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Abstract: We propose a model for cholera under the impact of delayed mass media, including human-
to-human and environment-to-human transmission routes. First, we establish the extinction and uni-
form persistence of the disease with respect to the basic reproduction number. Then, we conduct a
local and global Hopf bifurcation analysis by treating the delay as a bifurcation parameter. Finally, we
carry out numerical simulations to demonstrate theoretical results. The impact of the media with the
time delay is found to not influence the threshold dynamics of the model, but is a factor that induces
periodic oscillations of the disease.
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1. Introduction

In modern society, media coverage has become an important strategy for controlling and preventing
disease transmission. It can alter an individual’s behavior, such as wearing protective masks, vaccina-
tion, self-isolating or avoiding gathering activities, and hence reduce the possibility of contracting the
infection [1]. Additionally, the media coverage also influences the implementation of a public health
policy intervention and control polices [2]. Therefore, how to quantify this impact through mathemat-
ical modeling is an important issue for epidemics control.

Many mathematical models have been developed to investigate the impact of media coverage on
disease transmission and control. The most general approach to modeling the media impact is to
change the transmission coefficient as a nonlinear decreasing function with respect to the number of
infectious individuals (I). For example, Cui et al. [3] used a contact transmission rate µe−mI to describe
the impact of media coverage, where µ > 0 is the probability of baseline transmission and m > 0 reflects
the effect of the media. Li and Cui [4] employed β2I

m+I to reflect the reduced amount of contact rate due
to media coverage, producing the transmission rate of the form β1 −

β2I
m+I (β1 > β2 > 0,m > 0). By

considering the correlation between media impact and the number of infected individuals at different
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disease stages, Liu et al. [5] devised the media impact function βe−a1E−a2I−a3H with E denoting exposed
individuals, I infectives, H hospitalized individuals and nonnegative constants a1, a2, a3. However, it is
noted that individuals can also change their behavior in response to the rate of change in case numbers.
Xiao et al. [6] used an exponentially decreasing function e−M(I, dI

dt ) with M(I, dI
dt ) = max{0, p1I + p2

dI
dt }

to model such media impacts. For more studies on media impacts, we refer readers to [1, 2, 7–10] and
references therein.

However, as mentioned in [10], impact of media coverage on the population transmission dynamics
has lag, describing both the lag time of individuals’ response to the media and the lag time of media
reports about an infectious disease outbreak. Some studies have been conducted to investigate the
impact of delayed mass media, see [1, 8, 10, 11]. In this paper, we will consider the time delay of the
media impact in the mathematical modeling of cholera, an acute intestinal infectious disease caused
by the bacterium Vibrio cholerae (or, V. cholerae). Several mathematical models have been proposed
to study cholera dynamics, including, but not limited to, [12–18]. However, to our knowledge, few of
these have specifically taken into account the response delay in media impacts.

Our model is inspired by the disease transmission models in [10,13]. We divide the population into
three subclasses: Susceptible S (t), infectives I(t) and recovered R(t). The concentration of bacteria
V. cholerae in contaminated water is indicated by B(t). To study the lag effect of the impact of the
media on cholera transmission, we incorporate a decreasing factor e−mI(t−τ) into the direct and indirect
incidence rate. That is,

β1e−mI(t−τ)S (t)I(t) and β2e−mI(t−τ)S (t)B(t).

Here, β1 and β2 are, respectively, the baseline direct and indirect transmission rate, τ represents the
report delay and response time of individuals to the current infection and m is the weight of media
impact sensitive to the case number. The basic SIRB model under consideration is then

dS (t)
dt

=Λ − β1e−mI(t−τ)S (t)I(t) − β2e−mI(t−τ)S (t)B(t) − µS (t) + σR(t),

dI(t)
dt

=β1e−mI(t−τ)S (t)I(t) + β2e−mI(t−τ)S (t)B(t) − (µ + γ)I(t),

dR(t)
dt

=γI(t) − (µ + σ)R(t),

dB(t)
dt

=ξI(t) − δB(t),

(1.1)

where Λ stands for the influx rate of susceptible humans, µ is the natural death rate, σ is the immunity
waning rate, γ is the recovery rate, ξ denotes the rate of contribution to V. cholerae in the aquatic
environment and δ = δ1 − δ2 > 0 is the net death rate of V. cholerae in the aquatic environment, where
δ1, δ2 are the natural washout rate and the natural growth rate of V. cholerae in the aquatic environment,
respectively. All the parameters of model (1.1) are assumed to be positive.

Note that the total population size N(t) = S (t) + I(t) + R(t) satisfies

dN(t)
dt

= Λ − µN(t),

and has a unique equilibrium N∗ = Λ
µ

that is globally stable in R+. We then consider the following
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limiting system:

dI(t)
dt

=β1e−mI(t−τ)(N∗ − I(t) − R(t))I(t) + β2e−mI(t−τ)(N∗ − I(t) − R(t))B(t) − (µ + γ)I(t),

dR(t)
dt

=γI(t) − (µ + σ)R(t),

dB(t)
dt

=ξI(t) − δB(t).

(1.2)

The remainder of this work is organized as follows. In Section 2, we first give the well-posedness
of system (1.2) and then establish its threshold dynamics concerning the basic reproduction number. In
Section 3, we are devoted to the stability and Hopf bifurcation analysis of the positive equilibrium. In
Section 4, we investigate the global continuation of a local branch. In Section 5, we perform numerical
simulations to illustrate our analytical results. The last section is a brief discussion.

2. Well-posedness of the model and threshold dynamics

Let C := C([−τ, 0],R3) and C+ := C([−τ, 0],R3
+). Then (C,C+) is an ordered Banach space equipped

with the supremum norm ‖φ‖ = sup−τ≤θ≤0 |φ(θ)| for φ ∈ C. For any given continuous function u =

(u1, u2, u3) : [−τ, ρ)→ R3 with ρ > 0, we define ut ∈ C by

ut(θ) = (u1(t + θ), u2(t + θ), u3(t + θ)), ∀θ ∈ [−τ, 0],

for any t ∈ [0, ρ). Set

Γ =
{
ϕ = (ϕ1, ϕ2, ϕ3) ∈ C+ : ϕ1(θ) + ϕ2(θ) ≤ N∗, ∀θ ∈ [−τ, 0]

}
.

We then have the following result.

Lemma 2.1. For any ϕ ∈ Γ, system (1.2) admits a unique nonnegative bounded solution u(t, ϕ) on
[0,∞) with u0 = ϕ, and ut(ϕ) ∈ Γ, ∀t ≥ 0.

Proof. For any ϕ = (ϕ1, ϕ2, ϕ3) ∈ Γ, we define

f (ϕ) =


e−mϕ1(−τ)(N∗ − ϕ1(0) − ϕ2(0))(β1ϕ1(0) + β2ϕ3(0)) − (µ + γ)ϕ1(0)

γϕ1(0) − (µ + σ)ϕ2(0)
ξϕ1(0) − δϕ3(0)

 .
Obviously, f (ϕ) is continuous in ϕ ∈ Γ and Lipschitz in ϕ on each compact subset of Γ. It follows

from [19, Theorems 2.2.3] that system (1.2) has a unique solution u(t, ϕ) on its maximal existence
interval [0, tϕ) with u0 = ϕ.

For any given ϕ ∈ Γ, one sees that if ϕi(0) = 0 for some i ∈ {1, 2, 3}, then fi(ϕ) ≥ 0. By [20, Theorem
5.2.1], we obtain u(t, ϕ) ≥ 0 for all t ∈ [0, tϕ). Let H(t) = I(t) + R(t). Then one has

dH(t)
dt

∣∣∣∣
H(t)=N∗

= [β1e−mI(t−τ)(N∗ − H(t))I(t) + β2e−mI(t−τ)(N∗ − H(t))B(t) − µH(t) − σR(t)]
∣∣∣∣
H(t)=N∗

= −µN∗ − σR(t) ≤ 0, ∀t ∈ (0, tϕ),

which implies that It + Rt ≤ N∗ for t ∈ [0, tϕ), and hence, ut(ϕ) ∈ Γ for all t ∈ [0, tϕ). Moreover, by
the third equation of (1.2), one easily sees that u3(t, ϕ) is bounded on [0, tϕ). As a result, [19, Theorem
2.3.1] means that tϕ = ∞.
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Note that the disease-free equilibrium of (1.2) is E0 = (0, 0, 0). Since the R class do not participate
in the transmission of cholera, we only consider the infected equations of the linearization of (1.2) at
E0: 

dI(t)
dt

=β1N∗I(t) + β2N∗B(t) − (µ + γ)I(t),

dB(t)
dt

=ξI(t) − δB(t).
(2.1)

Based on the next generation matrix method [21], we define

F =

(
β1N∗ β2N∗

0 0

)
and V =

(
µ + γ 0
−ξ δ

)
.

Hence, the basic reproduction number of system (1.2) is given by

R0 = r(FV−1) = Rd
1 + Ri

2 =
β1N∗

µ + γ
+

β2ξN∗

δ(µ + γ)
,

where r(FV−1) is the spectral radius of FV−1, and Rd
1 (resp. Ri

2 is the basic reproduction number for
the direct (resp. indirect) transmission in the absence of indirect (resp. direct) transmission.

Now we begin to study the local stability of the disease-free equilibrium. The Jacobian matrix of
system (1.2) at E0 has the form 

β1N∗ − µ − γ 0 β2N∗

γ −µ − σ 0
ξ 0 −δ

 ,
and the corresponding characteristic equation is

λ3 + bλ2 + cλ + d = 0, (2.2)

where

b = δ + µ + σ + (1 − R0)(µ + γ) +
β2ξN∗

δ
,

c = (µ + σ + δ)(µ + γ)(1 − R0) + (µ + σ)
(
β2ξN∗

δ
+ δ

)
,

d = δ(µ + σ)(µ + γ)(1 − R0).

When R0 < 1, one easily sees

b > 0, c > 0, d > 0, bc − d > 0.

Using the Routh-Hurwitz criterion, we know that all roots of (2.2) have negative real parts. Hence,
E0 is locally stable if R0 < 1. In the case where R0 > 1, the Eq (2.2) has at least one positive root since
d < 0, and hence, E0 is unstable. Now we proceed to the global stability of E0.

Theorem 2.1. If R0 < 1, then E0 is globally asymptotically stable in Γ.
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Proof. From the second and third equations of (1.2), we see
dI(t)

dt
≤β1N∗I(t) + β2N∗B(t) − (µ + γ)I(t),

dB(t)
dt

=ξI(t) − δB(t),

which is equivalent to  dI(t)
dt

dB(t)
dt

 ≤ (F − V)
(

I(t)
B(t)

)
. (2.3)

Since the matrix V−1F is nonnegative, irreducible and R0 = r(FV−1) = r(V−1F), there exists a
positive left eigenvector v such that

vV−1F = R0v.

Define the functional L : Γ→ R as follows

L(φ) = vV−1(φ1(0), φ3(0))T, ∀φ = (φ1, φ2, φ3) ∈ Γ.

For any solution u(t, ϕ) of (1.2) with u0 = ϕ ∈ Γ, with the help of (2.3), direct calculation yields

d
dt

L(ut(ϕ)) = vV−1(dI(t)
dt

,
dB(t)

dt
)T
≤ vV−1(F − V)(I(t), B(t))T

= (R0 − 1)v(I(t), B(t))T

≤ 0.

(2.4)

Thus, L is a Lyapunov functional on Γ relative to system (1.2).
Let M be the largest compact invariant subset in the set {φ ∈ Γ : L̇(1.2)(φ) = 0}, where L̇(1.2)(φ)

denotes the derivative of L along the solution of (1.2). It is easy to see from (2.4) that L̇(1.2)(φ) = 0
implies that I(t) = B(t) = 0 for any t ≥ 0, and hence, M = {φ ∈ Γ : φ1 = φ3 = 0}. It then follows from
the LaSalle invariance principle (see, e.g., [22, Theorem 1]) that limt→∞(I(t), B(t)) = (0, 0) and further,
limt→∞ R(t) = 0. Therefore, E0 is globally attractive in Γ. This, together with the local stability of E0,
gives the desired result.

Next we are ready to show that the disease is uniformly persistent when R0 > 1. To this end, we
need the following lemma.

Lemma 2.2. For any given ϕ ∈ Γ, if there exists some t0 ≥ 0 such that I(t0, ϕ) > 0 or B(t0, ϕ) > 0, then
I(t, ϕ) > 0 and B(t, ϕ) > 0 for all t > t0.

Proof. If I(t0, ϕ) > 0 for some t0, then

I(t, ϕ) > I(t0, ϕ)e−(µ+γ)(t−t0) > 0, ∀t ≥ t0.

By the third equation of (1.2), we have

B(t, ϕ) = e−δ(t−t0)B(t0, ϕ) +

ˆ t

t0
e−δ(t−s)ξI(s, ϕ)ds > 0, ∀t > t0.
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Similarly, if B(t0, ϕ) > 0 for some t0, we obtain that B(t, ϕ) > 0 for all t ≥ t0. We will show that
H(t, ϕ) := I(t, ϕ) + R(t, ϕ) < N∗ for all t > t0. If the assertion was false, then there exists t1 ∈ (t0,∞)
such that

H(t, ϕ) < N∗, ∀t ∈ (t0, t1) and H(t1, ϕ) = N∗.

Clearly, dH(t,ϕ)
dt

∣∣∣∣
t=t1
≥ 0 must hold. However, in view of the first two equations of (1.2), we find

dH(t, ϕ)
dt

∣∣∣∣
t=t1

= −µN∗ − σR(t1, ϕ) < 0.

This contradiction means that no such t1 can exist. Accordingly, by the I-equation in (1.2), we have

I(t, ϕ) ≥e−(µ+γ)(t−t0)I(t0, ϕ)

+

ˆ t

t0
e−(µ+γ)(t−s)β2e−mI(s−τ,ϕ)(N∗ − I(s, ϕ) − R(s, ϕ))B(s, ϕ)ds > 0

for all t > t0. Summarizing these two cases, we establish the desired result.

Theorem 2.2. If R0 > 1, then system (1.2) admits a unique componentwise positive equilibrium.
Moreover, there exists η > 0 such that for any ϕ ∈ Γ with ϕ1(0) , 0 or ϕ3(0) , 0, the solution
u(t, ϕ) = (I(t, ϕ),R(t, ϕ), B(t, ϕ)) satisfies

lim inf
t→∞

min{I(t, ϕ), B(t, ϕ)} ≥ η. (2.5)

Proof. Define the following two sets:

Γ0 = {ϕ ∈ Γ : ϕ1(0) > 0 and ϕ3(0) > 0} ,
∂Γ0 = Γ \ Γ0 = {ϕ ∈ Γ : ϕ1(0) = 0 or ϕ3(0) = 0} .

By the form of (1.2), it can be verified that both Γ and Γ0 are positively invariant. Clearly, ∂Γ0 is
relatively closed in Γ. Let Φ(t) be the solution maps of system (1.2), namely

Φ(t)ϕ = ut(ϕ), ∀t ≥ 0, ϕ ∈ Γ.

Note that for each t > τ, Φ(t) is continuous and compact (see [19, Theorem 3.6.1]). The ultimate
boundedness of solutions implies that Φ(t) is point dissipative. It then follows from [23, Theorem
3.4.8] that Φ(t) has a global attractor K.

Let ω(ϕ) be the omega limit set of the forward orbit through ϕ for Φ(t) and define

M∂ = {ϕ ∈ ∂Γ0 : Φ(t)ϕ ∈ ∂Γ0,∀t ≥ 0} .

Then the following claim holds true.
Claim 1. E0 is globally stable for Φ(t) in M∂.

For any given ϕ ∈ M∂, we have Φ(t)ϕ ∈ ∂Γ0,∀t ≥ 0. Hence, for each t ≥ 0, either I(t, ϕ) = 0 or
B(t, ϕ) = 0. We further show

M∂ ⊂ M0 := {ϕ ∈ ∂Γ0 : ϕ1(0) = 0 and ϕ3(0) = 0}. (2.6)
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Suppose to the contrary that ϕ < M0. Then either ϕ1(0) = I(0, ϕ) > 0 or ϕ3(0) = B(0, ϕ) > 0. With
the help of Lemma 2.2, we have that I(t, ϕ) > 0 and B(t, ϕ) > 0 for all t > 0, which contradicts the fact
that ϕ ∈ M∂. Thus, (2.6) holds. It then follows that I(t, ϕ) = 0 and B(t, ϕ) = 0 for all ϕ ∈ M∂ and t ≥ 0,
and further, limt→∞ R(t, ϕ) = 0. Therefore, ω(ϕ) = E0 for any ϕ ∈ M∂. In other words, E0 is globally
attractive for Φ(t) in M∂. Note that system (1.2) restricted to M∂ becomes dR(t)

dt = −(µ+σ)R(t). In view
of [24, Lemma 2.2.1], E0 is locally Lyapunov stable for Φ(t) in M∂. So, the above claim is proved.

Since R0 > 1, we can choose ε > 0 small enough such that

Rε0 =
e−mε(β1 + β2

ξ

δ
)(N∗ − 2ε)

µ + γ
> 1.

Claim 2. lim supt→∞ ‖Φ(t)ϕ − E0‖ ≥ ε, ∀ϕ ∈ Γ0.

Suppose the claim is not true. Then there exists some ψ ∈ Γ0 such that

lim sup
t→∞

‖Φ(t)ψ − E0‖ < ε.

Thus, there is t̄ > 0 such that

0 < I(t, ψ),R(t, ψ), B(t, ψ) < ε, ∀t ≥ t̄.

It follows that for all t ≥ t̄ + τ, we have
dI(t)

dt
≥β1e−mε(N∗ − 2ε)I(t) + β2e−mε(N∗ − 2ε)B(t) − (µ + γ)I(t),

dB(t)
dt

=ξI(t) − δB(t).

Let (x(t), y(t)) be the solution of the following system:
dx(t)

dt
=β1e−mε(N∗ − 2ε)x(t) + β2e−mε(N∗ − 2ε)y(t) − (µ + γ)x(t),

dy(t)
dt

=ξx(t) − δy(t),
(2.7)

and its Jacobian matrix is

Mε =

(
β1e−mε(N∗ − 2ε) − µ − γ β2e−mε(N∗ − 2ε)

ξ −δ

)
.

Recall that the stability modulus of Mε is defined by

s(Mε) := max{Reλ : λ is an eigenvalue of Mε}.

Since Mε is quasi-positive and irreducible, it follows from [20, Corollary 3.2] that s(Mε) is a simple
eigenvalue of Mε with a strongly positive eigenvector vε . In particular, es(Mε )tvε is a solution of (2.7).
By using the proof of [21, Theorem 2], we know that s(Mε) > 0 if and only if Rε0 > 1.

Since (I(t, ψ), B(t, ψ)) � (0, 0) for all t > 0, there exists κ > 0 such that

(I(t, ψ), B(t, ψ)) ≥ κes(Mε )tvε , ∀t ∈ [t̄, t̄ + τ].
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Hence by comparison,
(I(t, ψ), B(t, ψ)) ≥ κes(Mε )tvε , ∀t ≥ t̄ + τ.

In view of s(Mε) > 0, we see that I(t, ψ) and B(t, ψ) tend to infinity as t → ∞. This contradicts the
boundedness of solutions, and thus the claim holds.

Claim 1 shows that E0 cannot form a cycle in ∂Γ0, and claim 2 implies that E0 is an isolated invariant
set in Γ and W s(E0)∩Γ0 = ∅, where W s(E0) is the stable set of E0 for Φ(t). According to the acyclicity
theorem of the uniform persistence of maps (see, e.g., [24, Theorem 1.3.1, Remark 1.3.1 and Remark
1.3.2]), we conclude that Φ(t) : Γ → Γ is uniformly persistent with respect to (Γ0, ∂Γ0). Moreover,
by [25, Theorem 2.4], there exists a global attractor A0 for Φ(t) in Γ0 and system (1.2) has an stationary
coexistence state ϕ̄ = (ϕ̄1, ϕ̄2, ϕ̄3) ∈ Γ0, and Φ(t)ϕ̄ = ϕ̄ for all t ≥ 0. Noting that ϕ̄ is a constant function,
we let Ī = ϕ̄1(0), R̄ = ϕ̄2(0) and B̄ = ϕ̄3(0). Then R̄ ∈ R+ and (Ī, B̄) ∈ int(R2

+). We further claim that
R̄ ∈ R+ \ {0}. Suppose that R̄ = 0. By the R-equation in (1.2), we then get 0 = γĪ, and hence, Ī = 0, a
contradiction. Therefore, E1 = (Ī, R̄, B̄) is a componentwise positive equilibrium of (1.2).

Next, we show the uniqueness of the positive equilibrium. Suppose that (Î, R̂, B̂) is the equilibrium
of (1.2). Then (Î, R̂, B̂) satisfies

β1e−mÎ(N∗ − Î − R̂)Î + β2e−mÎ(N∗ − Î − R̂)B̂ − (µ + γ)Î = 0,
γÎ − (µ + σ)R̂ = 0,
ξ Î − δB̂ = 0.

(2.8)

Set Ŝ = N∗ − Î − R̂. A direct verification yields

Λ − β1e−mÎ Ŝ Î − β2e−mÎ Ŝ B̂ − µŜ + σR̂ = 0.

This implies that (Ŝ , Î, R̂, B̂) is the equilibrium of (1.1). In view of (2.8), we see that

Ŝ = F (Î) := N∗ − Î −
γ

µ + σ
Î and Ŝ = G(Î) :=

µ + γ

β1e−mÎ + β2e−mÎξ/δ
.

Therefore, F (Î) is strictly decreasing in Î ∈ R+, and G(Î) is strictly increasing in Î ∈ R+. If R0 > 1,
then F (0) > G(0), which means that there is a unique intersection in R2

+ between F (Î) and G(Î),
and thus (Î, R̂, B̂) is the unique positive equilibrium of (1.2). Moreover, the uniqueness of positive
equilibrium also implies that of E1.

Finally, to derive the practical persistence, we define a continuous function p : Γ→ R+ by

p(ϕ) = min{ϕ1(0), ϕ3(0)}, ∀ϕ ∈ Γ.

Clearly, Γ0 = p−1(0,∞) and ∂Γ0 = p−1(0). Since A0 is a compact subset of Γ0, it follows that
infϕ∈A0 = minϕ∈A0 p(ϕ) > 0. Consequently, there exists η > 0 such that

lim inf
t→∞

min{I(t, ϕ), B(t, ϕ)} = lim inf
t→∞

p(Φ(t)ϕ) ≥ η, ∀ϕ ∈ Γ0.

Moreover, for any given ϕ ∈ Γ with ϕ1(0) , 0 or ϕ3(0) , 0, Lemma 2.2 suggests that I(t, ϕ) > 0 and
B(t, ϕ) > 0 for all t > 0. Fix a t0 > τ. By using the fact Φ(t)ϕ = Φ(t − t0)(Φ(t0)ϕ),∀t > t0, we see that
statement (2.5) holds true.
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Remark 2.1. The uniqueness of the positive equilibrium E1 can be obtained directly. In fact, from
(1.2) we get

e
m(µ+σ)
µ+σ+γ

Λ
µ −mĪ

(
m(µ + σ)
µ + σ + γ

Λ

µ
− mĪ

)
=

m(µ + σ)(µ + γ)e
m(µ+σ)
µ+σ+γ

Λ
µ

(β1 + β2
ξ

δ
)(µ + σ + γ)

, R̄ =
γ

µ + σ
Ī, B̄ =

ξ

δ
Ī.

Solving the above equation with respect to Ī gives rise to

Ī =
µ + σ

µ + σ + γ

Λ

µ
−

1
m

Lambert W

m(µ + σ)(µ + γ)e
m(µ+σ)
µ+σ+γ

Λ
µ

(β1 + β2
ξ

δ
)(µ + σ + γ)

 ,
where the definition of Lambert W function is seen in [26]. It is positive (i.e. Ī > 0) provided

m(µ + σ)
µ + σ + γ

Λ

µ
> Lambert W

m(µ + σ)(µ + γ)e
m(µ+σ)
µ+σ+γ

Λ
µ

(β1 + β2
ξ

δ
)(µ + σ + γ)

 ,
which is equivalent to R0 > 1. In addition, this explicit expression makes the numerical approximation
of (Ī, R̄, B̄) more convenient.

3. Stability analysis and local Hopf bifurcations

In this section, we will consider the global stability of the endemic equilibrium E1 and the existence
of local Hopf bifurcations of system (1.2).

3.1. Stability of E1 for system (1.2) without delay

The linearized form of system (1.2) at E1 = (Ī, R̄, B̄) is given by

dI(t)
dt

=β1AI(t) −CI(t) − (µ + γ)I(t) − m(µ + γ)Ī I(t − τ) −CR(t) + β2AB(t),

dR(t)
dt

=γI(t) − (µ + σ)R(t),

dB(t)
dt

=ξI(t) − δB(t),

(3.1)

where A = e−mĪ(N∗ − Ī − R̄) and C = β1e−mĪ Ī + β2e−mĪ B̄. The characteristic equation of system (3.1) is

p(λ, τ) := λ3 + a0λ
2 + a1λ + a2 + e−λτ(b0λ

2 + b1λ + b2) = 0, (3.2)

where
a0 = µ + σ + C + β2A

ξ

δ
+ δ, a1 = C(γ + δ) + (µ + σ)

(
β2A

ξ

δ
+ δ + C

)
,

a2 = Cδ(µ + σ + γ), b0 = m(µ + γ)Ī,
b1 = m(µ + γ)(µ + σ + δ)Ī, b2 = mδ(µ + γ)(µ + σ)Ī.

When τ = 0, the equation (3.2) becomes

λ3 + (a0 + b0)λ2 + (a1 + b1)λ + a2 + b2 = 0. (3.3)
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In view of a0 + b0 > 0 and

(a0 + b0)(a1 + b1) − (a2 + b2)

= X2(µ + σ) + (µ + σ)2X + Cγ
(
β2A

ξ

δ
+ C + m(µ + γ)Ī + µ + σ

)
+ CXδ + mδ(µ + σ)ĪX > 0,

where X = β2A ξ

δ
+ δ + C + m(µ + γ)Ī, we deduce from the Routh-Hurwitz criterion that all roots of

(3.3) have negative real parts. Hence, the following result holds true.

Theorem 3.1. Suppose that R0 > 1. Then the endemic equilibrium E1 of system (1.2) is locally
asymptotically stable when τ = 0.

Now we present the geometric approach developed in [27] to study the global stability of E1. Con-
sider the following autonomous system

dx
dt

= f (x), x ∈ D, f ∈ C1, (3.4)

where D ⊂ Rn is a simply connected open set. Let x(t, x0) be the solution of (3.4) such that x(0, x0) =

x0. The second compound equation with respect to x(t, x0) ∈ D is

dz
dt

=
∂ f
∂x

[2]

(x(t, x0))z,

where ∂ f
∂x

[2]
is the additive compound matrix of the Jacobian matrix ∂ f

∂x (see [28]).
Let P(x) be a k × k matrix-valued C1 function, where k = 1

2n(n − 1), and suppose P−1(x) exists for
x ∈ D. Set

Q = P f P−1 + P
∂ f
∂x

[2]

P−1,

where P f is the matrix obtained by replacing each entry pi j in P with its directional derivative in the
direction of f . The Lozinskiı̌ measure of Q with respect to the matrix norm | · | in Rn×n is defined as

µ(Q) = lim
h→0+

|I + hQ| − 1
h

.

Define a quantity q̄2 as

q̄2 = lim sup
t→∞

sup
x0∈K

1
t

ˆ t

0
µ(Q(x(s, x0)))ds,

where K denotes a compact absorbing set in D. The following result from [27, Theorem 3.5] is used
to prove the global stability of E1.

Lemma 3.1. Assume that system (3.4) has a unique equilibrium x∗ in D. Then x∗ is globally stable in
D if q̄2 < 0.

Theorem 3.2. If R0 > 1, τ = 0 and µ + γ > σ, then E1 is globally asymptotically stable in Ω =

{(I,R, B) ∈ R3
+ : I + R ≤ N∗, I > 0, B > 0}.
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Proof. Note that system (1.2) is equivalent to

dS (t)
dt

=Λ − β1e−mI(t)S (t)I(t) − β2e−mI(t)S (t)B(t) − µS (t) + σ(N∗ − S (t) − I(t)),

dI(t)
dt

=β1e−mI(t)S (t)I(t) + β2e−mI(t)S (t)B(t) − (µ + γ)I(t),

dB(t)
dt

=ξI(t) − δB(t).

(3.5)

Thus, under the condition R0 > 1, the global stability of E1 is equivalent to that of the unique
positive equilibrium Ê1 of system (3.5), where Ê1 = (N∗ − Ī − R̄, Ī, B̄). Define

Ω̃ = {(S , I, B) ∈ R3
+ : S + I ≤ N∗, I > 0, B > 0}.

Clearly, Ω̃ is a simply connected region in R3. Similar to the arguments in Theorem 2.2, one can
prove that system (3.5) is uniformly persistent in Ω̃. This, together with the boundedness of solutions
to (3.5), implies the existence of a compact absorbing set K ⊂ Ω̃. Therefore, by Lemma 3.1, it suffices
to show that there exists a matrix-valued function P(x) such that q̄2 < 0.

Define the diagonal matrix P as

P(S , I, B) = diag
(
1,

I
B
,

I
B

)
.

Then P is C1 and nonsigular in Ω̃. Let f denote the vector field of (3.5). Then

P f P−1 = diag
(
0,

I′

I
−

B′

B
,

I′

I
−

B′

B

)
,

where ′ is the derivative with respect to time t. The Jacobian matrix J associated with a general solution
(S (t), I(t), B(t)) to (3.5) is

J =


−g(I, B) − µ − σ −β1e−mIS + mS g(I, B) − σ −β2e−mIS

g(I, B) β1e−mIS − mS g(I, B) − µ − γ β2e−mIS
0 ξ −δ

 ,
where g(I, B) = β1e−mI I + β2e−mI B. The second additive compound matrix of J = ( jik)3×3, denoted by
J[2], is expressed by

J[2] =


j11 + j22 j23 − j13

j32 j11 + j33 j12

− j31 j21 j22 + j33


=


−g(I, B) − γ − 2µ − σ + β1e−mIS − mS g(I, B) β2e−mIS β2e−mIS

ξ −g(I, B) − σ − µ − δ −β1e−mIS + mS g(I, B) − σ
0 g(I, B) β1e−mIS − mS g(I, B) − µ − γ − δ

 .
As a result, the matrix Q = P f P−1 + PJ[2]P−1 can be written in block form as follows:

Q =

(
Q11 Q12

Q21 Q22

)
,
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where

Q11 = −g(I, B) − γ − 2µ − σ + β1e−mIS − mS g(I, B),

Q12 =

(
β2e−mIS

B
I
, β2e−mIS

B
I

)
,

Q21 =

( I
B
ξ, 0

)T

,

Q22 =

(
−g(I, B) − σ − µ − δ + I′

I −
B′
B −β1e−mIS + mS g(I, B) − σ

g(I, B) β1e−mIS − mS g(I, B) − µ − γ − δ + I′
I −

B′
B

)
.

The vector norm | · | in R3 is taken as

|(u, v,w)| = max{|u|, |v| + |w|}.

As described in [27], we have the following estimate

µ(Q) ≤ sup {g1, g2} ,

with

g1 = µ1 (Q11) + |Q12| = −g(I, B) − γ − 2µ − σ + β1e−mIS − mS g(I, B) + β2e−mIS
B
I
,

g2 = |Q21| + µ1 (Q22) =
I
B
ξ + µ1 (Q22) .

Here, |Q12| and |Q21| are matrix norms induced by the l1 norm, and µ1 denotes the Lozinskiı̌ measure
concerning the l1 norm. Moreover, using the method in [29], we calculate µ1(Q22) as

µ1(Q22) = max
{
−µ − σ − δ +

I′

I
−

B′

B
,H(S , I, B) − µ − γ − δ − σ +

I′

I
−

B′

B
+ |H(S , I, B)|

}
,

= −µ − σ − δ +
I′

I
−

B′

B
+ sup{0, 2H(S , I, B) − γ},

where H(S , I, B) = β1e−mIS − mS g(I, B) + σ. In view of

g2 − g1 = µ1(Q22) +
I
B
ξ + g(I, B) + µ + σ + mS g(I, B) −

I′

I

≥ −µ − σ − δ +
I′

I
−

B′

B
+

I
B
ξ + g(I, B) + µ + σ + mS g(I, B) −

I′

I

= −µ − σ − δ −
B′

B
+ δ +

B′

B
+ g(I, B) + µ + σ + mS g(I, B)

= g(I, B) + mS g(I, B) > 0,

we have
µ(Q) ≤ sup{g1, g2} = g2

= −µ − σ − δ +
I′

I
−

B′

B
+

I
B
ξ + sup{0, 2H(S , I, B) − γ}

= −µ − σ +
I′

I
+ sup{0, 2β1e−mIS − 2mS g(I, B) + 2σ − γ}

= −µ − σ +
I′

I
+ sup{0, 2S (β1e−mI I)′ − 2mS β2e−mI B + 2σ − γ}

≤ −µ − σ +
I′

I
+ sup{0, 2S (β1e−mI I)′ + 2σ − γ}.
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Define the function

f̃ (S , I) =

0, if 2S (β1e−mI I)′ + 2σ − γ ≤ 0,
2S (β1e−mI I)′ + 2σ − γ, if 2S (β1e−mI I)′ + 2σ − γ > 0.

Along each solution (S (t), I(t), B(t)) to (3.5) such that (S (0), I(0), B(0)) ∈ K, we find that

lim sup
t→∞

1
t

ˆ t

0
f̃ (S (s), I(s))ds = 0 or 2σ − γ,

lim sup
t→∞

(
1
t

ln
I(t)
I(0)
− µ − σ

)
= −µ − σ.

Here we have used the boundedness of solutions to (3.5). Observe that

1
t

ˆ t

0
µ(Q)ds ≤

1
t

ln
I(t)
I(0)
− µ − σ +

1
t

ˆ t

0
f̃ (S (s), I(s))ds,

then q̄2 has two possibilities:

(i) q̄2 ≤ −µ − σ < 0; (ii) q̄2 ≤ −µ − γ + σ < 0 (due to µ + γ > σ),

for all (S (0), I(0), B(0)) ∈ K. Therefore, the desired result holds.

3.2. Local Hopf bifurcations

From Theorem 3.1, we know that if R0 > 1 and τ = 0, E1 is locally asymptotically stable. Further,
0 cannot be an eigenvalue of (3.2) due to p(0, τ) = a2 + b2 > 0 for any τ ≥ 0. Therefore, the stability of
E1 changes only when at least a pair of eigenvalues of (3.2) cross the imaginary axis to the right. We
thus suppose that λ = iω (ω > 0) is a purely imaginary solution of (3.2) for some τ > 0, that is,

(−ω3 + a1ω)i − a0ω
2 + a2 + e−iωτ(−b0ω

2 + ib1ω + b2) = 0.

Separating the real and imaginary parts, we obtain

−ω3 + a1ω + b0ω
2 sin(ωτ) + b1ω cos(ωτ) − b2 sin(ωτ) = 0,

−a0ω
2 + a2 − b0ω

2 cos(ωτ) + b1ω sin(ωτ) + b2 cos(ωτ) = 0.

Equivalently, 
cos(ωτ) = G(ω) = −

b1ω(a1ω − ω
3) + (b2 − b0ω

2)(a2 − a0ω
2)

(b2 − b0ω2)2 + b2
1ω

2
,

sin(ωτ) = N(ω) =
(b2 − b0ω

2)(a1ω − ω
3) − b1ω(a2 − a0ω

2)
(b2 − b0ω2)2 + b2

1ω
2

.

(3.6)

Squaring and adding both equations of (3.6) yields

ω6 + pω4 + qω2 + r = 0, (3.7)
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with
p = a2

0 − 2a1 − b2
0, q = a2

1 − 2a0a2 − b2
1 + 2b0b2, r = a2

2 − b2
2.

Let x = ω2. Then equation (3.7) becomes

x3 + px2 + qx + r = 0.

Therefore, if iω is a purely imaginary root of (3.2), then the equation

h(x) := x3 + px2 + qx + r = 0

has a positive root x = ω2. Define the set W as

W = {(p, q, r) ∈ R3 | h(x) = 0 has only one positive real root x∗ and h′(x∗) > 0}.

By using the properties for the general cubic equations given in [30, Lemma A.2], we have (p, q, r) ∈
W if and only if one of the following conditions holds:

(C1) ∆ = (pq − 9r)2 − 4(p2 − 3q)(q2 − 3pr) > 0, r < 0;

(C2) r = 0, q = 0, p < 0;

(C3) ∆ < 0, q > 0, p > 0, r < 0.

In the case where (p, q, r) ∈ W, let ω0 =
√

x∗. Solving (3.6) for τ and ω = ω0, we obtain

τn = τ0 +
2nπ
ω0

, τ0 =

 arccos G(ω0)
ω0

, N(ω0) ≥ 0,
2π−arccos G(ω0)

ω0
, N(ω0) < 0,

n = 0, 1, 2, · · · . (3.8)

Then we have the following result.

Theorem 3.3. Let R0 > 1. For (p, q, r) ∈ W, E1 is locally asymptotically stable for τ ∈ [0, τ0)
and unstable for τ > τ0. Besides, system (1.2) undergoes Hopf bifurcation at E1 when τ = τn, n =

0, 1, 2, · · · .

Proof. Differentiating both sides of equation (3.2) with respect to τ yields[
dλ(τ)

dτ

]−1

=
3λ2 + 2a0λ + a1

−λ4 − a0λ3 − a1λ2 − a2λ
−
τ

λ
+

2b0λ + b1

b0λ3 + b1λ2 + b2λ
.

Substituting τ = τn into the above equality, we obtain[
dReλ(τ)

dτ

]−1 ∣∣∣∣∣∣
τ=τn

=Re
(

a1 − 3ω2 + 2a0ωi
a1ω2 − ω4 + a0ω3i − a2ωi

)
− Re

(
2b0ωi + b1

(b2ω − b0ω3i) − b1ω2

)
=ω2 3ω2 + 2ω2(−2a1 + a2

0 − b2
0) + a2

1 − 2a0a2 + 2b0b2 − b2
1

ω2[(b2 − b0ω2)2 + b2
1ω

2]

=
ω2

ω2[(b2 − b0ω2)2 + b2
1ω

2]
dh(x)

dx

∣∣∣∣∣∣
x∗=ω2

.

Since ω2[(b2 − b0ω
2)2 + b2

1ω
2] > 0, we have

sign

dReλ(τ)
dτ

∣∣∣∣∣∣
τ=τn

 = sign

[dReλ(τ)
dτ

]−1 ∣∣∣∣∣∣
τ=τn

 = sign
(
dh(x)

dx

∣∣∣∣∣∣
x∗=ω2

)
= 1.

Therefore, the transversality condition holds, and so the desired result follows.
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4. Global Hopf bifurcation

Theorem 3.3 states that periodic solutions can bifurcate from E1 when τ is near the local Hopf
bifurcation values τn, n = 0, 1, 2, · · · . In this section, we use the global Hopf bifurcation theorem
(see [31, Therorem 3.2]) to study the global continuation of these locally bifurcating periodic solutions.
In the remainder of this section, we always assume that R0 > 1, µ + γ > σ and (p, q, r) ∈ W.

Our arguments are similar to those in [1, 10, 30, 32–35]. Let z(t) = (I(τt),R(τt), B(τt))T. Rewrite
system (1.2) as the following functional differential equation

dz(t)
dt

= F(zt, τ,T ), (t, τ,T ) ∈ R+ × (0,∞) × R+, (4.1)

where zt ∈ Y := C([−1, 0],R3
+) with zt(θ) = z(t + θ) for θ ∈ [−1, 0], parameter T is the period of the

non-constant periodic solution of (4.1), and

F(zt, τ,T ) = τ


e−mz1t(−1)(N∗ − z1t(0) − z2t(0))(β1z1t(0) + β2z3t(0)) − (µ + γ)z1t(0)

γz1t(0) − (µ + σ)z2t(0)
ξz1t(0) − δz3t(0)

 (4.2)

with zt = (z1t, z2t, z3t) ∈ Y . Restricting F to the subspace of Y , we get a restricted function

F̃(z, τ,T ) := F|R3×(0,∞)×R+
= τ


e−mz1(N∗ − z1 − z2)(β1z1 + β2z3) − (µ + γ)z1

γz1 − (µ + σ)z2

ξz1 − δz3

 .
Clearly, F̃ is twice continuously differentiable, that is, the assumption (A1) in [31] holds.
By Theorems 2.1 and 2.2, the set of stationary solutions of system (4.1) is given by

N(F) = {(E0, τ,T ) : (τ,T ) ∈ (0,∞) × R+} ∪ {(E1, τ,T ) : (τ,T ) ∈ (0,∞) × R+}.

For any stationary solution (z̃, τ,T ) ∈ N(F), the characteristic matrix is

∆(z̃,τ,T )(λ) = λId − DF(z̃, τ,T )(eλ·Id)

=


−τβ1Ã + τC̃ + τm(µ + γ)z̃1e−λ + τγ + τµ + λ τC̃ −τβ2Ã

−τγ τµ + τσ + λ 0
−τξ 0 τδ + λ

 ,
where Id is the 3 × 3 identity matrix, Ã = e−mz̃1(N∗ − z̃1 − z̃2) and C̃ = β1e−mz̃1 z̃1 + β2e−mz̃1 z̃3. Thus, for
any stationary solution (z̃, τ,T ), the characteristic equation reads

det ∆(z̃,τ,T )(λ) = λ3 + ã0τλ
2 + ã1τ

2λ + ã2τ
3 + e−λ(b̃0τλ

2 + b̃1τ
2λ + b̃2τ

3) = 0,

where
ã0 = µ + σ + C̃ + β2Ã

ξ

δ
+ δ, ã1 = C̃(γ + δ) + (µ + σ)(β2Ã

ξ

δ
+ δ + C̃),

ã2 = C̃δ(µ + σ + γ), b̃0 = m(µ + γ)z̃1,

b̃1 = m(µ + γ)(µ + σ + δ)z̃1, b̃2 = mδ(µ + γ)(µ + σ)z̃1.
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Under the conditionR0 > 1, 0 cannot be an eigenvalue of any stationary solution of (4.1). Therefore,
the condition (A2) in [31] holds. From Eq (4.2), it can be easily verified that the smoothness condition
(A3) in [31] is also valid.

As defined in [36], the stationary solution (z̃, τ̃, T̃ ) of (4.1) is called a center if det∆(z̃,τ̃,T̃ )(ik 2π
T̃ ) = 0

for some positive integer k. A center is isolated if no other center exists in some neighborhood of
(z̃, τ̃, T̃ ) and there are only finite pure imaginary eigenvalues of the form ik 2π

T̃ . Let J(z̃, τ̃, T̃ ) represent
the set of all such positive integers k. Theorem 3.3 implies that if (p, q, r) ∈ W, for any integer n ≥ 0,
(E1, τn,

2π
ω0τn

) is an isolated center of (4.1), and there is only one pure imaginary root of the form ik 2π
T̃

with k = 1 and T̃ = 2π
ω0τn

. Therefore,
J(z̃, τ̃, T̃ ) = {1}. (4.3)

Moreover, it follows from Theorem 3.3 that the crossing number at each of these center is

γ1

(
E1, τn,

2π
ω0τn

)
= −sign

(
Reλ′(τn)

)
= −sign(h′(x∗)) = −1. (4.4)

Thus the condition (A4) in [31] holds.
Next, we define a closed subset Σ(F) of Y × (0,∞) × R+ by

Σ(F) = Cl{(z, τ,T ) ∈ Y × (0,∞) × R+ : z is a T -periodic nontrivial solution of (4.1)}.

For each integer n ≥ 0, let C
(
E1, τn,

2π
ω0τn

)
denote the connected branch of C

(
E1, τn,

2π
ω0τn

)
in Σ(F).

Theorem 3.3 guarantees that C
(
E1, τn,

2π
ω0τn

)
is a nonempty subset of Σ(F). The global bifurcation

theorem [31, Theorem 3.4] means that one of the following holds:

(i) C
(
E1, τn,

2π
ω0τn

)
is unbounded in Y × (0,∞) × R+;

(ii) C
(
E1, τn,

2π
ω0τn

)
is bounded, C

(
E1, τn,

2π
ω0τn

)
∩ N(F) is finite and∑

(z̃,τ,T )∈C
(
E1,τn,

2π
ω0τn

)
∩N(F)

γk(z̃, τ,T ) = 0,

for all k = 1, 2, 3, · · · , where γk(z̃, τ,T ) is the k-th crossing number of (z̃, τ,T ) if k ∈ J(z̃, τ,T ),
otherwise, γk(z̃, τ,T ) is zero.

For each n = 1, 2, · · · , (z̃, τ,T ) ∈ C
(
E1, τn,

2π
ω0τn

)
, based on (4.3) and (4.4), we see∑

(z̃,τ,T )∈C
(
E1,τn,

2π
ω0τn

)
∩N(F)

γk(z̃, τ,T ) = γ1(z̃, τ,T ) = −1.

Hence, (ii) fails and (i) holds. The following two lemmas help us confirm the boundedness of the
projections of C

(
E1, τn,

2π
ω0τn

)
on z-space and T -space.

Lemma 4.1. For initial value φ = (φ1, φ2, φ3) ∈ Y with φ1(θ) + φ2(θ) ≤ Λ
µ
, ∀θ ∈ [−1, 0], all periodic

solutions of system (4.1) are uniformly bounded.

The proof is a direct result of Lemma 2.1, and hence is omitted.
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Lemma 4.2. If R0 > 1 and µ + γ > σ, then system (4.1) has no periodic solutions of period 1.

Proof. Suppose that z(t) = (z1(t), z2(t), z3(t)) is the periodic solution of system (4.1) with period 1, then
z(t) is a periodic solution of the following ordinary differential equations

dz1(t)
dt

=τe−mz1(t)(N∗ − z1(t) − z2(t))(β1z1(t) + β2z3(t)) − τ(µ + γ)z1(t),

dz2(t)
dt

=τγz1(t) − τ(µ + σ)z2(t),

dz3(t)
dt

=τξz1(t) − τδz3(t).

(4.5)

By Theorem 3.2, system (4.5) has a unique positive equilibrium that is globally stable, and thus no
periodic solutions appear. This leads to a contradiction.

Lemma 4.1 shows that for any integer n ≥ 0, the projection of C
(
E1, τn,

2π
ω0τn

)
onto z-space is

bounded. Lemma 4.2 implies that system (4.1) also has no periodic solutions of period 1
n+1 for any

n ≥ 0, Moreover, with the help of (3.8), we obtain

1
n + 1

<
2π
ω0τn

< 1, n = 1, 2, · · · .

Therefore, the projection of C
(
E1, τn,

2π
ω0τn

)
onto T -space is bounded. Accordingly, the projection

of C
(
E1, τn,

2π
ω0τn

)
onto τ-space is unbounded.

Summarizing the above discussion, we arrive at the following result.

Theorem 4.1. Assume that R0 > 1, µ + γ > σ and (p, q, r) ∈ W, then for any τ > τ1 system (1.2) has
at least one nontrivial periodic solution.

5. Numerical simulation

In this section, we carry out numerical simulations to demonstrate the theoretical results. Partic-
ularly, the global Hopf branches are computed by a Matlab package DDE-BIFTOOL developed by
Engelborghs et al. [37, 38].

For illustrative purpose, we choose the parameters of system (1.1) as follows:

Λ = 31, β1 = 0.09, β2 = 0.08, µ = 0.81,
m = 0.1, σ = 0.3, γ = 0.1, ξ = 0.5, δ = 0.2.

Direct calculation gives R0 = 12.1964 > 1 and (p, q, r) ∈ W. By using (3.8), we further obtain
τ0 = 5.5131, τ1 = 18.3517, τ2 = 31.1903, · · · . Figure 1 shows that the endemic equilibrium E1 =

(17.8880, 1.6115, 44.7201) is asymptotically stable when τ = 4 < τ0, while Figure 2 displays that E1

loses stability and a Hopf bifurcation occurs when τ = 8 > τ0. These numerical results agree with the
result of Theorem 3.3.
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Figure 1. A solution converges to the stable equilibrium E1 when τ = 4 < τ0.
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Figure 2. A solution converges to a stable periodic solution when τ = 8 > τ0.

Mathematical Biosciences and Engineering Volume 20, Issue 10, 18468–18490.



18486

Moreover, we depict the global Hopf branches of periodic solutions emanating from the Hopf bifur-
cation points τ0, τ1 and τ2. As seen in Figure 3, when τ0 < τ < τ1, system (1.2) has only one periodic
solution originating from τ0. When τ lies between τ1 and τ2, the periodic solutions from τ0 and τ1

coexist. With the further increase of τ and τ > τ2, three periodic solutions originating from τ0, τ1 and
τ2 coexist.

0 20 40 60 80 100 120
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20
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30

35

A
m

pl
itu

de

0 1 2

Figure 3. Global Hopf branches of system (1.2) at τ0 = 5.5131, τ1 = 18.3517, and τ2 =

31.1903, respectively.

Finally, we use the delay as the bifurcation parameter to plot the bifurcation diagram. Figure 4
demonstrates the onset and global continuation of Hopf bifurcations as τ varies.

Figure 4. Bifurcation diagram of (1.2) with respect to τ, where red dashed line represents
unstable equilibrium.
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6. Discussion

Models related to the impact of media coverage on disease spread have shown great popularity in
recent years. To study the effect of media coverage on cholera transmission, we considered a cholera
model with delayed media impact. We showed that the basic reproduction number R0 is an epidemic
threshold parameter that determines the extinction and uniform persistence of the disease. However,
this threshold phenomenon is not influenced by the delayed media impact, since R0 is independent of
m and τ. This observation motivates us to further explore the impact of media coverage. We proved
that the positive equilibrium E1 is locally asymptotically stable when R0 > 1 and τ ∈ [0, τ0), and is
unstable when τ > τ0 (see Theorem 3.3). Furthermore, system (1.2) undergoes a Hopf bifurcation at
E1 along the sequence τn, n = 0, 1, 2, · · · . To examine the onset and termination of periodic solutions
bifurcated from E1, we use delay as the bifurcation parameter and establish the existence of global
bifurcation (see Theorem 4.1).

The local stability and the Hopf bifurcation analysis of the positive equilibrium E1 are critically
dependent on the existence and distribution of the roots of the cubic equation h(x) = 0 [39]. In this
paper, we considered only case where h(x) = 0 has only one simple positive root. Therefore, it is
exciting to study properties of the global Hopf branches that accompany the stability switch when
h(x) = 0 has exactly two or three simple positive roots. Another possible project is to consider a
spatial version of model (1.1). For such a model with multiple compartments, the investigation of
Hopf bifurcation is challenging. We leave these topics for future research.
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