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Abstract: The classic SIR model is often used to evaluate the effectiveness of controlling infectious
diseases. Moreover, when adopting strategies such as isolation and vaccination based on changes in the
size of susceptible populations and other states, it is necessary to develop a non-smooth SIR infectious
disease model. To do this, we first add a non-linear term to the classical SIR model to describe
the impact of limited medical resources or treatment capacity on infectious disease transmission,
and then involve the state-dependent impulsive feedback control, which is determined by the convex
combinations of the size of the susceptible population and its growth rates, into the model. Further,
the analytical methods have been developed to address the existence of non-trivial periodic solutions,
the existence and stability of a disease-free periodic solution (DFPS) and its bifurcation. Based on the
properties of the established Poincaré map, we conclude that DFPS exists, which is stable under certain
conditions. In particular, we show that the non-trivial order-1 periodic solutions may exist and a non-
trivial order-k (k ≥ 1) periodic solution in some special cases may not exist. Moreover, the transcritical
bifurcations around the DFPS with respect to the parameters p and AT have been investigated by
employing the bifurcation theorems of discrete maps.

Keywords: SIR model; state-dependent feedback control; disease-free periodic solution; transcritical
bifurcation; Poincaré map

1. Introduction

The mathematical model of infectious diseases has always played an important role in the
prevention and control of infectious diseases, for example the classical SIR model is usually used to
describe the transmission dynamics of infectious diseases among humans such as measles,
chickenpox, whooping cough, mumps, etc [1–5]. It not only provides important dynamic descriptions
for the evolution of infectious diseases, but also provides important quantitative tools for evaluating
the effectiveness of various prevention and control strategies. The above important roles have been
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more important in the three years of the COVID-19 outbreak. Cui et al. consider the impact of limited
medical resources or treatment capacity on infectious disease transmission to develop the SIR
model [6–8] with nonlinear term, as shown in Figure 1, which illustrates the relationships between S ,
I and R, where S , I,R represent the density of susceptible, infected and recovered population,
respectively. The corresponding model is as follows:

dS (t)
dt
= Λ − µS (t) − βS (t)I(t),

dI(t)
dt
= βS (t)I(t) − (µ + d + v)I(t) −

cI(t)
b + I(t)

,

dR(t)
dt
= vI(t) +

cI(t)
b + I(t)

− µR(t),

(1.1)

where

• Λ is the constant recruitment rate of susceptible population, µ is natural death rate, β is the
transmission rate;
• d represents the death rate caused by disease. v is the recovery rate without hospital treatment.

The funtion h(I) = cI/(b+I) is the recovered population with hospital treatment, where c gives the
maximum recovery rate and b is the infected size at which there is 50% saturation (h(b) = c/2).

𝑆(𝑡) 𝐼(𝑡) 𝑅(𝑡)
Λ

𝜇𝑆(𝑡)

𝑐𝐼(𝑡)

𝑏 + 𝐼(𝑡)
+ 𝜐𝐼(𝑡)

𝜇𝑅(𝑡)𝜇𝐼 𝑡 + 𝑑𝐼(𝑡)

𝛽𝑆 𝑡 𝐼(𝑡)

Death Death Death

Figure 1. Diagram of the SIR model adopted in the study for simulating certain infectious
diseases.

Due to the first two equations being independent of the third one, we can only study the following
reduced model: 

dS (t)
dt
= Λ − µS (t) − βS (t)I(t),

dI(t)
dt
= βS (t)I(t) − γI(t) −

cI(t)
b + I(t)

,

(1.2)

where γ = µ + d + v.
Infectious disease prevention and control has been a hot topic in recent years, usually by

controlling the source of infection, cutting off the transmission route and protecting susceptible
people. In practice, we often respond to infectious diseases by vaccinating susceptible populations
and isolating infected individuals for treatment, which often result in the right function of the
dynamical system to be unsmooth or even discontinuous. However the continuous dynamical systems
like the above cannot describe the aforementioned situation. By establishing appropriate
mathematical model, we can quantify these control measures and analyze the effectiveness of the
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measures qualitatively or quantitatively, and the state-dependent impulsive model is one type of
mathematical model that can well characterize infectious disease control [9–11]. The model assumes
that no control measures are implemented when the number of susceptible population is within a
certain range, and that comprehensive measures including immunization of the susceptible population
and treatment of infected persons are taken when the size of the susceptible population reaches or
exceeds the control threshold. Subsequently, numerous scholars have developed a large number of
state-dependent impulsive models for different types of infectious disease characteristics and
discussed the impact of state-dependent impulsive control strategies on the dynamic behaviors, such
as disease elimination and epidemics.

Zhang et al. [12] and Cheng et al. [13] qualitatively analyzed the state-dependent impulsive models
under different control measures. There have been relatively systematic studies on single-threshold
state-dependent impulsive models [14–20], but it is of concern that if only the size of the susceptible
population is used as the basis for control, the following two situations may occur: one in which the size
of the susceptible population is small but the growth rate is large, and the other in which there is a larger
susceptible population but its growth rate is relatively small. Then in the first case, due to the delay
effect, it may not be possible to achieve the desired prevention and control goal; similarly, in the second
case, if the growth rate is small, there is no need for infectious disease prevention and control [21–24].
Therefore, this paper integrates the case of threshold control for a convex combination of the size of the
susceptible population and its growth rates, which is more complex but closer to reality. Thus, based
on model (1.2), we propose the following state-dependent feedback control SIR model:

dS (t)
dt
= Λ − µS (t) − βS (t)I(t),

dI(t)
dt
= βS (t)I(t) − γI(t) −

cI(t)
b + I(t)

,

 α1S (t) + α2
dS (t)

dt < AT,

S (t+) = (1 − p)S (t),

I(t+) = (1 − q)I(t),

´
α1S (t) + α2

dS (t)
dt = AT.

(1.3)

Here, non-negative constant AT represents the action threshold and non-negative constants α1 and
α2 are the weight parameter in the threshold condition and satisfies α1 + α2 = 1. p ∈ [0, 1] denotes the
vaccination rate of the susceptible population and q ∈ [0, 1] the isolated ratio of the infected population.
Considering the practical significance, we assume that the initial value (S 0, I0) of system (1.3) comes
from the domain Ω, where

Ω := {(S , I) | α1S 0 + α2(Λ − µS 0 − βS 0I0) < AT, S 0 ≥ 0, I0 ≥ 0}. (1.4)

Otherwise, the initial values are taken after an integrated control strategy application [25, 26].
The main purpose of this study is to investigate the dynamics of the proposed state-dependent

impulsive model, including but not limited to the periodic solutions and the bifurcations. The
organization of the rest part of the paper is as follows: In Section 2, we first give the basic definitions
of the state-dependent impulsive model and some lemmas on the stability of the disease-free periodic
solution (DFPS). The main properties of the ordinary differential equation (ODE) are also introduced
in this section. In Section 3, we address the existence and stability of the periodic solution including
DFPS and the non-trivial periodic solution by analyzing the properties of ODE and the Poincaré map.
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In Section 4, the transcritical bifurcations have been investigated with respect to two interesting
parameters [27–39]. Finally, we summarize the whole work and give some discussions in the last
section.

2. Preliminaries and notations

2.1. Planar impulsive semi-dynamic systems and preliminaries

In this section, we will give a brief summary about the main results used in the following section.
Consider the following generalized planar impulsive semi-dynamic system{ dx

dt
= F1(x, y),

dy
dt
= F2(x, y), i f ϕ(x, y) , 0,

∆x = ᾱ(x, y), ∆y = β̄(x, y), i f ϕ(x, y) = 0.
(2.1)

Here, (x, y) ∈ R2
+ = {(x, y)|x ≥ 0, y ≥ 0}, △x = x+ − x and △y = y+ − y. F1, F2, ᾱ, β̄ are continuous

functions from R2
+ into R. The impulsive function H : R2

+ → R2
+ is defined as

H(x, y) = (H1(x, y),H2(x, y)) = (x + ᾱ(x, y), y + β̄(x, y))

and N+ = (x+, y+) is called an impulsive point of M = (x, y). We can define the planar impulsive
semi-dynamic system and an order-k periodic solution of model (2.1) in the following based on the
notation and definition presented in literatures [17, 40, 41].

Definition 2.1. A solution (x(t), y(t)) of an impulsive system is said to be an order-k periodic solution
with period T , if T is the smallest positive number satisfying (x(t + kT ), y(t + kT )) = (x(t), y(t)) for all
k ≥ 0 and t ≥ 0, and the trajectory (x(t), y(t)) pulses k times within period T .

Further, the following analogue of Poincaré criterion can be used to analyze the local stability of an
order-k periodic solution.

Lemma 2.1. ( [42]) The solution (x(t), y(t)) = (ξ(t), η(t)) with T-periodic of the system (2.1) is orbitally
asymptotically stable if the Floquet multiplier µ2 satisfies the condition | µ2 |< 1, where

µ2 =

q∏
k=1

△k exp

ñ∫ T

0

Å
∂F1

∂x
(ξ(t), η(t)) +

∂F2

∂y
(ξ(t), η(t))

ã
dt

ô
, (2.2)

with

∆k =
F+1
Ä
∂β̄

∂y
∂ϕ

∂x −
∂β̄

∂x
∂ϕ

∂y +
∂ϕ

∂x

ä
+ F+2

Ä
∂ᾱ
∂x
∂ϕ

∂y −
∂ᾱ
∂y
∂ϕ

∂x +
∂ϕ

∂y

ä
F1
∂ϕ

∂x + F2
∂ϕ

∂y

, (2.3)

and F1, F2,
∂ᾱ
∂x ,

∂ᾱ
∂y ,

∂β̄

∂x ,
∂β̄

∂y ,
∂ϕ

∂x ,
∂ϕ

∂y can be calculated at the point (ξ(τk), η(τk)), and
F+1 = F1(ξ(τ+k ), η(τ+k )), F+2 = F2(ξ(τ+k ), η(τ+k )). Here ϕ(x, y) is sufficiently smooth such that grad
ϕ(x, y) , 0, and τk(k ∈ N) is the moment of the k-th impulse effect.

In order to discuss the bifurcation of the Poincaré map, we introduce the following lemma:
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Lemma 2.2. (Transcritical bifurcation [43]) Let : U ×Θ −→ R define a one-parameter family of maps
P(I, α), where P is Cr with r ≥ 2, and U, Θ are open intervals of the real line containing 0. Assume
that

P(0, α) = 0 for all α,
∂P

∂I
(0, 0) = 1,

∂2P

∂I∂α
(0, 0) > 0,

∂2P

∂I2 (0, 0) > 0.

Then there are α1 < 0 < α2 and ε > 0 such that:

(i) If α1 < α < 0, Pα has two fixed points, 0 and I1α > 0 in (−ε, ε). The origin is asymptotically
stable, the other fixed point is unstable.

(ii) If 0 < α < α2, Pα has two fixed points, 0 and I1α < 0 in (−ε, ε). The origin is unstable, the other
fixed point is asymptotically stable.

Here again, the case ∂2P
∂I∂α (0, 0) < 0 is handled by making the change of parameter α→ −α.

2.2. The main properties of ODE system

Firstly, we focus on the ODE system:
dS (t)

dt
= Λ − µS (t) − βS (t)I(t)

dI(t)
dt
= βS (t)I(t) − γI(t) −

cI(t)
b + I(t)

.

(2.4)

It’s easy to know that system (2.4) has one disease-free equilibrium at E0 = (Λ
µ
, 0). By calculating

the Jacobian matrix at E0, we have the following lemma.

Lemma 2.3. E0 is locally asymptotically stable if R0 := Λbβ
µ(bγ+c) ≤ 1 and unstable if R0 > 1.

Then we focus on the existence and stability of the endemic equilibrium. Let®
Λ − µS − βS I = 0

βS I − γI − cI
b+I = 0,

(2.5)

then  S =
1
β

(γ +
c

b + I
)

I2 + a1I + a2 = 0,
(2.6)

where a1 =
βγb+µγ+cβ−Λβ

βγ
, a2 =

µγb+cµ−Λβb
βγ

= Λb
γ

( 1
R0
− 1). The positive root of I2 + a1I + a2 = 0 implies

the existence of the endemic equilibrium. So it’s easy to prove the following lemma:

Lemma 2.4. For the existence of the endemic equilibrium, we have the following conclusion:

1. If R0 > 1, then there exists a unique endemic equilibrium.

2. If R0 = 1, then there is no endemic equilibrium when a1 ≥ 0 and there exists a unique endemic
equilibrium when a1 < 0.

3. If R0 < 1 and a1 ≥ 0 , then there is no endemic equilibrium.
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4. If R0 < 1 and a1 < 0, then we have R∗0 = ( a2
1γ

4Λb + 1)−1 and there is no endemic equilibrium when
R0 < R∗0, otherwise there exists a unique endemic equilibrium of multiplicity two or two endemic
equilibria when R0 = R∗0 or R0 > R∗0, respectively.

If R∗0 < R0 < 1 and a1 < 0, E∗1(S ∗1, I
∗
1) and E∗2(S ∗2, I

∗
2) are the corresponding equilibria, where

S ∗1 =
1
β

(γ +
c

b + I∗1
), S ∗2 =

1
β

(γ +
c

b + I∗2
),

I∗1 =
−a1 +

√
∆

2
, I∗2 =

−a1 −
√
∆

2
,

and ∆ = a2
1 − 4a2.

The Jacobian of the system (2.4) at E∗(S ∗, I∗) isÇ
−µ − βI∗ −βS ∗

βI∗ cI∗
(b+I∗)2

å
and the characteristic equation is given by

λ2 + H(I∗)λ + βI∗G(I∗) = 0, (2.7)

where
H(I∗) = µ + βI∗ −

cI∗

(b + I∗)2 ,G(I∗) = γ +
c

(b + I∗)2 (b −
µ

β
). (2.8)

Therefore, we have the following lemmas about the stability of the endemic equilibrium:

Lemma 2.5 ( [7]). If R0 > 1, b > µ

β
, then the endemic equilibrium E∗ is a stable node or focus when

H(I∗) > 0; E∗ is an unstable node or focus when H(I∗) < 0; E∗ is a center when H(I∗) = 0.

Lemma 2.6 ( [7]). If R∗0 < R0 < 1, b > µ
β

and a1 < 0, then the endemic equilibrium E∗2 is a saddle; E∗1
is a stable node or focus when H(I∗) > 0; E∗1 is an unstable node or focus when H(I∗) < 0; E∗1 is a
center when H(I∗) = 0.

2.3. Notations

We firstly denote some essential curves for the further study in the next section.
The vertical and horizontal isoclines of system (1.2) are shown below,

L1 : I =
Λ

βS
−
µ

β
and L2 : I =

c
βS − γ

− b,

which intersect with S-axis at (Λ
µ
, 0) and ( 1

β
( c

b + γ), 0), respectively. The positional relationship of the
two points is determined by R0, that is, Λ

µ
> 1
β
( c

b + γ) when R0 > 1 and Λ
µ
< 1
β
( c

b + γ) when R0 < 1. In
addition, the intersection point of L1 and L2 in the first quadrant is the endemic equilibrium of system
(1.2).

In the phase plane, we can define the impulsive curve LM and the phase curve LN , which once the
trajectory intersects with LM, it will impulse to LN . And we can get the expression of LM and LN by
α1S (t) + α2

dS (t)
dt = AT and impulse functions [21–24].
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When α1 = 1, the impulsive curve LM and the phase curve LN of system (1.3) are straight lines
S = AT and S = (1 − p)AT , respectively.

When α1 ∈ [0, 1), the impulsive curve LM of system (1.3) is a curve I = LM(S ), where

LM(S ) = −
AT − α2Λ

α2βS
+

(α1 − α2µ)
α2β

, (2.9)

which follows from α1S (t) + α2
dS (t)

dt = AT . LM intersects with S-axis and L1 at M0(S v, 0) and
M1(S L, L1(S l1)), where

S v =
AT − α2Λ

α1 − α2µ
and S l1 =

AT
α1
, (2.10)

respectively. Based on the biological significance of system (1.3), here

AT − α2Λ > 0 and α1 − α2µ > 0. (2.11)

And thus function I = LM(S ) monotonically increases with respect to S . The phase curve LN is
represented by an increasing function I = LN(S ) correspondingly, where

LN(S ) = (1 − q)LM

Å
S

1 − p

ã
. (2.12)

By solving LM(S ) = LN(S ), we conclude that curves LM and LN have a unique intersection point,
denoted as (S mn, LM(S mn)), where S mn =

1−(1−p)(1−q)
q S v > S v.

We define some auxiliary functions as follows (see more details in [44, 45]),

P(S , I) := LM(S ) − I = −
AT − α2Λ

α2βS
+

(α1 − α2µ)
α2β

− I,

Q(S , I) := LN(S ) − I = −(1 − p)(1 − q)
AT − α2Λ

α2βS
+ (1 − q)

Å
(α1 − α2µ)
α2β

− I
ã
.

Thus,

(PS , PI) = (
AT − α2Λ

α2βS 2 ,−1) and (QS ,QI) = ((1 − p)(1 − q)
AT − α2Λ

α2βS 2 ,−(1 − q))

represent the normal vectors of the impulsive curve LM and the phase curve LN , respectively. Let
( dS

dt ,
dI
dt ) denote the tangent vector of the phase orbit of system (1.2). Denote

σM(S , I) = (PS , PI) ·
Å

dS
dt
,

dI
dt

ã
and σN(S , I) = (QS ,QI) ·

Å
dS
dt
,

dI
dt

ã
, (2.13)

which are useful in section 3. Note that for a point (S , I) satisfying P(S , I) = 0,

• if σM(S , I) > 0, a trajectory pulses at point (S , I) and pulses to point ((1 − p)S , (1 − q)I);
• if σM(S , I) = 0, a trajectory is tangent to the impulsive curve LM and pulses to point ((1− p)S , (1−

q)I);
• if σM(S , I) < 0, a trajectory passes through point (S , I) and no pulse occurs at this point.

For a point (S , I) satisfying Q(S , I) = 0,

• if σN(S , I) > 0, a trajectory passes through point (S , I) from above curve LN to below;
• if σN(S , I) = 0, a trajectory is tangent to the phase curve LN at (S , I);
• if σN(S , I) < 0, a trajectory passes through point (S , I) from below curve LN to above.
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3. Existence and stability of periodic solution

3.1. Disease-free periodic solution

Let I(0) = 0 in system (1.3), then I(t) ≡ 0 and S (t) satisfies the following equations:
dS (t)

dt
= Λ − µS (t), S (t) < S v,

S (t+) = (1 − p)S (t), S (t) = S v,

(3.1)

where S v =
AT−α2Λ

α1−α2µ
> 0 since both α1 − α2µ and AT − α2Λ are positive in this article.

Solving the first equation of system (3.1) with the initial condition S (0) = (1 − p)S v, we have

S (t) =
Λ

µ
−
Λ − µ(1 − p)S v

µ
e−µt.

Obviously, if S v <
Λ
µ

, then the model (3.1) has a periodic solution S̃ (t) with period T , here

T = −
1
µ

ln
Λ − µS v

Λ − µ(1 − p)S v
> 0 (3.2)

and

S̃ (t) =
Λ

µ
−
Λ − µ(1 − p)S v

µ
e−µ(t−(n−1)T ), t ∈ ((n − 1)T, nT ], n ∈ N. (3.3)

It follows from the relationship of system (1.3) and system (3.1) that the following theorem holds
true naturally.

Theorem 3.1. If S v <
Λ
µ

, then system (1.3) has a DFPS (S̃ (t), 0) with period T .

Using Lemma 2.1, the stabilities of the DFPS are shown in the following theorems.

Theorem 3.2. If R0 ≤ 1 and S v <
Λ
µ

, then the DFPS (S̃ (t), 0) of system (1.3) is locally orbitally
asymptotically stable.

Proof. Under the assumptions R0 ≤ 1 and S v <
Λ
µ

, we claim that the DFPS (S̃ (t), 0) of system (1.3)
is orbitally asymptotically stable. For system (1.3), there are F1(S , I) = Λ − µS − βS I, F2(S , I) =
βS I−γI− cI

b+I , ᾱ(S , I) = −pS , β̄(S , I) = −qI, ϕ(S , I) = α1S +α2(Λ−µS −βS I)−AT , (S̃ (T ), 0) = (S v, 0),
and (S̃ (T+), 0) = ((1 − p)S v, 0). Thereby,

∂F1
∂S = −µ − βI,

∂F2
∂I = βS − γ −

bc
(b+I)2 ,

∂ᾱ
∂S = −p, ∂β̄

∂I = −q,
∂ᾱ
∂I =

∂β̄

∂S = 0, ∂ϕ

∂S = α1 − α2µ − α2βI,
∂ϕ

∂I = −α2βS ,
(3.4)

△1 =
F+1
Ä
∂β̄

∂I
∂ϕ

∂S −
∂β̄

∂S
∂ϕ

∂I +
∂ϕ

∂S

ä
+ F+2

Ä
∂ᾱ
∂S
∂ϕ

∂I −
∂ᾱ
∂I
∂ϕ

∂S +
∂ϕ

∂I

ä
F1
∂ϕ

∂S + F2
∂ϕ

∂I

=
(1 − q)F+1

F1
=

(1 − q)F1(S̃ (T+), 0)
F1(S̃ (T ), 0)

= (1 − q)
Λ − µ(1 − p)S v

Λ − µS v
,
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and

exp

Ç∫ T

0

Å
∂F1

∂S
(S̃ (t), 0) +

∂F2

∂I
(S̃ (t), 0)

ã
dt

å
= exp

Ç∫ T

0

(
−µ − γ −

c
b
+ βS̃ (t)

)
dt

å
=

Å
Λ − µS v

Λ − µ(1 − p)S v

ã bµ2+bµγ+cµ−Λbβ
bµ2

exp
Å
−

pβS v

µ

ã
.

Taking the above two equations into formula (2.2) yields

µ2 =△1 exp

Ç∫ T

0

Å
∂F1

∂S
(S̃ (t), 0) +

∂F2

∂I
(S̃ (t), 0)

ã
dt

å
=(1 − q)

Å
Λ − µS v

Λ − µ(1 − p)S v

ã bµγ+cµ−Λbβ
bµ2

exp
Å
−

pβS v

µ

ã
,

(3.5)

where (1 − q) exp
Ä
−

pβS v
µ

ä
∈ [0, 1). Moreover, It follows from S v <

Λ
µ

and R0 =
Λbβ
µ(bγ+c) ≤ 1 thatÄ

Λ−µS v
Λ−µ(1−p)S v

ä bµγ+cµ−Λbβ
bµ2 ∈ (0, 1]. Therefore, when S v <

Λ
µ

and R0 ≤ 1 there is |µ2| < 1, i.e., (S̃ (t), 0) is
orbitally asymptotically stable. □

The attraction domain of DFPS when R0 ≤ 1 and S v <
Λ
µ

will be introduced in the next subsection
(see Theorem 3.4). With regard to R0 > 1, we have the following conclusion:

Theorem 3.3. If R0 > 1 and S v ≤ (γ+ c
b )/β hold true, then the DFPS is locally orbitally asymptotically

stable.

Proof. It follows from Eq (3.5) that

µ2|q=0 =

Å
Λ − µS v

Λ − µ(1 − p)S v

ã bµγ+cµ−Λbβ
bµ2

exp
Å
−

pβS v

µ

ã
= exp

Ç∫ S v

(1−p)S v

βs − γ − c
b

Λ − µs
ds

å
> 0.

(3.6)

Let

f (s) :=
βs − γ − c

b

Λ − µs
.

It follows from R0 > 1 that
d f (s)

ds
=
Λbβ − bµγ − cµ

b(Λ − µs)2 > 0,

which indicates that f (s) is increasing and f ( 1
β
(γ+ c

b )) = 0. Thus, if S v ≤
1
β
(γ+ c

b ) then f (s) ≤ 0 for all
s ∈ [(1 − p)S v, S v] and 0 < µ2|q=0 ≤ 1. Moreover, it follows from the formula of µ2 that we have

∂µ2

∂q
= −µ2|q=0 < 0, µ2|q=1 = 0.

Therefore, if R0 > 1 and S v ≤
1
β
(γ + c

b ), i.e., 0 < µ2|q=0 ≤ 1, then |µ2| = (1 − q)(µ2|q=0) < 1 holds for
all q ∈ (0, 1], which means that the DFPS is locally orbitally asymptotically stable. □
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Corollary 3.1. If R0 > 1, (γ + c
b )/β ≤ (1 − p)S v < S v <

Λ
µ

and q = 0 hold true, then the DFPS is
unstable.

Remark 3.1. When R0 > 1, (1 − p)S v < (γ + c
b )/β < S v <

Λ
µ

and q = 0 hold true, µ2 = 1 may occur,
which means that the bifurcation phenomenon may exist near the DFPS with respect to the critical
parameters (see Section 4).

3.2. Non-trivial periodic solution

In this section, we first define the Poincaré map of system (1.3), and then discuss its main properties,
which help us to discuss the non-trivial periodic solution of the system.

3.2.1. Formation of Poincaré map PM

Suppose N0 is the phase set andM0 is the impulsive set. If the solution starting from N+n (S +n , I
+
n ) ∈

N0 ⊂ LN will arrive at the threshold line LM for the first time after a finite time, then the intersection
point can be marked as Mn+1(S n+1, In+1), as shown in Figure 2. Point Mn+1 ∈ M0 and it will pulse to
point N+n+1(S +n+1, I

+
n+1) ∈ N0. The relation between N+n and N+n+1 is determined by the solution of the

ODE system. Thus we define

S n+1 := PM(S +n , I
+
n ), In+1 := PN(S +n , I

+
n ),

where

I+n = LN(S +n ), In+1 = LM(S n+1).

Therefore we have the following difference equations:®
S n+1 = PM(S +n , I

+
n ),

In+1 = LM(PM(S +n , I
+
n )),

(3.7)

i.e., we have ®
S +n+1 = (1 − p)PM(S +n , I

+
n ),

I+n+1 = (1 − q)LM(PM(S +n , I
+
n )).

(3.8)

Then a Poincaré map can be defined as follows:

PM(S +n ) := S +n+1 = (1 − p)PM(S +n , LN(S +n )). (3.9)

According to the existence of the endemic equilibrium, we discuss the existence and stability of
system (1.3) by analyzing the properties of Poincaré map PM in the following cases. It is worth
reiterating that we assume that the initial value (S 0, I0) comes from the domain Ω where

Ω := {(S , I) | I > LM(S ), S ≥ 0, I ≥ 0}. (3.10)

Mathematical Biosciences and Engineering Volume 20, Issue 10, 18861–18887.



18871

3.2.2. The system has no endemic equilibrium

Suppose R0 ≤ 1 and a1 ≥ 0 or R0 < 1 and R0 < R∗0 in this subsection. Lemma 2.4 shows that
under the above conditions system (1.2) has a unique disease-free equilibrium (Λ

µ
, 0), which is globally

stable. Combining it with (1− p)S v <
Λ
µ

, we can conclude that any trajectory of system (1.3) undergoes
finitely times impulses or is free from pulse effect, and then tends to (Λ

µ
, 0) when Λ

µ
≤ S v <

1
β
( c

b + γ).
When S v ≥

1
β
( c

b +γ), by calculating the function σM(S , LM(S )) defined in (2.13), we can easily get that
σM(S , LM(S )) < 0 for all S ≥ S v, that is, system (1.3) has no impulsive effect in this case. Thus, system
(1.3) may experience infinitely many impulsive effects only if S v <

Λ
µ

. So we discuss the dynamics of
system (1.3) under the condition S v <

Λ
µ

in the following text.
Firstly, the curves mentioned in Section 2.3, L1, L2, LM, LN , divide the plane into several parts. For

example, if the relative positions of the impulsive curve and the isoclinic lines are shown in the Figure
2, we marked the parts as V1,V2, ...,V9 (see Figure 2).

Figure 2. Phase diagram of system (1.3) when R0 ≤ 1, a1 ≥ 0 or R0 < R∗0, and S mn >

(1 − p)S σ. The parameters are Λ = 15, µ = 0.2, β = 0.12, γ = 1.5, b = 3, c = 30, AT =
30, p = 0.2, q = 0.6, α1 = 0.8, α2 = 0.2.

What’s more, by calculating the function σM(S , LM(S )), we can get that there exists at least one
point M̄(S σ, LM(S σ)) satisfying σM(M̄) = 0. Therefore, the precise impulsive set is
M0 = {(S , LM(S ))|S ∈ D)} and the precise phase set is N0 = {(S , LN(S ))|S ∈ (1 − p)D}, where

D := [S v, S d], S d := min
ß

S σ,
S mn

1 − p

™
, (3.11)

S σ ∈ (S v,+∞) is the root of σM(S , LM(S )) = 0, and S mn is the unique root of LM(S ) − LN(S ) = 0.
We first discuss the following in the situation that S mn > (1 − p)S σ (see Figure 2). Any trajectory

from initial point in part V1, part V2 ,part V3 and part V5 will stay in part V4 after a finite number of
impulsive effects. However, we have dI

dt < 0 in part V4, and the impulsive effect will decrease S and
I. Thus, the trajectory will decreasingly converge to the disease free periodic solution and will not
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have a non-trivial periodic solution (Figure 2). The domain of attraction of DFPS (S̃ (t), 0) is Ω. Then
if S mn < (1 − p)S σ, we denote the trajectory passing through the intersection of LM and LN , Pmn, as
Γmn, which divides Ω as Ω1(above) and Ω2(below). Apparently, any trajectory from an initial point in
Ω1 will converge to DFPS (S̃ (t), 0) with the impulsive effect and any trajectory from an initial point
in Ω2 undergoes at most one pulse and then tends to the boundary equilibrium (Λ

µ
, 0). So we have the

following theorem:

Theorem 3.4. Suppose R0 ≤ 1 and a1 ≥ 0 or R0 < 1 and R0 < R∗0. When S v ≥
Λ
µ

then (Λ
µ
, 0) is globally

stable on Ω. When S v <
Λ
µ

then (Λ
µ
, 0) and DFPS (S̃ (t), 0) are bistable and their domains of attraction

are Ω1 and Ω2, respectively.

3.2.3. The system has one endemic equilibrium

Based on the analysis in Section 2.2 (Lemma 2.4) and the relative position between the isoclinic
lines and the impulsive curve, we will discuss the following cases:

• case (A): R0 > 1

– case (a1): S v >
Λ
µ

– case (a2): 1
β
(γ + c

b ) < S v <
Λ
µ

– case (a3): S v <
1
β
(γ + c

b )

• case (B): R0 < 1, a1 < 0,R0 = R∗0
In case (a1), the trajectory of system (1.3) has no impulsive effect since σM(S , LM(S )) < 0 for all

S ≥ S v, that is, the solution of system (1.3) is determined by the ODE system (2.4) completely.
In case (a2), it’s easy to calculate that σM(M0) > 0 and σM(M1) < 0, where M0(S v, 0) and

M1(S l1, L1(S l1)) are the intersections of pulse curve LM and S-axis or L1, respectively (see Figure
3(a)). So there exists at least one point M̄ satisfying σM(M̄) = 0. Assume that M̄(S σ, LM(S σ)) is the
only point within the first quadrant that satisfies σM(M̄) = 0. Here, S σ ∈ (S v, S l1). Under this
assumption, the precise impulsive set is M0 = {(S , LM(S ))|S ∈ D)} and the precise phase set is
N0 = {(S , LN(S ))|S ∈ (1 − p)D}, where D is shown in Eq (3.11).

(a) (b)

Figure 3. (a) is the phase diagram of system (1.3) when R0 > 1 and 1
β
(γ + c

b ) < S v <
Λ
µ

,
and (b) is the corresponding Poincaré map PM. The parameters are Λ = 40, µ = 0.5, β =
0.08, γ = 1.5, b = 12, c = 20, AT = 40, p = 0.5, q = 0.2, α1 = 0.8, α2 = 0.2.
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Assume b > µ
β

and H(I∗) > 0 in case (a2), which ensures that E∗ is a globally stable focus or node
of system (1.2) (see Lemma 2.5). Then there is a unique point Ma either on the I-axis or curve LM and
the trajectory of system (1.2) starting from Ma first reaches LM after a finite time t > 0 and intersects
at point M̄ when S σ < S mn

1−p . The trajectory M̆aM̄ divides Ω as Ω3 and Ω4, where Ω3 (resp. Ω4) at the

left (resp. right) of trajectory M̆aM̄. Any trajectory starting from Ω3 will be free from impulsive effects
and tend to E∗. Any trajectory starting from Ω4 will pulse finite (infinite) times. Then by discussing
the properties of the Poincaré map PM defined in Eq (3.9), we have the following main results:

Theorem 3.5. Suppose R0 > 1, 1
β
(γ + c

b ) < S v <
Λ
µ

, b > µ

β
, H(I∗) > 0, S σ is the unique root of

σM(S , LM(S )) = 0 on interval (S v, S l1) and S σ < S mn
1−p .

(i) When M̆aM̄ and LN have at least one intersection point, denoting the smaller one is
N+m(S m, LN(S m)), then the domain of map PM is D1 = [(1 − p)S v, S m] and PM are increasing and
continuous, that is, system (1.3) does not have order-k (k ≥ 2) periodic solution. Moreover, if
S m < (1 − p)S σ, map PM(S ) has at least one fixed point on interval D1 (see Figure 3(b)), that is,
system (1.3) has at least one order-1 non-trivial periodic solution.

(ii) When M̆aM̄ and LN have no intersection point, then the domain of mapPM isD2 = [(1−p)S v, (1−
p)S σ] and PM(S ) are increasing and continuous, that is, system (1.3) does not have order-k
(k ≥ 2) periodic solution.

Proof. Firstly, under the assumptions of Theorem 3.5, it follows from Lemma 2.5 that E∗ is a globally
stable focus or node of system (1.2).

It follows from the vector field of system (1.2), the Poincaré map PM is well defined on interval
D1 for (i) and on interval D2 for (ii). Moreover, as previously analyzed, when S σ < S mn

1−p , the precise
impulsive set of system (1.3) is [S v, S σ]. Therefore, the domain of map PM(S ) as shown in Theorem
(3.5). And to discuss the existence of the periodic solution of system (1.3), we only need to discuss the
properties of the Poincaré map PM defined on interval D1 (resp. D2) for (i) (rsep. for (ii)).

According to the vector field and the uniqueness of the solution of ODE (1.2), we can conclude
that map PM is increasing on its domain. And the continuity of PM can be confirmed by using the
theorem of continuity of the solution of an ODE with respect to its initial value. For a one-dimensional
monotonically increasing discrete map, it is evident that there is no k-periodic point (k ≥ 2), which
indicates that system (1.3) does not have order-k (k ≥ 2) periodic solution.

Finally, we prove that the last part of (i) holds. Theorem 3.3 shows that the DFPS is locally stable,
that is, (1− p)S v = PM((1− p)S v) and dPM(S +0 )

dS +0

∣∣∣
S +0=(1−p)S v

= µ2 < 1. Combining the above with condition

S m < (1 − p)S σ = PM(S m) for increasing map PM, we can conclude that PM has at least one fixed
point on interval ((1− p)S v, S m), as shown in Figure 3(b), which indicates that system (1.3) has at least
one order-1 non-trivial periodic solution. □

Remark 3.2. When the unique endemic equilibrium E∗ is an unstable focus or unstable node or center,
the domain and continuity of map PM are relatively complex. Thus for this case, the properties of map
PM and the existence of periodic solutions of system (1.3) are not discussed in detail in this work, but
it is worth further consideration in the future.
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In case (a3), we consider two special cases that the trajectory is tangent to LN and LM, respectively.
Firstly, there must be a point N̄ ∈ LN satisfying σN(N̄) = 0 because σN(N1) · σN(N2) < 0. The same
exists for M̄ ∈ LM so that σM(M̄) = 0.

Assume that N̄ is the unique point in first quadrant satisfying σN(S , LN(S )) = 0. If the trajectory
from the initial point N̄ can reach the impulsive curve LM, we mark the intersection as Mm. Then
the precise impulsive set isM0 = {(S , LM(S ))|S ∈ [S v, S Mm]}, where S Mm is the horizontal coordinate
of Mm (Figure 4(a)). Further, we mark the parts that are worth discussing as V1,V2,V3 if the relative
positions of the impulsive curve and the isoclinic lines are shown in the Figure 4(a). Based on the
analysis of the ODE system, dI

dt < 0 holds for V1 and V3 while dI
dt > 0 for V2. And the impulsive effect

will always decrease the S and I, so the periodic solution will not appear only in part V3. Once the
orbit crosses from V3 to V2, there may be an order-1 periodic solution.

(a) N̄ exists (b) M̄ exists

Figure 4. The phase diagram of system (1.3) when R0 > 1, S v <
1
β
(γ + c

b ). The parameters
are Λ = 40, µ = 0.2, β = 0.05, γ = 1.5, b = 8, c = 25, AT = 50, p = 0.6, q = 0.6, α1 =

0.79, α2 = 0.21 in (a) and Λ = 40, µ = 0.2, β = 0.05, γ = 1.5, b = 8, c = 25, AT = 50, p =
0.4, q = 0.6, α1 = 0.68, α2 = 0.32 in (b).

Assume that M̄ is the unique point in first quadrant satisfying σM(S , LM(S )) = 0. Moreover,
assuming a reverse trajectory starting from M̄ intersects with LN and first intersects at point
N+m(S m, LN(S m)) (see Figure 4(b)). Thus, the precise impulsive set isM0 = {(S , LM(S ))|S ∈ [S v, S σ]},
where S σ is the horizontal coordinate of M̄. Further, we mark the parts that are worth discussing as
V1,V2 if the relative positions of the impulsive curve and the isoclinic lines are shown in the Figure
4(b). Based on the analysis of the ODE system, dI

dt < 0 holds for V1 while dI
dt > 0 for V2. And the

impulsive effect will always decrease the S and I, so if the orbit crosses from V1 to V2, there may be
an order-1 periodic solution.

Theorem 3.6. Suppose R0 > 1 and S v <
1
β
(γ + c

b ), the system (1.3) may have an order-1 periodic
solution.

In case (B), LM and L2 have a unique intersection point, denoted as ML2 , where S ML2
is the

horizontal coordinate of ML2 . It follows from the vector field of system (1.2) that σM(S , LMS ) < 0 for
all S ≥ S ML2

. Thus, if a trajectory starting from Ω experiences pulse effect, it must pulse at point
(S w1, LM(S w1)), where S w1 < S ML2

, and then pulse to point ((1 − p)S w1, (1 − q)LM(S w1)), which in the
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part dI
dt < 0. Thus, after a finite time, this trajectory will decrease and reach point (S w2, LM(S w2)) on

the pulse curve LM. Here, LM(S w2) < (1 − q)LM(S w1) < LM(S w1). From this, it can be concluded that
the system (1.3) does not have order-1 non-trivial periodic solution, which also indicates that the
system (1.3) does not have an order-k (k ≥ 1) periodic solution except for the DFPS. The specific
conclusion is as follows.

Theorem 3.7. Suppose R0 < 1, a1 < 0,R0 = R∗0, the system (1.3) will not have an order-k periodic
solution (k ≥ 1) except for the DFPS.

3.2.4. The system has two endemic equilibria

Same as case (B), it’s easy to know that the non-trivial periodic solutions are only possible when
S ∗1 <

AT
α1
< S ∗2, where S ∗1 and S ∗2 are the horizontal coordinates of E∗1 and E∗2, respectively. So we just

focus on this situation (see Figure 5).

Figure 5. The phase diagram of system (1.3) when R0 < 1, a1 < 0,R0 > R∗0, S
∗
1 < S v < S ∗2.

The parameters are Λ = 150, µ = 0.2, β = 0.01, γ = 1.2, b = 0.01, c = 7.16, AT = 160, p =
0.5, q = 0.6, α1 = 0.9, α2 = 0.1.

Similar to the above analysis, there must be an M̄ satisfying σM(M̄) = 0. So the precise impulsive
set is M0 = {(S , LM(S ))|S ∈ [S v, S σ]}, where S σ is the horizontal coordinate of M̄. What’s more,
when the trajectory crosses from the part satisfying dI

dt < 0 to the part dI
dt > 0, there may be an order-1

periodic solution.

Theorem 3.8. Suppose R0 < 1, a1 < 0, R0 > R∗0 and S ∗1 <
AT
α1
< S ∗2, where S ∗1 and S ∗2 are the horizontal

coordinates of E∗1 and E∗2, respectively. The system (1.3) may have an order-1 periodic solution.

Corollary 3.2. Replace the inequalities R0 > 1 and 1
β
(γ + c

b ) < S v <
Λ
µ

in Theorem 3.5 by R0 < 1,
a1 < 0, R0 > R∗0 and S ∗1 <

AT
α1
< S ∗2. Then the conclusion of Theorem 3.5 still holds.
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4. Bifurcations when q = 0

Based on Remark 3.1, in order to discuss the bifurcation near the DFPS, we assume that R0 > 1,
(1 − p)S v <

1
β
(r + c

b ) < S v <
Λ
µ

and q = 0 always hold true in this section.
On the phase space {(S , I)|0 ≤ I < L1(S ), 0 < S < Λ

µ
}, considering the following scalar differential

equation
dI
dS
=
βS I − γI − cI

b+I

Λ − µS − βS I
:= h(S , I), (S 0, I0) := (S +n , I

+
n ), (4.1)

where I+n ∈ [0, ϵ), S +n = L−1
N (I+n ) and ϵ is small enough. We can solve I with respect to S as the

following:

I(S ; S +n , I
+
n ) = I+n +

∫ S

S +n (I+n )
h(s, I(s; S +n , I

+
n ))ds. (4.2)

Thus, when q = 0 and the definition of point (S n+1, In+1) ∈ LM is shown in Subsection 3.2.1, the
Poincaré map can be also represented as

P(I+n , α) := I+n+1 = In+1 = I(S n+1; S +n , I
+
n ). (4.3)

Here, I+n ∈ [0, ϵ) is the variable and α ∈ Θ is the parameter of map P(I+n , α). Thus, P is defined as a
one-parameter-family of maps from [0, ϵ) × Θ to R.

Referring to Lemma 2.2, for the purpose of bifurcation analysis about map P(I+n , α), we first
calculate that

∂I(S ; S +n , I
+
n )

∂I+n
= 1 +

∫ S

S +n

∂h(s, I(s; S +n , I
+
n ))

∂I
∂I(s; S +n , I

+
n )

∂I+n
ds −

Å
dS +n
dI+n

∣∣∣∣
I+n =LN (S +n )

ã
h(S +n , I

+
n ). (4.4)

Let

W(I+n ) = 1 −
Å

dS +n
dI+n

∣∣∣∣
I+n =LN (S +n )

ã
h(S +n , I

+
n ).

Utilizing the variable formula, we have

∂I(S ; S +n , I
+
n )

∂I+n
= W(I+n ) exp

Å∫ S

S +n

∂h(s, I(s; S +n , I
+
n ))

∂I
ds
ã
. (4.5)

Further, we denote

In+1 = I(S n+1; S +n , I
+
n ) = I+n +

∫ S n+1

S +n

h(s, I(s; S +n , I
+
n ))ds, (4.6)

where (S +n , I
+
n ) ∈ LN and (S n+1, In+1) ∈ LM. Then we calculate its first-order derivative and second-order

derivative with respect to I+n as follows:

∂In+1

∂I+n
=1 +

∫ S n+1

S +n

∂h(s, I(s; S +n , I
+
n ))

∂I
∂I(s; S +n , I

+
n )

∂I+n
ds −

Å
dS +n
dI+n

∣∣∣∣
I+n =LN (S +n )

ã
h(S +n , I

+
n ) +

dS n+1

dI+n
h(S n+1, In+1)

=
∂I(S ; S +n , I

+
n )

∂I+n

∣∣∣∣
S=S n+1

+
dS n+1

dI+n
h(S n+1, In+1)

=
∂I(S ; S +n , I

+
n )

∂I+n

∣∣∣∣
S=S n+1

+

Å
dS n+1

dIn+1

∣∣∣∣
In+1=LM(S n+1)

ã
∂In+1

∂I+n
h(S n+1, In+1),

(4.7)
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∂2In+1

∂(I+n )2 =
∂

∂I+n

Ç
W(I+n ) exp

Å∫ S n+1

S +n

∂h(s, I(s; S +n , I
+
n ))

∂I
ds
ãå
+

dS n+1

dIn+1

∂2In+1

∂(I+n )2 h(S n+1, In+1)

+
dS n+1

dIn+1

∂In+1

∂I+n

∂h(S n+1, In+1)
∂I+n

+
d2S n+1

d(In+1)2

Å
∂In+1

∂I+n

ã2

h(S n+1, In+1)

= exp
Å∫ S n+1

S +n

∂h(s, I(s; S +n , I
+
n ))

∂I
ds
ãï
∂W(I+n )
∂I+n

+W(I+n )
Å

dS n+1

dIn+1

∂In+1

∂I+n

∂h(S n+1, In+1)
∂I

−
dS +n
dI+n

∂h(S +n , I
+
n )

∂I
+

∫ S n+1

S +n

∂2h(s, I(s; S +n , I
+
n ))

∂I2

∂I(s; S +n , I
+
n )

∂I+n
ds
ãò

+
dS n+1

dIn+1

∂2In+1

∂(I+n )2 h(S n+1, In+1) +
dS n+1

dIn+1

∂In+1

∂I+n

∂h(S n+1, In+1)
∂I+n

+
d2S n+1

d(In+1)2

Å
∂In+1

∂I+n

ã2

h(S n+1, In+1),

(4.8)

where
∂W(I+n )
∂I+n

= −
d2S +n
d(I+n )2 h(S +n , I

+
n ) −

dS +n
dI+n

∂h(S +n , I
+
n )

∂I+n
, (4.9)

∂h(S +n , I
+
n )

∂I+n
=
∂h(S +n , I

+
n )

∂I
+
∂h(S +n , I

+
n )

∂S
dS +n
dI+n
, (4.10)

and
∂h(S n+1, In+1)
∂I+n

=
∂h(S n+1, In+1)

∂I
∂In+1

∂I+n
+
∂h(S n+1, In+1)

∂S
∂S n+1

∂I+n
. (4.11)

Because In+1 = LM(S n+1) and I+n = LM(S +n ), we have

dS n+1

dIn+1
=

Å
dLM(S )

dS

∣∣∣∣
S=S n+1

ã−1

=
α2β(S n+1)2

AT − α2Λ
(4.12)

and
dS +n
dI+n
=

Å
dLN(S )

dS

∣∣∣∣
S=S +n

ã−1

=
α2β(S +n )2

(1 − p)(AT − α2Λ)
. (4.13)

When I+n = 0, then S +n = (1 − p)S v, In+1 = 0, S n+1 = S v =
AT−α2Λ

α1−α2Λ
, h(S +n , I

+
n ) = h((1 − p)S v, 0) = 0,

h(S n+1, In+1) = h(S v, 0) = 0, and thus

∂In+1

∂I+n

∣∣∣∣
I+n =0
= exp

Å∫ S v

(1−p)S v

∂h(s, 0)
∂I

ds
ã
= exp

Å∫ S v

(1−p)S v

βs − γ − c
b

Λ − µs
ds
ã
= µ2, (4.14)

∂2In+1

∂(I+n )2

∣∣∣∣
I+n =0
=µ2

Å
−

2α2β(1 − p)S 2
v

(AT − α2Λ)
f
(
(1 − p)S v

)
+

2α2βS 2
v

AT − α2Λ
f (S v)µ2

+

∫ S v

(1−p)S v

∂2h(s, I(s; (1 − p)S v, 0))
∂I2

∂I(s; (1 − p)S v, 0)
∂I+n

ds
ã
.

(4.15)

Denote

θ =

∫ S v

(1−p)S v

∂2h(s, I(s; (1 − p)S v, 0))
∂I2

∂I(s; (1 − p)S v, 0)
∂I+n

ds
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and

f (s) =
∂h(s, 0)
∂I

=
βs − γ − c

b

Λ − µs
.

Then

θ =

∫ S v

(1−p)S v

Å
2c

b2(Λ − µs)
+

2βs
Λ − µs

f (s)
ãÅ

exp
∫ S

(1−p)S v

f (s)ds
ã

ds

=

∫ S v

(1−p)S v

Å
2c

b2(Λ − µs)

ãÅ
exp
∫ S

(1−p)S v

f (s)ds
ã

ds +
∫ S v

(1−p)S v

2βs
Λ − µs

d
Å

exp
∫ S

(1−p)S v

f (s)ds
ã

=

∫ S v

(1−p)S v

Å
2c

b2(Λ − µs)

ãÅ
exp
∫ S

(1−p)S v

f (s)ds
ã

ds +
ï

2βs
Λ − µs

Å
exp
∫ S

(1−p)S v

f (s)ds
ãò∣∣∣∣S v

(1−p)S v

−

∫ S v

(1−p)S v

Å
exp
∫ S

(1−p)S v

f (s)ds
ã

d
Å

2βs
Λ − µs

ã
,

(4.16)

f (s) = 0 has a unique root s = 1
β
(γ + c

b ) and f
′

(s) = (Λβ − µ(γ + c
b ))/(Λ − µs)2 > 0 when R0 > 1.

Therefore, when (1 − p)S v <
1
β
(γ + c

b ) < S v <
Λ
µ

, there are f
(
(1 − p)S v

)
< 0 < f (S v) and

0 < exp
Å∫ S

(1−p)S v

f (s)ds
ã
< max

ß
exp
Å∫ S v

(1−p)S v

f (s)ds
ã
, 1
™
= max{µ2, 1} (4.17)

for all S ∈ ((1 − p)S v, S v). Moreover, if µ2 = 1 then 0 < exp
Ä∫ S

(1−p)S v
f (s)ds

ä
< 1 and θ > 0. Thus

when R0 > 1, (1 − p)S v <
1
β
(γ + c

b ) < S v <
Λ
µ

and q = 0, there is

∂2In+1

∂(I+n )2

∣∣∣∣
I+n =0, µ2=1

> 0. (4.18)

4.1. Bifurcations with respect to p

Now, under the assumptions of q = 0 and 1
β
(γ + c

b ) < S v <
Λ
µ

, we consider the bifurcations near the
DFPS (S̃ (t), 0) with respect to parameter p.

Taking µ2 as a function of p with p ∈ [0, 1] and taking the derivative of µ2 with respect to p yields

dµ2(p)
dp

=
µ2S v

µ

Å
Λbβ − bµγ − cµ

b
(
Λ − µ(1 − p)S v

) − βã. (4.19)

Thus p = p̃ with p̃ = 1 − 1
βS v

(γ + c
b ) ∈ (0, 1) is the unique root of dµ2(p)

dp = 0 and dµ2(p)
dp > 0 for

p ∈ (0, p̃), dµ2(p)
dp < 0 for p ∈ (p̃, 1). Furthermore, we have

µ2
∣∣

p=0 = 1 and µ2
∣∣

p=1 =

Å
Λ − µS v

Λ

ã −Λbβ+bµγ+cµ
bµ2

e
βS v
µ > 0.

Therefore,

• if µ2
∣∣

p=1 ≥ 1, then there is no p∗ ∈ (0, 1) satisfying µ2
∣∣

p=p∗ = 1.
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• if µ2
∣∣

p=1 < 1, then there is a unique p∗ ∈ ( p̃, 1) satisfying µ2
∣∣

p=p∗ = 1 and dµ2
dp

∣∣
p=p∗ < 0.

Theorem 4.1. When q = 0, 1
β
(γ + c

b ) < S v <
Λ
µ

and µ2
∣∣

p=1 < 1, map P undergoes the transcritical
bifurcation at p = p∗, where p∗ is the unique root of µ2(p) = 1. Moreover, an unstable non-trivial fixed
point (non-trivial order-1 periodic solution of system (1.3)) appears if p ∈ (p∗, p∗ + ϵ) with ϵ > 0 is
small enough.

Proof. According to Eqs (4.14) and (4.18), we already have

∂P

∂I+n
(0, p∗) =

∂In+1

∂I+n

∣∣∣∣p=p∗

I+n =0
= 1 and

∂2P

∂(I+n )2 (0, p∗) =
∂2In+1

∂(I+n )2

∣∣∣∣p=p∗

I+n =0
> 0.

What’s more, it’s easy to know that P(0, p) = 0 for all p ∈ [0, 1]. Thus, to prove the Theorem 4.1
by using Lemma 2.2, we just need to verify the sign of ∂2P

∂I+n ∂p (0, p∗), where ∂2P
∂I+n ∂p (0, p∗) = ∂

2In+1
∂I+n ∂p

∣∣p=p∗

I+n =0 .
From Eq (4.7) it follows that

∂2In+1

∂I+n ∂p
=
∂

∂p

Ç
W(I+n ) exp

∫ S n+1

S +n

∂h(s, I(s; S +n , I
+
n ))

∂I
ds

å
+
∂

∂p

Å
dS n+1

dIn+1

ã
∂In+1

∂I+n
h(S n+1, In+1)

+
dS n+1

dIn+1

∂

∂p

Å
∂In+1

∂I+n

ã
h(S n+1, In+1) +

dS n+1

dIn+1

∂In+1

∂I+n

∂

∂p
(
h(S n+1, In+1)

)
=

Å
exp
∫ S n+1

S +n

∂h(s, I(s; S +n , I
+
n ))

∂I
ds
ãï
∂W(I+n )
∂p

+W(I+n )
Å
∂S n+1

∂p
∂h(S n+1, In+1)

∂I

−
∂S +n
∂p
∂h(S +n , I

+
n )

∂I
+

∫ S n+1

S +n

∂2h(s, I(s; S +n , I
+
n ))

∂I∂p
ds
ãò

+
∂

∂p

Å
dS n+1

dIn+1

ã
∂In+1

∂I+n
h(S n+1, In+1) +

dS n+1

dIn+1

∂

∂p

Å
∂In+1

∂I+n

ã
h(S n+1, In+1)

+
dS n+1

dIn+1

∂In+1

∂I+n

∂

∂p
(
h(S n+1, In+1)

)
,

(4.20)

where W(I+n = 0) = 1 and

∂W(I+n )
∂p

∣∣∣∣
I+n =0
=

Å
−

dS +n
dI+n

h(S +n , I
+
n )

∂p
−
∂

∂p

Å
dS +n
dI+n

ã
h(S +n , I

+
n )
ã∣∣∣∣

I+n =0

= −
α2β(1 − p)S 2

v

(AT − α2Λ)

Å
∂h(S +n , I

+
n )

∂S
∂S +n
∂p
+
∂h(S +n , I

+
n )

∂I
∂I+n
∂p

ã∣∣∣∣
I+n =0

=0.

(4.21)

We have ∂I
+
n
∂p = 0 because I+n and p are independent. Thus, we have the following equation

0 =
∂I+n
∂p
=

∂LM

Å
S +n

1−p

ã
∂

Å
S +n

1−p

ã ∂Å S +n
1−p

ã
p

= L
′

M

Å
S +n

1 − p

ã ∂S +n
∂p (1 − p) + S +n

(1 − p)2 . (4.22)
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By solving Eq (4.22), we have

∂S +n
∂p
= −

S +n
1 − p

L
′

M

Å
S +n

1 − p

ã
. (4.23)

In order to calculate ∂In+1
∂S +n

, we first calculate ∂I(S ;S +n ,I
+
n )

∂S +n
. That is

∂I(S ; S +n , I
+
n )

∂S +n
=

dI+n
dS +n
− h(S +n , I

+
n ) +
∫ S

S +n

∂h(s, I(s; S +n , I
+
n ))

∂I
∂I(s; S +n , I

+
n )

∂S +n
ds. (4.24)

Using the variational formula we have

∂I(S ; S +n , I
+
n )

∂S +n
=

Å
dI+n
dS +n
− h(S +n , I

+
n )
ã

exp
∫ S

S +n

∂h(s, I(s; S +n , I
+
n ))

∂I
ds. (4.25)

Thus

∂In+1

∂S +n
=

dI+n
dS +n
− h(S +n , I

+
n ) +
∫ S n+1

S +n

∂h(s, I(s; S +n , I
+
n ))

∂I
∂I(s; S +n , I

+
n )

∂S +n
ds +

dS n+1

dS +n
h(S n+1, In+1)

=
∂I(S ; S +n , I

+
n )

∂S +n

∣∣∣∣
S=S n+1

+
dS n+1

dS +n
h(S n+1, In+1).

(4.26)

Then we can verify the symbol of the following equations∫ S n+1

S +n

∂2h(s, I(s; S +n , I
+
n ))

∂I∂p
ds
∣∣∣∣

I+n =0

=

∫ S v

(1−p)S v

∂2h(s, I(s; (1 − p)S v, 0))
∂I2

∂I(s, I(s; (1 − p)S v, 0))
∂p

ds

=

∫ S v

(1−p)S v

∂2h(s, I(s; (1 − p)S v, 0))
∂I2

Å
∂I(s, I(s; (1 − p)S v, 0))

∂I+n

∂I+n
∂p

+
∂I(s, I(s; (1 − p)S v, 0))

∂S +n

∂S +n
∂p

ã∣∣∣∣
I+n =0

ds

=

∫ S v

(1−p)S v

∂2h(s, I(s; (1 − p)S v, 0))
∂I2

Å
∂I(s, I(s; (1 − p)S v, 0))

∂S +n

∂S +n
∂p

ã∣∣∣∣
I+n =0

ds

= − θS v

Å
dLM(S )

dS

∣∣∣∣
S=S v

ãÅ
dLN(S )

dS

∣∣∣∣
S=(1−p)S v

ã
< 0

(4.27)

and
∂h(S n+1, In+1)

∂p

∣∣∣∣
I+n =0
=

Å
∂h(S n+1, In+1)

∂S
∂S n+1

∂p
+
∂h(S n+1, In+1)

∂I
∂In+1

∂p

ã∣∣∣∣
I+n =0

= −
(AT − α2Λ)2

(1 − p)(α2)2β2(S v)3 f (S v) < 0.
(4.28)

Therefore, we can conclude that (1 − p∗)S v <
1
β
(γ + c

b ) < S v <
Λ
µ

, f ((1 − p∗)S v) < 0 < f (S v) and

∂2In+1

∂(I+n )∂p

∣∣∣∣
I+n =0, p=p∗

< 0. (4.29)

Combining Eq (4.18) and Lemma 2.2, we complete the proof. □
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4.2. Bifurcations with respect to AT

When R0 > 1 and q = 0, we consider the bifurcations near the DFPS (S̃ (t), 0) with respect to
parameter AT , where AT ∈ (α2Λ, α1

Λ
µ

) since 0 < S v =
AT−α2Λ

α1−α2µ
< Λ
µ

.
Taking µ2 as a function of AT , we have

dµ2(AT )
dAT

=
∂µ2

∂S v

∂S v

∂AT
=

pµ2

µ

g(S v)
α1 − α2µ

, (4.30)

where

g(S v) =
Λ(Λbβ − bµγ − cµ)

b(Λ − µS v)(Λ − µ(1 − p)S v)
− β.

The sign of dµ2(AT )
dAT is determined by g(S v). Let g(S v) = 0, we have

S 2
v +
Λ

µ

p − 2
1 − p

S v +
Λ

µ

bγ + c
bβ(1 − p)

= 0

with

∆ =

Å
Λ

µ

p − 2
1 − p

ã2

− 4
Λ

µ

bγ + c
bβ(1 − p)

=
Λ2

µ2(1 − p)R0

ï
(p − 2)2

1 − p
R0 − 4

ò
.

Let D(p) = (p−2)2

1−p , then we have D(0) = 4 and D
′

(p) > 0 for all p ∈ (0, 1).Thus D(p) > 4 holds for all
p ∈ (0, 1). This means ∆ > 0 when R0 > 1. Hence g(S v) = 0 has two roots, S v1 and S v2, which satisfy
0 < S v1 <

Λ
µ
< S v2. Thus g(S v) is decreasing on (0, S v1) and increasing on (S v1,

Λ
µ

), which indicates
that µ2(AT ) is decreasing on (α2Λ, (α1 −α2µ)S v1 +α2Λ) and increasing on ((α1 −α2µ)S v1 +α2Λ, α1

Λ
µ

).
Furthermore, there are

µ2
∣∣

S v=0 or AT=α2Λ
= 1 and µ2

∣∣
S v=

Λ
µ or AT=α1

Λ
µ
= +∞.

Therefore, there is a unique S ∗v ∈ (S v1 ,
Λ
µ

) such that µ2
∣∣
S v=S ∗v

= 1. That is to say, there is a unique
AT ∗ = (α1 − α2µ)S ∗v + α2Λ ∈ ((α1 − α2µ)S v1 + α2Λ, α1

Λ
µ

) ⊂ (α2Λ, α1
Λ
µ

) satisfying µ2
∣∣

AT=AT ∗ = 1.
Similarly, we have the following theorem:

Theorem 4.2. When R0 > 1 and q = 0, map P undergoes the transcritical bifurcation at AT = AT ∗,
where AT ∗ ∈ (α2Λ, α1Λ/µ) is the unique root of µ2(AT ) = 1. Moreover, an unstable non-trivial fixed
point (non-trivial order-1 periodic solution of system (1.3)) appears if AT ∈ (AT ∗ − ϵ, AT ∗) with ϵ > 0
small enough.

Proof. Same as the proof of Theorem 4.1, we already have

∂P

∂I+n
(0, AT ∗) =

∂In+1

∂I+n

∣∣∣∣AT=AT ∗

I+n =0
= 1 and

∂2P

∂(I+n )2 (0, AT ∗) =
∂2In+1

∂(I+n )2

∣∣∣∣AT=AT ∗

I+n =0
> 0.

And it’s easy to know that P(0, AT ) = 0 for all AT ∈ (α2Λ, α1Λ/µ). Then we just need to verify the
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sign of ∂2P
∂I+n ∂AT (0, AT ∗), where ∂2P

∂I+n ∂AT (0, AT ∗) = ∂2In+1
∂I+n ∂AT

∣∣AT=AT ∗

I+n =0 . Firstly, we can calculate that

∂2In+1

∂I+n ∂AT

∣∣∣∣
I+n =0
=

ï
∂

∂AT

Ç
W(I+n )

Å
exp
∫ S n+1

S +n

∂h(s, I(s; S +n , I
+
n ))

∂I
ds
ãå

+
dS n+1

dIn+1

∂In+1

∂I+n

∂

∂AT
(
h(S n+1, In+1)

)ò∣∣∣∣
I+n =0

= exp
Å∫ S n+1

S +n

∂h(s, I(s; S +n , I
+
n ))

∂I
ds
ãï
∂W(I+n )
∂AT

+W(I+n )
Å
∂S n+1

∂AT
∂h(S n+1, In+1)

∂I

−
∂S +n
∂AT

∂h(S +n , I
+
n )

∂I
+

∫ S n+1

S +n

∂2h(s, I(s; S +n , I
+
n ))

∂I∂AT
ds
ãò∣∣∣∣

I+n =0

+

ï
dS n+1

dIn+1

∂In+1

∂I+n

∂

∂AT
(
h(S n+1, In+1)

)ò∣∣∣∣
I+n =0
,

(4.31)

where

∂W(I+n )
∂AT

∣∣∣∣
I+n =0
=

Å
−

dS +n
dI+n

∂h(S +n , I
+
n )

∂AT
−
∂

∂AT

Å
dS +n
dI+n

ã
h(S +n , I

+
n )
ã∣∣∣∣

I+n =0

=

Å
−

dS +n
dI+n

Å
∂h(S +n , I

+
n )

∂S
∂S +n
∂AT

+
∂h(S +n , I

+
n )

∂I
∂I+n
∂AT

ãã∣∣∣∣
I+n =0
= 0.

(4.32)

Similarly, we have the following equation

0 =
∂I+n
∂AT

=
∂LN(S +n )
∂AT

=
∂

∂AT

Å
(1 − p)(α2Λ − AT )

α2βS +n
+

1
β

(α1

α2
− µ

)ã
=

(p − 1)S +n − (1 − p)(α2Λ − AT ) ∂S
+
n

∂AT

α2β(S +n )2 .

(4.33)

Therefore,

∂S +n
∂AT

∣∣∣∣
I+n =0
=

S +n
AT − α2Λ

∣∣∣∣
I+n =0
=

(1 − p)S v

AT − α2Λ
and

∂In+1

∂AT
=
∂In+1

∂S +n

∂S +n
∂AT
.

Then we figure out the symbol of the following equations

∂h(S n+1, In+1)
∂AT

∣∣∣∣
I+n =0
=

Å
∂h(S n+1, In+1)

∂S
∂S n+1

∂AT
+
∂h(S n+1, In+1)

∂I
∂In+1

∂AT

ã∣∣∣∣
I+n =0

=µ2 f (S v)
Å

dLN(S )
dS

∣∣∣∣
S=(1−p)S v

ã
(1 − p)S v

AT − α2Λ
> 0

(4.34)
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and ∫ S n+1

S +n

∂2h(s, I(s; S +n , I
+
n ))

∂I∂AT
ds
∣∣∣∣

I+n =0

=

∫ S v

(1−p)S v

∂2h(s, I(s; (1 − p)S v, 0))
∂I2

∂I(s, I(s; (1 − p)S v, 0))
∂AT

ds

=

∫ S v

(1−p)S v

∂2h(s, I(s; (1 − p)S v, 0))
∂I2

Å
∂I(s, I(s; (1 − p)S v, 0))

∂I+n

∂I+n
∂AT

+
∂I(s, I(s; (1 − p)S v, 0))

∂S +n

∂S +n
∂AT

ã∣∣∣∣
I+n =0

ds

=

∫ S v

(1−p)S v

∂2h(s, I(s; (1 − p)S v, 0))
∂I2

Å
∂I(s, I(s; (1 − p)S v, 0))

∂S +n

∂S +n
∂AT

ã∣∣∣∣
I+n =0

ds

=
(1 − p)S v

AT − α2Λ

Å
dLN(S )

dS

∣∣∣∣
S=(1−p)S v

ã
θ > 0.

(4.35)

According to equations (4.31) to (4.35), it can be concluded that

∂2In+1

∂(I+n )∂AT

∣∣∣∣AT=AT ∗

I+n =0
> 0. (4.36)

□

5. Discussion and conclusions

In previous state-dependent feedback control SIR models [12, 13], the timing of implementing
control measures was only related to whether the number of susceptible individuals reached the
threshold, ignoring the impact of growth rates on control thresholds. This will inevitably increase the
risk of effective control of infectious diseases. In this work, we propose a SIR model with nonlinear
state-dependent feedback control, in which the control measures, such as isolation and vaccination,
are adopted when the convex combinations of the size of the susceptible population and their growth
rates reach the action threshold. The control form adopted is more in line with the development laws
of the population. And we add a non-linear term to the classical SIR model to describe the impact of
limited medical resources or treatment capacity on infectious disease transmission. To analyze the
dynamical behavior of the proposed model, we first analyze the relevant properties of its ODE system
(2.4), including the existence and stability of the equilibria. And then the analytical methods are
developed to address the existence of order-k (k ≥ 1) non-trivial periodic solutions, the existence and
stability of a DFPS and its bifurcations.

In Section 3, we first prove the existence and the asymptotical stability of DFPS in Section 3.1.
Then we analyse the direction of the phase plane solution trajectories for different positional
relationships between the impulsive curves and the isoclinic lines, and using the defined sigma
function, we find the maximum set of impulsive effect in each case, thus giving the domain of
definition of the Poincaré map. In Section 3.2.2, we discuss the precise impulsive set when the system
has no endemic equilibrium and figure out the attractive domain of the DFPS, which is not mentioned
in Section 3.1. In Sections 3.2.3 and 3.2.4, we analyse the existence of the non-trivial periodic
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solutions in some special cases. Moreover, we give the sufficient conditions for the existence of the
order-1 non-trivial periodic solution and the non-existence of the order-k (k ≥ 1) periodic solution
when the endemic equilibrium E∗ is a stable focus or node. However, as shown in Remark 3.2, when
endemic equilibrium E∗ is an unstable focus or node, the domain, continuity and convexity of map
PM are relatively complex. Thus, discussing the existence of non-trivial periodic solutions of system
(1.3) in this situation is challenging, which is worth further consideration in the future.

In Section 4, we calculate the transcritical bifurcation with respect to the parameters p and AT in the
case q = 0. From a biological perspective, q = 0 means that when the threshold condition is reached,
we only vaccinate susceptible individuals without isolating infected individuals. Mathematically, the
reason for the calculation at q = 0 is that when calculating the relevant derivatives according to the
Lemma 2.2, we can only get the inequality (4.17) at q = 0, which means that q = 0 is a sufficient
condition. Then we conclude that the transcritical bifurcation around the DFPS exists with respect to
the parameter p or AT (see Theorem 4.1, 4.2).

When the endemic equilibrium of the system (2.4) is unstable, the dynamic behavior of the pulse
system (1.3) is complex and rich, and thus it is well worth following up. The analytical techniques
developed here not only can be applied to analyze epidemic models with nonlinear state-dependent
impulsive control, but also can be extended to other fields including integrated pest management and
tumor control.
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