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Abstract: Ship images are easily affected by light, weather, sea state, and other factors, making 
maritime ship recognition a highly challenging task. To address the low accuracy of ship recognition 
in visible images, we propose a maritime ship recognition method based on the convolutional neural 
network (CNN) and linear weighted decision fusion for multimodal images. First, a dual CNN is 
proposed to learn the effective classification features of multimodal images (i.e., visible and infrared 
images) of the ship target. Then, the probability value of the input multimodal images is obtained using 
the softmax function at the output layer. Finally, the probability value is processed by linear weighted 
decision fusion method to perform maritime ship recognition. Experimental results on publicly 
available visible and infrared spectrum dataset and RGB-NIR dataset show that the recognition 
accuracy of the proposed method reaches 0.936 and 0.818, respectively, and it achieves a promising 
recognition effect compared with the single-source sensor image recognition method and other existing 
recognition methods.  

Keywords: maritime ship recognition; convolutional neural network; linear weighted decision 
fusion; visible images; infrared images 
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1. Introduction 

Ship recognition has broad application prospects in maritime safety, traffic control, and precision-
guided weapons [1]. The automatic control of sea surface can realize the visual automatic ship 
recognition, which has attracted extensive research attention. Synthetic aperture radar (SAR) images 
can be acquired at all day/night and are not limited by light, weather and climate conditions. However, 
SAR images require expensive acquisition equipment. They are mainly used in the military field. 
Visible images can directly display the detailed information of ship targets with a high resolution, but 
the imaging effect is poor in extreme weather, such as rain and fog and night conditions. Infrared 
images have strong penetration ability and can distinguish a target from its background based on 
radiation differences. They can be acquired in any weather and have a clear target contour, but they 
have low resolution. Therefore, the ship image information obtained by a variety of sensors is 
complementary, and the fusion of multimodal images for ship recognition has greater advantages than 
using single-source sensor image for recognition. This subject has gradually become a research hotspot 
in the field of computer vision. 

Maritime ship recognition methods mostly include traditional recognition and convolutional 
neural network (CNN)-based methods. Traditional maritime ship recognition methods adopt 
handcrafted features for recognition, including local binary pat-tern (LBP) [2], scale-invariant feature 
transformation [3] and histogram of oriented gradients (HOG) [4]. Handcrafted features rely on expert 
knowledge and have poor generalization ability. Therefore, the recognition ability of traditional 
maritime ship recognition methods is limited. 

Deep learning technology has significantly improved the performance of computer vision tasks 
and has been widely used in image recognition [5,6] and pedestrian detection [7]. Zhang et al. [8] fused 
HOG features with improved CNN to improve the ship recognition performance of SAR images; this 
method had a recognition accuracy that was 7.64% improved compared with that of the CNN method. 
Xu et al. [9] proposed a ship recognition method by combining CNN and attention mechanism. In [10], 
two CNNs were designed and transfer learning was used to identify ships; the effectiveness of this 
method was verified on the ship dataset with a comparatively small number of samples. Li et al. [11] 
proposed a ship recognition method based on improved Faster R-CNN for SAR images; this method 
introduced transfer learning and feature aggregation to improve the average accuracy. Wang et al. [12] 
presented a ship recognition method based on single shot multibox detector (SSD), and transfer 
learning is used to solve the problem of insufficient training samples; this method achieved good 
recognition results in Chinese Gaofen-3 SAR images. Wang et al. [13] proposed a ship recognition 
method based on SSD and transfer learning in complex background, which improved the recognition 
performance. In [14], a classification method based on deep transfer learning is proposed to solve the 
SAR image classification problem with a few labeled data. Ganesh et al. [15] designed a real-time 
video processing method for ship detection based on transfer learning, and transfer learning technology 
is used to train the model. Shi et al. [16] fused CNN with multifeatures to classify ships. This method 
showed better classification performance than the single feature-based methods, but the algorithm 
complexity was higher. Mishra et al. [17] used the transfer learning method based on pre-trained 
VGG16 to classify four types of ships. However, the dataset used was small and the algorithm lacked 
generalization ability. Wang et al. [18] proposed a ship recognition method based on multi-scale feature 
attention and adaptive weighted classifier, which improved the performance of SAR ship recognition. 
Ucar et al. [19] proposed a ship classification method based on deep cascade network. AlexNet and 
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VGG16 networks were used to learn the deep features and they were integrated in the full connection 
layer. Mutual information feature selection method was applied to construct the deep feature set, and 
finally, SVM classifier was used for classification. Aziz et al. [20] proposed visible and infrared 
spectrum recognition method based on multimodal CNN, but the ship recognition accuracy had to be 
improved. In [21], a ship recognition method based on CNN is proposed. Transfer learning training 
model is used to avoid overfitting problem and improve the recognition performance on a small dataset. 
Qiu et al. [22] proposed a two-band decision fusion ship recognition method by combining multilayer 
convolution features and posterior probability weighting, but the recognition accuracy was 89.7%, 
which needed improvement. In [23], the improved SqueezeNet was proposed to extract features, the 
shallow and deep features were cascaded, and the Adam optimizer was improved to increase the ship 
recognition accuracy. Du et al. [24] proposed a ship detection and recognition fusion classifier based 
on CNN, and the classification accuracy reached 84.7% on the self-built visible ship image dataset. 
Zhang et al. [25] proposed a fine-grained ship recognition method based on Inception and VGG16; this 
method used AM-Softmax to obtain predicted labels and verified the validity of the method on the self-
built dataset. Huang et al. [26] proposed a new ship classification and detection method by combing 
CNN and Swin Transformer. Self-attention mechanism was introduced into Transformer to achieve good 
recognition effect. Wang et al. [27] proposed a lightweight improved GhostNet-50 to identify a self-made 
ship dataset. Compared with GhostNet-50, the new model was compressed by 46.67%. However, the 
recognition capability of the model had to be improved. 

In the preceding studies, most of the methods only adopted SAR images, visible images and 
infrared images to identify ships, and the complementary information between multimodal images was 
less considered. Maritime ship recognition accuracy needed to be improved. In addition, the maritime 
ship recognition method for multimodal images encountered problems such as low concatenated 
feature fusion quality and high algorithm complexity. Based on the recognition results of various 
classifiers, decision fusion gave the final decision results in the fusion center according to certain 
fusion rules. Decision fusion had less error information than the single classifier in recognition [28], 
with successful adoption in pedestrian detection [29] and action recognition [30] based on multimodal 
images. Considering the low recognition accuracy in maritime ship recognition for visible images, we 
proposed a maritime ship recognition method in multimodal images with CNN and linear weighted 
decision fusion. First, the dual CNN composed of visible and infrared subnetworks had been used to 
extract and learn the effective classification features of multimodal images. Then, the probability value 
classified by softmax function was processed through linear weighted decision fusion to maximize the 
complementary advantages of the effective classification features in the dual CNN and the probability 
value of the multimodal images, and to improve the ship recognition accuracy. 

This study has the following major contributions: 
• An improved CNN with fewer convolutional layers and kernels is proposed. The improved CNN 

can avoid the overfitting phenomenon caused by the few labeled samples. 
• Based on the improved CNN, a dual CNN is proposed as a feature extractor to extract effective 

classification features of multimodal images to ensure that the extracted features contain more 
semantic features and distinctive information. 

• The linear weighted decision fusion model is constructed to give appropriate weights to the 
visible and infrared subnetworks, and process the probability value classified by the softmax function. 
The model can effectively use the complementary advantages of effective classification features within 
multimodal images and improve the recognition ability of maritime ship recognition method. 
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The rest of this paper is organized as follows. Section 2 introduces the proposed maritime ship 
recognition model. Section 3 describes experimental environment and evaluation metrics, the VAIS 
dataset [31], RGB-NIR dataset [32] and reports the experimental results. Section 4 summarizes the 
research results and future research directions. 

2. Recognition method based on dual CNN and linear weighted decision fusion 

Visible images are easily affected by light, which sometimes leads to unclear image details and 
causes the misrecognition of ship images. Infrared images can be obtained in any weather, but most of 
the images have low resolution and cannot reflect the color information of the target. Therefore, using 
only a single source image for ship recognition is a challenging task. The maritime ship recognition 
method based on deep CNN can acquire abstract feature representation from ship images. Therefore, 
to solve the problem of low ship recognition accuracy in visible images, we propose a maritime ship 
recognition method by combining CNN and linear weighted decision fusion for multimodal images. 
Figure 1 shows the flow chart of this method, which mostly includes a preprocessing module, a feature 
extraction module and a decision fusion recognition module. In the training phase, the multimodal 
images are preprocessed (the images are resized in Section 3.1). Then, the dual CNN composed of a 
visible subnetwork and an infrared subnetwork is adopted to learn the effective classification features 
of the preprocessed multimodal images. We use the softmax function to process the extracted effective 
classification features to obtain the predicted ship category labels in the output layer. The errors 
between the true ship category labels and the predicted ship category labels are calculated. The back 
propagation algorithm is used to iteratively update the weight and bias until the errors are minimized. 
Finally, the optimal training model of the dual CNN is obtained and saved. In the testing phase, the 
preprocessed multimodal images of the same ship target are input into the visible subnetwork and the 
infrared subnetwork, respectively, to extract the effective classification features. The optimal model is 
called to test them. After that the probability value classified by the softmax function is obtained. Then, 
the linear weighted decision fusion method is used to process the probability value, and the final 
recognition results of maritime ship images are obtained. 

 

Figure 1. Framework of recognition method based on dual CNN and linear weighted 
decision fusion. 
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2.1. Convolutional feature extraction module 

CNN combines feature learning with classifier training, and it can mine local features of input 
data [33]. CNN can realize most neuron weights sharing through local perception, parameter sharing, 
downsampling and other methods, so the number of parameters in the network can be reduced. 
Network architecture is important for the correct recognition of ship images. The parallel visible 
subnetwork and infrared subnetwork are selected to form a dual CNN, as shown in Figure 2. The dual 
CNN can learn the effective classification features of multimodal images. The visible and infrared 
subnetworks are two identical improved CNNs. The classic AlexNet [34] consists of five convolutional 
layers. Using AlexNet to train the ship dataset with few samples causes overfitting. In the visible 
subnetwork, the number of convolution layers is four, which not only learn the abstract features of the 
visible images but also reduce the computational complexity as far as possible and improve the 
overfitting phenomenon caused by the small dataset. A fully connected layer is added to obtain more 
semantic features on the multimodal ship images and the number of neurons is 2048. The rectified 
linear unit (ReLU) function is more consistent with sparse activation of biological neurons, which can 
accelerate network convergence and reduce gradient disappearance in the training network. Therefore, 
we use the ReLU function in the convolutional and fully connected layers. The maximum pooling 
method is used to reserve more texture information of the multimodal images and reduce the 
dimensions of the convolution results for the upper layer. 

We use dropout in fully connected layers to avoid network overfitting. In the output layer we use 
the softmax function to predict class labels for multimodal images. Table 1 lists the parameters of the 
improved CNN. The softmax output node is equal to n, which corresponds to the number of multimodal 
images classes contained in the VAIS dataset and RGB-NIR dataset (refer Section 3.1). Figure 3 shows 
the improved CNN structure. Conv1 in the figure represents the first convolution layer, Pool1 in the 
figure represents the maximum of the first pooling layer. FC1 represents the first fully connected layer. 
Padding means adding 0 to the outer layer. If the value is two, then it means that the outer layer is 
expanded with two circles of 0. 

In this study, training samples are randomly cropped into 227 × 227 to increase training samples 
and ensure the diversity of samples. The test samples are center cropped. Data enhancement method 
such as random horizontal flip is also used to improve the generalization ability of the proposed method. 

Table 1. Parameters of improved CNN. 

Layer Filter Number Kernel Size/Stride Padding 
Conv1 64 11 × 11/4 2 
Pooling1 – 3 × 3/2 – 
Conv2 192 5 × 5/1 2 
Pooling2 – 3 × 3/2 – 
Conv3 384 3 × 3/1 1 
Conv4 256 3 × 3/1 1 
Pooling3 – 3 × 3/2 – 
FC1 – 4096 – 
FC2 – 4096 – 
FC3 – 2048 – 
Softmax – n – 
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Figure 2. Dual CNN. 

 

Figure 3. Network structure of improved CNN. 

2.2. Linear weighted decision fusion method 

Decision fusion can have better recognition results by processing the output results of different 
classifiers. The weight of each classifier affects the recognition effect of decision fusion. Therefore, 
when the output result of classifiers is probabilistic value, each classifier is assigned an appropriate 
weight to represent the contribution of various features in the recognition process. The result of 
decision fusion can be obtained through linear weighted summation of the output probability values of 
different classifiers. To improve the performance of maritime ship recognition using single source 
images, we construct a linear weighted decision fusion model to process the probability value classified 
by the softmax function. It can combine the effective information of multimodal images, obtain more 
accurate recognition results, and maintain the feature dimension without increasing the parameters of 
the model. The specific linear weighted decision fusion method is as follows: 

The probability value classified by softmax function can be denoted as 

       
     

11 12 1

21 22 2 2

i

i i

p x p x p x
x

p x p x p x


 
 
  




P

                        

(1) 

where the first row of the matrix represents the input sample probability value classified by the softmax 
function of the visible subnetwork, and the second row represents the input sample probability value 
classified by the softmax function of the infrared subnetwork. x   indicates input sample and i  
indicates the number of categories in the dataset. The label of the column with the highest probability 
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in each row is the prediction category for the sample by the softmax function of each subnetwork. 
Based on the assumption that   and   are the weights of the probability value classified by the 

softmax function of the visible and infrared subnetworks, respectively, the new probability value 
output matrix can be defined as 
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where =1   , 0 1   , 0 1   . =0   means only ships with infrared images have been 

identified and =1  means only identify ships with visible images have been identified. 
The matrix of Eq (2) is weighted and summed according to the column. The label of the maximum 

value is the recognition result of ship images after linear weighted decision fusion processing, which 
can be expressed as 
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(3) 

 

Figure 4. Flow chart of linear weighted decision fusion model. 

Figure 4 shows the flow chart of the linear weighted decision fusion model obtained from the 
preceding calculation process. 

To explore the role of parameter   in decision fusion, experiments were conducted on the VAIS 
and RGB-NIR datasets (refer Section 3.1) to find the   value that fits the dataset. Figure 5(a) shows 
the recognition accuracy in different   of the VAIS dataset. With the constant increase of   value, 
ship recognition accuracy also shows an improvement within a certain range. When   is 0.6, the ship 
recognition accuracy is the highest, reaching 0.936. This result shows that the visible images have a 
great influence on the ship recognition results. With the further increase of  , the ship recognition 
accuracy gradually decreases. The reason is that when the proportion of the ship recognition result for 
the infrared images decreases, there is a problem of misrecognition by using only the visible images 
for ship recognition. Therefore, for VAIS dataset,   is set to 0.6 in this study to obtain the optimal 
ship recognition performance. 

The recognition accuracy in different   of the RGB-NIR dataset is shown in Figure 5(b). When 
  is 0.5, the recognition accuracy is the highest, reaching 0.818. The preceding results show that the 
linear weighted decision fusion method assigns appropriate weights to the visible and infrared 
subnetworks according to the different recognition results of the input multimodal images, and it solves 
the problem of misrecognition for the visible images. Therefore, it can increase the recognition accuracy. 
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(a) VAIS dataset            (b) RGB-NIR dataset 

Figure 5. Recognition accuracy in different  . 

3. Experiments and analysis 

3.1. Experimental dataset 

Experiments were conducted on two datasets to validate the proposed method.  
The first public multimodal images dataset is VAIS [23], which consists of 2865 images and 1088 

paired multimodal images. The dataset includes six categories: medium “other” ships, merchant ships, 
medium passenger ships, sailing ships, small boats and tugboats. Figure 6 shows the samples in the 
VAIS dataset. The numbers of each category are 138, 146, 117, 284, 353 and 50, respectively. The 
training set was obtained by random selection. The training samples consist of 539 pairs, in which the 
number of medium-other, merchant, medium-passenger, sailing, small and tug is 62, 83, 58, 148, 158 
and 30, respectively. The remaining 549 pairs multimodal images are used as test samples. We resize 
multimodal images to 256 × 256 by adopting bicubic interpolation. 

The second experimental dataset is RGB-NIR [24], which contains 477 paired scene images. The 
dataset includes nine categories: country, field, forest, indoor, mountain, old building, street, urban, 
and water, as shown in Figure 7. Each category has a visible image on the left and an infrared image 
on the right. Although the dataset is small, it contains categories that interfere with each other, such as 
country and field, street and city. The numbers of each category are 52, 51, 53, 56, 55, 51, 50, 58 and 51, 
respectively. Eleven pairs multimodal images were selected from each class randomly as test samples, 
and the remaining multimodal images as training samples. 
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(a) Visible images 

 

(b) Infrared images 

Figure 6. Samples in VAIS dataset. 
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Figure 7. Samples in RGB-NIR dataset. 

3.2. Experimental platform and parameter setting 

The hardware environment of the experimental platform is Inter(R) Core(TM) i9-7980XE @ 2.6 
GHz processor, 32 GB memory and GPU of NVIDIA TITAN Xp Pascal. The software environment is 
Python language and Pytorch framework. 

Experimental parameter settings for the proposed method: the learning rate of the visible and 
infrared subnetworks is set as 0.001 in accordance with stochastic gradient descent method. The 
dropout is 0.5. The batch size is 32. The momentum parameter is 0.9, and the weight coefficient is 0.0001. 
The difference is that for the VAIS dataset, the learning epochs of the visible and infrared subnetworks 
are equal to 400 and 395, respectively. For the RGB-NIR dataset, the learning epochs of the visible 
and infrared subnetworks are 300. 

3.3. Evaluation metrics 

The recognition accuracy, the number of misrecognition samples, precision, recall, F1-score and 
feature extraction time per image are considered evaluation metrics of maritime ship recognition results. 

Recognition accuracy represents the ratio of correctly identified multimodal images to the total 
number of multimodal images. The recognition accuracy can be defined as: 

TP+TN
Acc

TP+FP+TN +FN
                                    (4) 

where TP  denotes the number of true positives, FP  denotes the number of false positives, FN  
denotes the number of false negatives and TN  denotes the number of true negatives. 

The number of misrecognized multimodal images is obtained by calculating the product of the 
total number of multimodal images and the error rate. 

Precision indicates the percentage of true positives in the predicted positives. It can be defined as: 

TP
P

TP+ FP
                                       (5) 

Recall represents the percentage of samples that are predicted to be positive in the true positives. 
It can be expressed as: 
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TP
R

TP FN



                                      (6) 

F1-score is a metric of comprehensive performance. The value of F1-score ranges from 0 to 1. 1 
represents the best output result of the model and 0 represents the worst output result of the model. It 
can be evaluated as: 

2
1

P R
F

P R

 



                                      (7) 

The confusion matrix is a visual tool. Each column of the confusion matrix denotes the predicted 
category, total number of each column denotes the number of multimodal images predicted for the 
corresponding category, each row denotes the real category, and total number of each row denotes the 
number of real multimodal images for the corresponding category. 

3.4. Recognition results and Analysis 

The effectiveness of the proposed method is validated on the VAIS and RGB-NIR datasets and 
compared with the single-source image recognition method and other recognition methods in recent 
years under the identical experimental conditions. 

3.4.1. Comparison with the recognition method of single-source images 

Tables 2 and 3 list the recognition accuracy of different methods on the VAIS and RGB-NIR 
datasets. Three experiments were done to obtain the average and mean square error of recognition 
accuracy. It can be seen from Table 2, on the VAIS dataset, the recognition accuracy of the proposed 
method is greatly improved compared with that of the recognition method using only visible or infrared 
images, which is 0.034 higher than that of the method only using visible images and 0.082 higher than 
that of the method only using infrared images (IR). As observed from Table 3, on the RGB-NIR dataset, 
the recognition accuracy of the proposed method is 0.063 higher than that of the visible image 
recognition method, and 0.084 higher than that of the infrared image recognition method.  

Tables 4 and 5 list the recognition results of different methods on the VAIS and RGB-NIR datasets. 
Here, the recognition accuracy of the proposed method is 0.936 and 0.818 on the VAIS and RGB-NIR 
datasets. It can be seen from Tables 4 and 5 that the proposed method had the highest average precision, 
average recall and average F1-score for the VAIS and RGB-NIR datasets. The reason is that as the 
effective classification features of the multimodal images are extracted through this proposed method, 
the complementary information of probability values is effectively utilized, and the recognition 
capability is enhanced after linear weighted decision fusion method. 

Table 2. Recognition accuracy of different methods for the VAIS dataset. 

Method 
Accuracy 
Visible IR Visible + IR 

Improved CNN 0.902 ± 0.003 0.854 ± 0.002 – 
Proposed method – – 0.936 ± 0.002 

Table 3. Recognition accuracy of different methods for the RGB-NIR dataset. 
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Method 
Accuracy 
Visible IR Visible + IR 

Improved CNN 0.755 ± 0.006 0.734 ± 0.015 – 
Proposed method – – 0.818 ± 0.01 

Table 4. Recognition results of different methods for the VAIS dataset. 

Method Average Precision Average Recall 
Average 
F1-Score 

Improved CNN 
Visible 0.916 0.891 0.900 
IR 0.829 0.858 0.835 

Proposed method Visible + IR 0.955 0.920 0.935 

Table 5. Recognition results of different methods for the RGB-NIR dataset. 

Method Average Precision Average Recall 
Average 
F1-Score 

Improved CNN 
Visible 0.768 0.758 0.753 

IR 0.777 0.737 0.739 

Proposed method Visible + IR 0.837 0.818 0.816 

                     

(a) VAIS dataset           (b) RGB-NIR dataset 

Figure 8. Recognition accuracy of different methods for each class. 

3.4.2. Comparison of recognition performance with other recognition methods 

Figure 8 shows the class recognition performance of different methods on the two datasets. As 
observed, on the VAIS dataset, the recognition performance of the proposed method is not improved 
for the tugboat, but it is improved for the other five categories. On the RGB-NIR dataset, the 
recognition performance of the proposed method is not improved for the country, but it has the best 
recognition accuracy for the other eight categories. The results show that the proposed method can 
improve the recognition performance well. 

To further assess the advantages of the proposed method, it is compared with other recognition 



18557 

Mathematical Biosciences and Engineering  Volume 20, Issue 10, 18545–18565. 

methods. Figures 9 and 10 list the recognition accuracy of different methods for the VAIS dataset and 
RGB-NIR dataset, respectively. Figures 11 and 12 list the number of misrecognized multimodal images 
of different methods for the VAIS dataset and RGB-NIR dataset, respectively. Here, HOG + SVM 
method, LBP + SVM method, AlexNet, method [35] and method [10] only identify single source 
images. MOPDF represents maximum output probability decision fusion method, which takes 
maximum output probability as the criterion for decision processing. In method [20], multimodal 
image features extracted by CNN are concatenated fusion before recognition. In method [22], 
multilayer convolution features are first fused, and then the support vector machine posterior 
probability of each band is weighted fusion to achieve decision fusion recognition. SIFT [36] and 
AlexNet only identify single source images. Rgbi-SIFT [36] is a method that is used to extract SIFT 
features after infrared information is added to visible images. BoVW [36] is a recognition technology 
based on semantic feature extraction. Method [37] fused the visible and infrared images, then 
processed the fused images and obtained scene recognition results by combining the sparse recognition 
of the class dictionary. As observed, the recognition accuracy of different methods on the visible 
images is better than that on the infrared images because most infrared image resolutions are relatively 
low. The proposed method achieves the highest recognition accuracy and lowest number of 
misrecognized samples on the multimodal images compared with other recognition methods. This 
results show that the proposed method uses the dual CNN to extract more semantic features and 
detailed information of multimodal images and uses the linear weighted decision fusion method to 
process them, which can give appropriate weights to the visible and infrared subnetworks according 
to different multimodal input images. The proposed method effectively uses the respective advantages 
of multimodal images and improves the recognition accuracy. 

 

Figure 9. Comparison of recognition accuracy between proposed method and other 
methods on the VAIS dataset. 
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Figure 10. Comparison of recognition accuracy between proposed method and other 
methods on the RGB-NIR dataset. 

 

Figure 11. Comparison of the number of misrecognized multimodal images between 
proposed method and other methods on the VAIS dataset. 

 

Figure 12. Comparison of the number of misrecognized multimodal images between 
proposed method and other methods on the RGB-NIR dataset. 
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In addition, to further verify the recognition performance of the proposed method, Tables 6 and 7 
list the F1-scores of different methods for the VAIS and RGB-NIR datasets. As observed, the average 
F1-score of the proposed method is higher than that of other methods. For the VAIS dataset, MOPDF 
gives the highest F1-score for small ships, and AlexNet achieves the highest F1-score for merchant. 
While the proposed method attains the highest F1-score for all other four categories. For the RGB-
NIR dataset, AlexNet achieves the highest F1-score for country and field, and MOPDF gives the 
highest F1-score for mountain. However, the proposed method attains the highest F1-score for the all 
other six categories. As the effective classification features of multimodal images are processed by 
linear weighted fusion method, the proposed method can effectively utilize the complementary 
information of multimodal images to more comprehensively represent the features, and further 
enhance the recognition ability. 

Table 6. F1-scores of different methods for the VAIS dataset. 

Method 
Class 

Medium-other Merchant Medium-passenger Sailing Small Tug Avg.Total

AlexNet 
Visible 0.806 0.954 0.829 0.945 0.922 0.833 0.881 

Infrared 0.707 0.891 0.726 0.942 0.857 0.851 0.829 

Method [35] 
Visible 0.740 0.853 0.852 0.917 0.888 0.844 0.849 

Infrared 0.520 0.803 0.606 0.843 0.830 0.756 0.726 

Method [10] 
Visible 0.818 0.923 0.891 0.916 0.909 0.783 0.873 

Infrared 0.689 0.891 0.733 0.939 0.876 0.800 0.821 

MOPDF Visible + Infrared 0.814 0.947 0.875 0.978 0.936 0.974 0.921 

Method [20] Visible + Infrared 0.851 0.946 0.833 0.949 0.925 0.950 0.909 

Proposed method Visible + Infrared 0.832 0.953 0.938 0.978 0.935 0.974 0.935 

Table 7. F1-scores of different methods for RGB-NIR dataset. 

Method 

Class 

Country Field Forest Indoor Mountain
Old 

building 
Street Urban Water Avg.Total

AlexNet 
Visible 0.833 0.842 0.857 0.778 0.800 0.667 0.800 0.467 0.800 0.760 

Infrared 0.643 0.842 0.842 0.609 0.917 0.632 0.609 0.720 0.667 0.720 

MOPDF 
Visible + 

Infrared 
0.783 0.762 0.857 0.714 0.957 0.632 0.762 0.727 0.800 0.777 

Proposed 

method 

Visible + 

Infrared 
0.783 0.800 0.909 0.786 0.917 0.667 0.818 0.818 0.842 0.816 

Tables 8 and 9 list the feature extraction time per image of different methods for the VAIS dataset 
and the RGB-NIR dataset. As observed, the feature extraction time per image with the proposed method 
is slightly higher than that of the AlexNet and improved CNN due to the linear weighted decision fusion 
processing. For the VAIS dataset, the feature extraction time per image with the proposed method 
increased that of method [20] by 0.133 ms, but the recognition accuracy of the proposed method 
increased that of method [20] by 0.02. However, for VAIS dataset and RGB-NIR dataset, the feature 
extraction time per image with the proposed method reduced that of MOPDF by 0.017 and 0.02 ms, and 
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the recognition accuracy with the proposed method increased that of MOPDF by 0.009 and 0.04, 
respectively. The experimental results also show that after processing the effective classification 
features of multimodal images, better recognition performance is obtained. The feature extraction time 
per image of 0.333 and 0.192 ms is also relatively fast in practical applications. It is within the 
acceptable range. 

Table 8. Feature extraction time per image of different methods for the VAIS dataset. 

Method Feature Extraction Time(ms) 

HOG + SVM 
Visible 8.978 

Infrared 8.854 

LBP + SVM 
Visible 23.395 
Infrared 22.582 

AlexNet 
Visible 0.104 
Infrared 0.062 

Method [35] 
Visible 0.189 
Infrared 0.608 

Method [10] 
Visible 0.053 
Infrared 0.053 

Improved CNN 
Visible 0.045 

Infrared 0.055 

MOPDF Visible + Infrared 0.350 

Method [20] Visible + Infrared 0.200 

Proposed method Visible + Infrared 0.333 

Table 9. Feature extraction time per image of different methods for the RGB-NIR dataset. 

Method Feature Extraction Time(ms) 

AlexNet 
Visible 0.111 

Infrared 0.071 

Improved CNN 
Visible 0.081 

Infrared 0.061 

MOPDF Visible + Infrared 0.212 

Proposed method Visible + Infrared 0.192 

3.4.3. Recognition confusion matrix of the proposed method 

Figures 13 and 14 depict the recognition confusion matrix of the proposed method for the VAIS 
and RGB-NIR datasets. In Figure 13, 0 is medium-other, 1 is merchant, 2 is medium-passenger, 3 is 
sailing, 4 is small, and 5 is tugboat. As observed, the key confusion occurred between classes 0 and 4 
or between classes 2 and 4 or between classes 3 and 4. From the samples shown in Figure 6, we can 
observe that some medium-other ships and small ships show a noticeable resemblance, while some 
medium-passenger ships and sailing ships are blurry and also have similarities. In Figure 14, 0 is the 
country, 1 is the field, 2 is the forest, 3 is the indoor, 4 is the mountain, 5 is the old building, 6 is 
street, 7 is urban, and 8 is water. As observed, the confusion occurred between classes 3 and 5 
because the interclass error is 0.273. As shown in Figure 7, some old buildings and indoor spaces 
exhibited a similarity. 
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(a) Confusion matrix  (b) Confusion matrix normalization 

Figure 13. Recognition confusion matrix of proposed method for VAIS dataset. 

   

(a) Confusion matrix                   (b) Confusion matrix normalization 

Figure 14. Recognition confusion matrix of proposed method for RGB-NIR dataset. 

4. Conclusions 

In this study, we presented a maritime ship recognition method for multimodal images based on 
CNN and linear weighted decision fusion. The proposed method first used a dual CNN method to learn 
the effective classification features of multimodal images. Then, the probability values classified by 
the softmax function were processed by linear weighted decision fusion and the recognition results 
were obtained. The dual CNN method could extract the effective classification features of the 
multimodal images, and the linear weighted decision fusion model could comprehensively consider 
the complementary information of the probability value of the multimodal images, thereby improving 
the ship recognition performance. Experimental results showed that, compared with the single-source 
image recognition and other recognition methods, the proposed method had the best recognition 
accuracy on the VAIS and RGB-NIR datasets, which were 0.936 and 0.818, respectively. In future 
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research, a multimodal image dataset with a larger sample can be examined to improve the maritime 
ship recognition ability of the proposed method. 

Use of AI tools declaration 

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this 
article. 

Acknowledgments 

This research was funded by the National Nature Science Foundation of China, grant number 
51879211, the Hunan Provincial Education Department Science Research Youth Project of China, 
grant numbers 21B0800 and 22B0861, the Hunan Provincial Natural Science Foundation of China, 
grant number 2022JJ50148, the Hunan Provincial Education Department Science Research Key 
Project of China, grant number 22A0625, the Undergraduate Innovation and Entrepreneurship 
Training of Hunan province, grant number S202311528009 and the Guiding Planning Project of 
Hengyang, grant number 202222015678. 

Conflict of interest 

The authors declare there is no conflict of interest. 

References 

1. L. Huang, F. X. Wang, Y. L. Zhang, Q. X. Xu, Fine-grained ship classification by combining CNN 
and Swin transformer, Remote Sens., 14 (2022), 3087. https://doi.org/10.3390/rs14133087 

2. T. Mustaqim, H. Tsaniya, F. A. Adhiyaksa, N. Suciati, Wavelet transformation and local binary 
pattern for data augmentation in deep learning-based face recognition, in Proceedings of 10th 
International Conference on Information and Communication Technology, (2022), 362–367. 
https://doi.org/ 10.1109/ICoICT55009.2022.9914875 

3. Z. M. Zhuang, Z. J. Guo, Y. Yuang, Research on video target tracking technology based on 
improved SIFT algorithm, in Proceedings of 7th International Conference on Electronics and 
Information Engineering, (2016), 17–18. https://doi.org/10.1117/12.2265460 

4. K. Sharma, P. K. Sarangi, L. Rani, G. Singh, A. K. Sahoo, B. P. Rath, Handwritten digit 
classification using HOG features and SVM classifier, in Proceedings of 2nd International 
Conference on Advance Computing and Innovative Technologies in Engineering, (2022), 2071–
2074. https://doi.org/10.1109/ICACITE53722.2022.9823782 

5. K. K. Tang, Y. X. Ma, D. R. B. Miao, S. Peng, Z. Q. Gu, Decision fusion networks for image 
classification, IEEE Trans. Neural Netw. Learn. Syst., (2022), 1–14. 
https://doi.org/10.1109/TNNLS.2022.3196129 

6. Z. Ma, G. D. Huang, Image recognition and analysis: A complex network-based approach, IEEE 
Access, 10 (2022), 109537–109543. https://doi.org/ 10.1109/ACCESS.2022.3213675 



18563 

Mathematical Biosciences and Engineering  Volume 20, Issue 10, 18545–18565. 

7. M. Xu, Z. Wang, X. M. Liu, L. H. Ma, A. Shehzad, An efficient pedestrian detection for realtime 
surveillance systems based on modified YOLOv3, IEEE J. Radio Freq. Identif., 6 (2022), 972–
976. https://doi.org/10.1109/JRFID.2022.3212907 

8. T. W. Zhang, X. L. Zhang, J. Shi, S. J. Wei, A HOG feature fusion method to improve CNN-based 
SAR ship classification accuracy, in Proceedings of IEEE International Geoscience and Remote 
Sensing Symposium, (2021), 11–16. https://doi.org/10.1109/IGARSS47720.2021.9553192 

9. M. Z. Xu, Z. X. Yao, X. P. Kong, Y. C. Xu, Ships classification using deep neural network based 
on attention mechanism, in Proceedings of 2021 IEEE/OES China Ocean Acoustics, (2021), 
1052–1055. https://doi.org/10.1109/COA50123.2021.9519897 

10. Z. Z. Li, B. J. Zhao, L. B. Tang, Z. Li, F. Feng, Ship classification based on convolutional neural 
networks, J. Eng., 21 (2019), 7343–7346. https://doi.org/10.1049/joe.2019.0422 

11. J. W. Li, C. W. Qu, J. Q. Shao, Ship detection in SAR images based on an improved faster R-CNN, 
in Proceedings of 2017 SAR in Big Data Era: Models, Methods and Applications, (2017), 1–6. 
https://doi.org/10.1109/BIGSARDATA.2017.8124934 

12. Y. Y. Wang, C. Wang, H. Zhang, C. Zhang, Q. Y. Fu, Combing single shot multibox detector with 
transfer learning for ship detection using Chinese Gaofen-3 images, in Proceedings of 2017 
Progress in Electromagnetics Research Symposium-fall, (2017), 712–716. 
https://doi.org/10.1109/PIERS-FALL.2017.8293227 

13. Y. Y. Wang, C. Wang, H. Zhang, Combining a single shot multibox detector with transfer learning 
for ship detection using sentinel-1 SAR images, Remote Sens. Lett., 9 (2018), 780–788. 
https://doi.org/10.1080/2150704X.2018.1475770 

14. M. Rostami, S. Kolouri, E. Eaton, K. Kim, Deep transfer learning for few-shot SAR image 
classification. Remote Sens., 11 (2019), 1374. https://doi.org/10.3390/rs11111374 

15. V. Ganesh, J. Kolluri, A. R. Maada, M. H. Ali, R. Thota, S. Nyalakonda, Real-time video 
processing for ship detection using transfer learning, in Proceedings of Third International 
Conference on Image Processing and Capsule Networks, (2022), 685–703. 
https://doi.org/10.1007/978-3-031-12413-6_54 

16. Q. Q. Shi, W. Li, R. Tao, X. Sun, L. R. Gao, Ship classification based on multifeature ensemble 
with convolutional neural network, Remote Sens., 11 (2019), 419. 
https://doi.org/10.3390/rs11040419 

17. N. K. Mishra, A. Kumar, K. Choudhury, Deep convolutional neural network based ship images 
classification, Def. Sci. J., 71 (2021), 200–208. https://doi.org/10.14429/dsj.71.16236 

18. C. W. Wang, J. F. Pei, S. Y. Luo, W. B. Huo, Y. L. Huang, Y. Zhang, et al., SAR ship target 
recognition via multiscale feature attention and adaptive-weighed classifier, IEEE Geosci. Remote 
Sens. Lett., 20 (2023), 4003905. https://doi.org/10.1109/LGRS.2023.3259971 

19. F. Ucar, D. Korkmaz, A novel ship classification network with cascade deep features for 
line‑of‑sight sea data, Mach. Vision Appl., 32 (2021), 73. https://doi.org/10.1007/s00138-021-
01198-2 

20. K. Aziz, F. Bouchara, Multimodal deep learning for robust recognizing maritime imagery in the 
visible and infrared spectrums, in Proceedings of the International Conference Image Analysis 
and Recognition 2018, (2018), 235–244. https://doi.org/10.1007/978-3-319-93000-8_27 

21. Y. Yang, K. F. Ding, Z. Chen, Ship classification based on convolutional neural networks, Ships 
Offshore Struct., 17 (2022), 2715–2721. https://doi.org/10.1080/17445302.2021.2016271 



18564 

Mathematical Biosciences and Engineering  Volume 20, Issue 10, 18545–18565. 

22. X. H. Qiu, M. Li, G. M. Deng, L. T. Wang, Multi-layer convolutional features fusion for dual-
band decision-level ship recognition, Opt. Precis. Eng., 29 (2021), 183–190. 
https://doi.org/10.37188/OPE.20212901.0183 

23. Y. H. Zhang, L. G. Li, Application of improved SqueezeNet in ship classification, Transducer 
Microsyst. Technol., 41 (2022), 150–152+160. https://doi.org/10.13873/J.1000-9787(2022)01-
0150-03 

24. X. Du, J. Wang, Y. Li, B. Tang, Marine ship identification algorithm based on object detection 
and fine-grained recognition, in Advanced Intelligent Technologies for Industry. Smart Innovation, 
Systems and Technologies, (eds. K. Nakamatsu, R. Kountchev, S. Patnaik, J. M. Abe and A. 
Tyugashev), Academic Press, (2022), 207–215. https://doi.org/10.1007/978-981-16-9735-7_19 

25. Z. L. Zhang, T. Zhang, Z. Y. Liu, P. J. Zhang, S. S. Tu, Y. J. Li, et al., Fine-grained ship image 
recognition based on BCNN with inception and AM-softmax, Comput. Mater. Continua., 73 
(2022), 1527–1539. https://doi.org/10.32604/cmc.2022.029297 

26. L. Huang, F. Wang, Y. Zhang, Q. Xu, Fine-grained ship classification by combining CNN and 
swin transformer, Remote Sens., 14 (2022), 3087. https://doi.org/10.3390/rs14133087 

27. W. L. Wang, X. D. Yang, B. Y. Zhang, J. S. Ma, P. Zeng, P. Han, Application of lightweight 
convolutional neural network in ship classification (in Chinese), Laser Optoelectron. Prog., 60 
(2023), 73–80. https://doi.org/10.3788/LOP213033 

28. W. Sun, J. Yan, A CNN based localization and activity recognition algorithm using multi-receiver 
CSI measurements and decision fusion, in Proceedings of the 2022 International Conference on 
Computer, Information and Telecommunication Systems, (2022), 1–7. 
https://doi.org/10.1109/CITS55221.2022.9832983 

29. W. N. Zhou, L. H. Sun, Z. J. Xu, A real-time detection method for multi-scale pedestrians in 
complex environment, J. Electron. Inform. Technol., 43 (2021), 2063–2070. 
https://doi.org/10.11999/JEIT161032 

30. J. L. Guo, Q. Liu, E. Q. Chen, A deep reinforcement learning method for multimodal data fusion 
in action recognition, IEEE Signal Process. Lett., 29 (2022), 120–124. 
https://doi.org/10.1109/LSP.2021.3128379 

31. M. M. Zhang, J. Choi, K. Daniilidis, M. T. Wolf, C. Kanan, VAIS: A dataset for recognizing 
maritime imagery in the visible and infrared spectrums, in Proceedings of the 2015 IEEE 
Computer Vision and Pattern Recognition Workshops, (2015), 10–16. 
https://doi.org/10.1109/CVPRW.2015.7301291 

32. M. Brown, S. Süsstrunk, Multi-spectral SIFT for scene category recognition, in Proceedings of 
the 2011 IEEE Conference on Computer Vision and Pattern Recognition, (2011), 177–184. 
https://doi.org/10.1109/CVPR.2011.5995637 

33. N. Saqib, K. F. Haque, V. P. Yanambaka, A. Abdelgawad, Convolutional-neural-network-based 
handwritten character recognition: an approach with massive multisource data, Algorithms, 15 
(2022), 129. https://doi.org/10.3390/a15040129 

34. A. Krizhevsky, I. Sutskever, G. E. Hinton, ImageNet classification with deep convolutional neural 
networks, in Proceedings of the 25th International Conference on Neural Information Processing 
Systems, (2012), 1097–1105. http://dx.doi.org/10.1145/3065386 

35. K. Rainey, J. D. Reeder, A. G. Corelli, Convolution neural networks for ship type recognition, in 
Proceedings of the SPIE 9844, Automatic Target Recognition XXVI, (2016), 17–21. 
https://doi.org/10.1117/12.2229366 



18565 

Mathematical Biosciences and Engineering  Volume 20, Issue 10, 18545–18565. 

36. Q. S. Zhang, W. Li, L. Li, F. Zhang, H. T. Lang, Infrared and visible image fusion classification 
based on a codebookless model (in Chinese), J. Beijing Univ. Chem. Technol. (Nat. Sci.), 45 
(2018), 71–76. 

37. M. Wei, HSV fusion of near-infrared image and visible image for scene recognition via sparse 
recognition using intra-class dictionary, Master’s thesis, Nanjing University of Posts and 
Telecommunications, 2019. 

©2023 the Author(s), licensee AIMS Press. This is an open access 
article distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/4.0) 


