r1 x1q1

Q2
1

0

0 r2

(
1 − q2

Q2

)
0 r2 x2q2

Q2
2

−c1Q1 −c1Q2 −c1x1 − d1 − r1 −c1x2

−c2Q1 −c2Q2 −c2x1 −c2x2 − d2 − r2

.
In the following analysis, let T1 =

d1q1
c1

and T2 =
d2q2
c2

.

Theorem 7. If T ≥ max{T1,T2}, E3
0 exists. If T > T1 or T > T2, E3

0 is unstable in Φ(Ω).

Proof The Jacobian matrix at E3
0 is

J(E3
0)=


r1

(
1 − q1d1+q1r1

c1T+r1q1

)
0 0 0

0 r2

(
1 − q2d2+q2r2

c2T+r2q2

)
0 0

−
c2

1T+c1r1q1

d1+r1
−

c1c2T+c1r2q2
d2+r2

−d1 − r1 0

−
c1c2T+c2r1q1

d1+r1
−

c2
2T+c2r2q2

d2+r2
0 −d2 − r2


.
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The eigenvalues of J(E3
0) are

λ1 = r1

(
1 −

q1d1 + q1r1

c1T + r1q1

)
, λ2 = r2

(
1 −

q2d2 + q2r2

c2T + r2q2

)
,

λ3 = −d1 − r1 < 0, λ4 = −d2 − r2 < 0.

If T > T1 or T > T2, λ1 > 0 or λ2 > 0, E3
0 is unstable. If T = T1 or T = T2 , the stability cannot be

determined.

Theorem 8. If T1 ≤ T2 < T < q2K + T2 and K > (c2T−q2d2)(c1d2q2+c2r1q1)
q1q2c2

2(d1+r1) , E3
1 exists. If T2 > T1, E3

1 is
unstable in Φ(Ω).

Proof The Jacobian matrix at E3
1 is

J(E3
1)=


r1

(
1 − q1c2d1+r1q1c2

c1d2q2+c2r1q1

)
0 0 0

0 0 0 r2T
q2

2
−

d2r2
c2q2

−
c2

1d2q2+c1c2r1q1

c2(d1+r1) −c1q2 −d1 − r1
c1d2
c2
−

c1T
q2

−
c1c2d2q2+c2

2r1q1

c2(d1+r1) −c2q2 0 −
c2T
q2
− r2


.

The eigenvalues of J(E3
1) are

λ1 = r1

(
1 −

q1c2d1 + r1q1c2

c1d2q2 + c2r1q1

)
, λ2 = −d1 − r1 < 0,

λ3 =

−
(

c2T
q2
+ r2

)
−

√(
c2T
q2
− r2

)2
+ 4r2d2

2
< 0,

λ4 =

−
(

c2T
q2
+ r2

)
+

√(
c2T
q2
− r2

)2
+ 4r2d2

2
< 0.

If T2 > T1 and λ1 > 0, E3
1 is unstable. If T2 = T1, the stability of E3

1 cannot be determined.

Theorem 9. If T2 ≤ T1 < T < q1K + T and K > (c1T−q1d1)(c2d1q1+c1r2q2)
q1q2c2

1(d2+r2) , E3
2 exists. If T1 > T2, E3

2 is
unstable in Φ(Ω).

Proof The Jacobian matrix at E3
2 is

J(E3
2)=


0 0 r1T

q2
1
−

d1r1
c1q1

0

0 r2

(
1 − q2c1d2+r2q2c1

c2d1q1+c1r2q2

)
0 0

−c1q1 −
c1c2d1q1+c2

1r2q2

c(d2+r2) −
c1T
q1
− r1 0

−c2q1 −
c2

2d1q1+c1c2r2q2

c1(d2+r2) −c2( T
q1
−

d1
c1

) −d1 − r1


.

The eigenvalues of J(E3
2) are

λ1 = r2

(
1 −

q2c1d2 + r2q2c1

c2d1q1 + c1r2q2

)
, λ2 = −d2 − r2 < 0,
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λ3 =

−
(

c1T
q1
+ r1

)
−

√(
c1T
q1
− r1

)2
+ 4r1d1

2
< 0,

λ4 =

−
(

c1T
q1
+ r1

)
+

√(
c1T
q1
− r1

)2
+ 4r1d1

2
< 0.

If T1 > T2, λ1 > 0, E3
2 is unstable. If T1 = T2, the stability of E3

2 cannot be determined.
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