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Abstract: The effects of predator-taxis and conversion time delay on formations of spatiotemporal
patterns in a predator-prey model are explored. First, the well-posedness, which implies global ex-
istence of classical solutions, is proved. Then, we establish critical conditions for the destabilization
of the coexistence equilibrium via Turing/Turing-Turing bifurcations by describing the first Turing
bifurcation curve; we also theoretically predict possible bistable/multi-stable spatially heterogeneous
patterns. Next, we demonstrate that the coexistence equilibrium can also be destabilized via Hopf,
Hopf-Hopf and Turing-Hopf bifurcations; also possible stable/bistable spatially inhomogeneous stag-
gered periodic patterns and bistable spatially inhomogeneous synchronous periodic patterns are the-
oretically predicted. Finally, numerical experiments also support theoretical predictions and partially
extend them. In a word, theoretical analyses indicate that, on the one hand, strong predator-taxis can
eliminate spatial patterns caused by self-diffusion; on the other hand, the joint effects of predator-taxis
and conversion time delay can induce complex survival patterns, e.g., bistable spatially heterogeneous
staggered/synchronous periodic patterns, thus diversifying populations’ survival patterns.

Keywords: predator-prey model; pattern formations; Turing bifurcation; Hopf bifurcation;
predator-taxis

1. Introduction

It is common for population dynamics to be presented by using random interactions of species in
space [1–3]. Often, however, changes in the interactions and spatial distributions of populations can
cause the population dynamics to change fundamentally [4–7]. A characteristic of living systems is
their ability to respond to changes in the environment and approach or move away from environmental
stimuli. The importance of chemotaxis in the modeling of a variety of biological and ecological pro-
cesses has been recognized, including the spread of epidemics, aggregations of cellular slime mold,
dynamics of planktonic communities and dynamic of insect populations [8–11]. For predator and prey
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populations in space, the predator usually spends more time in places with more abundant food re-
sources, and such behavior has a clear selective advantage. It directly leads to the relative aggregation
of the predator in areas with a high prey density [12]. Although experiments on spatial models are
limited, this aggregative behavior has been inscribed in some predator-prey models since as early as
the 1970s [13–16]. The results suggest that the aggregation of the predator in regions of high prey
density is important to the dynamics of predator-prey interactions. In 1974, Hassell and May [17] used
laboratory experiments and field observations of birds, insect predators and insect parasites to show the
effect of predator aggregation on the dynamic properties of the two populations. It turns out that stabil-
ity is increased when the prey distribution becomes more clumped. It was not until 1987 that Kareiva
and Odell [18] explicitly characterized the aggregative behavior of the predator in terms of the non-
random distribution of predators in space, yielding the first ecological model to describe the directional
movement of species using prey-taxis. Since then, some mathematical models have been proposed and
the effects of prey-taxis on the spatiotemporal distributions of populations have been considered; see,
for example [19–21] and the references therein. It has been shown that a strong prey-taxis can pre-
vent population overcrowding. That is to say, prey-taxis has a stabilizing effect on population survival,
which also supports the experimental results in [17]. Corresponding to the chemotactic movement of
the predator is the chemotactic movement of the prey (namely predator-taxis), which refers to the fact
that the prey can sense the risk of being preyed upon and will thus move in the opposite direction of
the predator distribution gradient. The existing research about the directed movements of prey have
also provided new insights into the emergence of spatial non-uniform distribution of species. For ex-
ample, Wang and Zou [22] have demonstrated that predator-taxis is a positive anti-predator behavior
exhibited by the prey, because it can inhibit the formations of spatial heterogeneity. And in [23], Wu et
al. analogized the avoidance of infected populations by susceptible populations to the phenomenon of
predator-taxis, demonstrating that chemotaxis reduces the probability of spatial heterogeneity and thus
reduces the risk of influenza transmission. In addition, the time delay caused by the conversion of the
predator’s capture behavior into the predator’s growth has also often been taken into account [24, 25],
and it is often considered as one of the mechanisms leading to the emergence of time-periodic oscilla-
tions in the system.

Hence, incorporating chemotaxis and time delay into the classical predator-prey model is necessary
and reasonable, and the corresponding model is written as follows


∂u
∂t = ∇ · (du∇u + αζ1(u)∇v) + u f1(u) − p(u, v)v, x ∈ Ω, t > 0,
∂v
∂t = ∇ · (dv∇v − ηζ2(v)∇u) + cp(uτ, vτ)v − v f2(v), x ∈ Ω, t > 0,
∂u
∂~n = ∂v

∂~n = 0, x ∈ ∂Ω, t > 0,

(1.1)

where uτ = u(x, t − τ), vτ = v(x, t − τ), Ω ⊂ Rn and ~n is the outer unit normal vector on ∂Ω. u(x, t) and
v(x, t) represent the densities of the prey and predator at location x and time t respectively, du and dv

denote the random dispersal rates of the prey and predator respectively, and thus are positive, and c > 0
reflects the conversion rate. The function f1(u) describes the growth rate of the prey, with the most
common cases being the constant growth rate f1(u) = r0 > 0, logistic growth rate f1(u) = r0(1 − u

N )
with N > 0, etc. f2(v) describes the mortality rate of the predator, with the most common cases being
the constant mortality rate f2(v) = m1 > 0, linear mortality rate f2(v) = m1 + m2v with m2 > 0, etc.
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Moreover, p(u, v) is the functional response function, and some common cases are as follows:

Holling type II: p(u, v) =
b1u

b2 + u
,

Holling type III: p(u, v) =
b1u2

b2 + u2 ,

ratio-dependent: p(u, v) =
b1u

b2v + u
,

where b1 > 0 and b2 > 0. In particular, the time delay τ > 0 is regarded as the contribution of
the predation that occurred in the past to the current growth of the predator [26, 27]. ∇ · (αζ1(u)∇v)
describes the movement of prey toward a lower density of predator, while −∇· (ηζ2(v)∇u) describes the
predator movement toward a higher density of prey, where α, η > 0 are chemotaxis coefficients, and
the sensitivity function ζ1(u) can be chosen as in [28], e.g.,

linear: ζ1(u) = u,

Ricker: ζ1(u) = ue−εu,

saturated: ζ1(u) =
u

1 + εum ,

where ε > 0, m > 1 and ζ2(v) can be selected analogously.
For model (1.1) with ζ1(u) = u, ζ2(v) = v and τ = 0, spatial patterns induced by prey-taxis and

predator-taxis have been discussed by Wang et al. [29], and they showed that spatial patterns can be
eliminated by strong predator-taxis and prey-taxis. Results on Turing instability can be also found
in a paper by Cao and Wu [30], where sufficient conditions for the emergence of spatial patterns
were provided and the authors further revealed that the appearances of spatial patterns does not nec-
essarily require that the predator self-diffusion rate be greater than that of the prey in the presence of
chemotaxis.

As for model (1.1) with only prey-taxis (α = 0, η > 0) and τ = 0, the global existence, asymp-
totic behavior or blow-up of solutions in general parabolic-parabolic systems with prey-taxis have
been widely studied; for example, see [31, 32] and the references therein. Pattern formations induced
by prey-taxis with ζ2(v) = v have also been discussed in detail in [33] for different f1, f2 and p.
Specifically speaking, Lee et al. [33] showed that strong prey-taxis tends to stabilize the coexistence
equilibrium when f1, f2 and p correspond to the logistic growth rate, constant mortality rate and ratio-
dependent forms, respectively. Moreover, Gao and Guo [34] demonstrated that the local stability of the
constant steady state is enhanced by the presence of prey-taxis. Subsequently, Qiu et al. [35] showed
that prey-taxis can suppress the global asymptotic stability of the coexistence steady state, and they
pointed out that due to the effect of prey-taxis, periodic solutions bifurcating from the coexistence
steady state via Hopf bifurcation can be spatially inhomogeneous.

Also, there has been some research on model (1.1) with only predator-taxis (α > 0, η = 0) and
τ = 0. For example, Wu et al. [23] discussed the general model with predator-taxis and proved that
strong predator-taxis can make the spatial patterns caused by self-diffusion disappear.

Particularly, when considering the logistic growth rate f1(u), constant mortality rate f2(v), ratio-
dependent functional response p(u, v) and linear sensitivity function ζ1(u), model (1.1) can be written
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as follows: 
∂u
∂t = ∇ · (du∇u + αu∇v) + u(x, t)(r0 − au(x, t)) − b1u(x,t)

b2v(x,t)+u(x,t)v(x, t),
∂v
∂t = ∇ · (dv∇v) − m1v(x, t) +

cb1u(x,t−τ)
b2v(x,t−τ)+u(x,t−τ)v(x, t), x ∈ Ω, t > 0,

∂u
∂~n = ∂v

∂~n = 0, x ∈ ∂Ω, t > 0,
u(x, t) = u0(x, t) > 0, v(x, t) = v0(x, t) > 0, (x, t) ∈ Ω × [−τ, 0],

(1.2)

where Ω = (0, π). r0 and r0
a denote the intrinsic growth rate of prey and carrying capacity, respectively,

m1 is the mortality rate of the predator, which is independent of its density, and b1 and b2 denote
the capturing rate and half saturation constant, respectively. The initial functions u0 and v0 are non-
negative, continuous and satisfy

(u0, v0) ∈ (W1,p(Ω × [−τ, 0],R+))2, p > 1. (1.3)

For model (1.2) with τ = 0, by replacing ∇ · (αu∇v) with ∇ · (α(1 − u
M )u∇v), Wang and Zou [22]

investigated the formations of spatial patterns and found that weak predator-taxis can lead to spatial
patterns, where M measures the maximum number of prey that a unit volume can accommodate. As
for (1.2) with τ = 0 and a general form of predator-taxis, Gao [36] proved the global existence and
uniform boundedness of the classical solutions. For the case with no chemotaxis, that is, for α = 0,
Song et al. [37] considered the delayed model (1.2) and discussed the existence and stability of the
delay-induced spatially homogeneous periodic orbit.

In this paper, we would like to reveal the diversity of populations’ survival patterns as caused by
predator-taxis and conversion time delay from the perspective of studying Turing bifurcation, Hopf
bifurcation, Turing-Turing bifurcation and Turing-Hopf bifurcation for system (1.2).

First, we prove the well-posedness of (1.2). Second, for system (1.2) without conversion time delay,
we establish conditions for the existence of Turing bifurcation and Turing-Turing bifurcation. Partic-
ularly, we describe the first Turing bifurcation curve precisely in a (du, α)-plane, which is piecewise
smooth with the segment points being Turing-Turing bifurcation points. Hence, the latent steady states
with different wave frequencies that system (1.2) may exhibit can be forecasted by virtue of the first
Turing bifurcation curve. Compared to [22], we give a larger range of parameters when the stability
of the positive constant steady state is broken by Turing bifurcation. Moreover, for system (1.2), we
theoretically reveal that strong predator-taxis will suppress the appearance of spatial patterns caused
by random diffusion.

Afterward, the conditions for the existences of Hopf bifurcation and Hopf-Hopf bifurcation are
given under the conditions of considering the effects of conversion time delay. We determine the fi-
nite range of wave frequencies for the case of Hopf bifurcation occurring in system (1.2). Especially,
by describing the finite Hopf bifurcation curves, we also attain the first Hopf bifurcation curve and
determine the stable periodic solutions with different wave frequencies that system (1.2) may exhibit
intuitively. It is shown that the positive constant steady state will be destabilized via Hopf-Hopf bi-
furcation at the segment points. Unlike most previous studies on reaction-diffusion systems with only
self-diffusion, our results show that when the positive constant steady state is destabilized, system (1.2)
will exhibit stable periodic patterns with non-zero wave frequencies via Hopf bifurcation, as well as
some abundant periodic patterns via Hopf-Hopf bifurcation, such as transient quasi-periodic patterns
and bistable periodic patterns, i.e., two stable periodic patterns with different spatial wave frequencies
coexisting.
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Apart from those, the instability of a positive constant steady state may also be brought about by
some other bifurcations, such as Turing-Hopf bifurcation, Turing-Turing-Hopf bifurcation, Turing-
Hopf-Hopf bifurcation and so on. We also establish the conditions for the existence of the corre-
sponding bifurcations. And it is shown from a numerical perspective that a pair of stable spatially
inhomogeneous synchronous time-periodic patterns appear via Turing-Hopf bifurcation.

This paper is organized as follows. Global existence of the classical solutions is given in Section 2.
In Sections 3 and 4, we state the main results about Turing instability and Hopf bifurcation for system
(1.2). Some numerical simulations are also given to illustrate the theoretical results. At last, we finish
our study with conclusions in Section 5.

Throughout the paper, N is the set of all positive integers, and N0 = N ∪ {0}. As for the definitions
of the mode-k1 Turing bifurcation and mode-(k1, k1 + 1) Turing-Turing bifurcation, as well as mode-k2

Hopf bifurcation, mode-(k1, k2) Turing-Hopf bifurcation, mode-(k2, k̃2) Hopf-Hopf bifurcation and so
on, which will be mentioned later, the reader may refer to [38, 39].

2. Global existence of the classical solutions

Before starting to formally investigate the long-term dynamics, we first prove the well-posedness of
system (1.2), and the result is inspired by [40].

Theorem 1. System (1.2) admits a unique and positive classical solution (u, v) ∈ (C((0,∞),W1,p(Ω ×
[−τ, 0],R+)) ∩C2,1((0,∞) ×Ω,R+))2 with p > 1 if the initial values satisfy (1.3).

Proof. When τ = 0, it follows from [36] that the conclusion is valid.
When τ > 0, for 0 6 t 6 τ, from the first (second) equation of (1.2) and the comparison principle

for parabolic equations, we have that u > 0 (v > 0). Further by [41], we have that u > 0 (v > 0) for
0 6 t 6 τ. Moreover, it follows from [42] that (1.2) has a unique classical solution (C((0,T ),W1,p(Ω ×
[−τ, 0],R+)) ∩C2,1((0,T ) ×Ω,R+))2. Noting that

G1(u, v) ,r0 − au −
b1v

b2v + u
6 r0,

G2(uτ, vτ) ,
cb1uτ

b2vτ + uτ
− m1 6 cb1,

the classical solution can be extended to t ∈ [0, τ] and (u, v) ∈ (C((0, τ),W1,p(Ω × [−τ, 0],R+)) ∩
C2,1((0, τ) × Ω,R+))2. Now by repeating the above proof for t ∈ [τ, 2τ] and t ∈ [nτ, (n + 1)τ] (n > 2),
we have the analogous results. Thus, the global existence of the classical positive solution of (1.2) can
be obtained, which is obviously positive.

3. Turing instability and multi-stable spatial patterns

First, we analyze the existence and stability of a positive constant steady state for the homogeneous
system corresponding to system (1.2).

In fact, there is a unique positive equilibrium Ē := (ū, v̄) for system (1.2) if

c >
m1

b1
and r0 >

cb1 − m1

cb2
, (3.1)
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where
ū =

1
a

(r0 −
cb1 − m1

b2c
), v̄ =

cb1 − m1

m1b2
ū.

Then, the linearized equations of system (1.2) at Ē are given by
ut = du

∂2

∂x2 u + αū ∂2

∂x2 v + (−aū + b1ūv̄
(b2v̄+ū)2 )u − b1ū2

(b2v̄+ū)2 v,

vt = dv
∂2

∂x2 v + cb1b2v̄2

(b2v̄+ū)2 uτ − cb1b2ūv̄
(b2v̄+ū)2 vτ,

ux(0, t) = vx(0, t) = 0, ux(π, t) = vx(π, t) = 0.

(3.2)

Let {µk = k2 : k ∈ N0} be the eigenvalues of the operator − ∂2

∂x2 on (0, π), as subject to Neumann
boundary conditions. And for the sake of convenience, denote

$ :=
m1(cb1 − m1)

c2b1b2
> 0;

then the characteristic equations of (3.2) yield

Dk(λ, τ, α) := λ2 + pkλ + σk + (skλ + qk(α))e−λτ = 0, k ∈ N0, (3.3)

where

pk = k2(du + dv) + (aū −$),
sk = cb2$,

σk = k4dudv + k2dv(aū −$),
qk(α) = k2cb2v̄$α + cb2$(k2du + aū).

(3.4)

For τ = 0, (3.3) turns into

Dk(λ, 0, α) = λ2 + (pk + sk)λ + (σk + qk(α)) = 0, k ∈ N0. (3.5)

Denote DETk := σk + qk(α), TRk := −(pk + sk) for k ∈ N0; then,

DETk = k4dudv + k2[dv(aū −$) + ducb2$ + αcb2v̄$] + acb2ū$,

TRk = −k2(du + dv) − (aū −$) − cb2$.

If

c >
m1

b1
and r0 > r0 , max

{
cb1 − m1

cb2
,

(cb1 − m1)(cb1 + m1 − cb2m1)
c2b1b2

}
, (3.6)

then TR0 < 0; hence, Ē is locally asymptotically stable for a local ODE system since DET0 > 0. So in
the following discussions, we always assume that (3.6) is satisfied.

Next, we devote ourselves to discussing the occurrences of Turing bifurcation for system (1.2).
For convenience, denote

r0 :=
(cb1 − m1)(cb1 + m1)

c2b1b2
> 0,

and it is obvious that r0 > r0.
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When r0 > r0, then aū −$ > 0; hence, TRk < 0 and DETk > 0 for k ∈ N0, which indicates that Ē
is locally asymptotically stable.

When r0 < r0, then aū −$ < 0. According to (3.6), TRk < 0 for k ∈ N0 also holds. However, there
exists some k ∈ N such that DETk < 0, meaning that Turing bifurcation can occur for system (1.2).
Then, for any fixed dv > 0, define

α(k, du) := −
dudvk4 + (dv(aū −$) + ducb2$)k2 + acb2ū$

k2cb2v̄$
, du > 0, k ∈ Λ, (3.7)

where

Λ :=

k ∈ N : k > k̂ ,

√
acb2ū$

dv($ − aū)

 . (3.8)

Also, denote

ᾱ(k) := lim
du→0+

α(k, du) = −
aū
k2v̄

+
dv($ − aū)

cb2v̄$
. (3.9)

Then, to describe the critical conditions for the instability of the positive equilibrium, we first discuss
the monotonicity of ᾱ(k) with respect to the wave number k.

Lemma 2. For any a, b1, b2,m1, dv > 0, provided that c > m1
b1

and r0 < r0 < r0, it holds that ᾱ(k) > 0 is
monotonically increasing in k for k ∈ Λ.

A direct calculation from α(k, du) = 0 yields

dk
u := −

dv(aū −$)k2 + acb2ū$
k2(dvk2 + cb2$)

, k ∈ Λ, (3.10)

which is a critical value of du when Ē is destabilized.
For any dv > 0, let

k̄ :=

bk∗c + 1, for dbk∗cu 6 dbk∗c+1
u ,

bk∗c, for dbk∗cu > dbk∗c+1
u ;

(3.11)

then k̄ is the critical wave number of the nonconstant steady states arising from Ē through Turing
instability, where

k∗ =

√
cb2$(aū +

√
aū$)

dv($ − aū)
, (3.12)

and b·c is the floor function.
The next lemma concerns the monotonicity of dk

u in k and α(k, du) in du, respectively.

Lemma 3. For any a, b1, b2,m1, dv > 0, provided that c > m1
b1

and r0 < r0 < r0, it holds that

(i) dk
u is monotonically increasing with respect to k ∈ N for k̂ < k < k̄, and monotonically decreasing

with respect to k ∈ N for k > k̄.
(ii) for any k ∈ Λ, α(k, du) is linear and monotonically decreasing with respect to du for du > 0.

Particularly, α(k, du) > 0 for 0 < du < dk
u, k ∈ Λ.
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Proof. We only prove the case of dbk∗cu 6 dbk∗c+1
u , where k̄ = bk∗c + 1, and the other cases can be proved

by following similar arguments.
For part (i), define Θ1(x) by

Θ1(x) := −
dv(aū −$)x + acb2ū$

x(dvx + cb2$)
, x > 0.

So by a direct calculation, there exists x∗ = k2
∗ satisfying that Θ1(x) is increasing in x on (0, x∗), and

decreasing in x on (x∗,∞). And by (3.8), it follows that

k2
∗ − k̂2 =

cb2$
√

aū$
dv($ − aū)

> 0,

that is, k∗ > k̂; thus, bk∗c + 1 > k∗ > k̂, which implies that dk
u is decreasing for bk∗c + 1 6 k ∈ N. On the

other hand, for k ∈ {k ∈ N : k̂ < k < bk∗c + 1}, dk
u is monotonically increasing with respect to k.

For part (ii), for any k ∈ Λ, we rewrite the expression of α(k, du) in (3.7) as follows

α(k, du) := −
dvk2 + cb2$

cb2v̄$
du −

dv(aū −$)k2 + acb2ū$
k2cb2v̄$

, du > 0;

then α(k, du) is a linear function of du; thus, for du > 0, α(k, du) is monotonically decreasing with
respect to du, implying that α(k, du) > 0 for 0 < du < dk

u, k ∈ Λ.

As required by the model background, we focus on the case in which the predator-taxis coefficient
is non-negative. To this end, for any dv > 0, define

α∗(k, du) := max{α(k, du), 0}, k ∈ Λ, 0 < du < dk̄
u. (3.13)

It is well known that the first critical value of Turing bifurcation determines the stability of the
positive constant steady state [43]. So to describe the critical region in which the stability of Ē changes
in the (du, α)-plane, we next we discuss the intersections of α = α∗(k, du) for k ∈ Λ, 0 < du < dk̄

u.

Lemma 4. For any a, b1, b2,m1, dv > 0, provided that c > m1
b1

and r0 < r0 < r0, it follows that for any
k ∈ Λ,

(i) the equation
α∗(k, du) = α∗(k + 1, du), 0 < du < dk̄

u

has a unique root dk,k+1
u ∈ (0, dk+1

u ), which is denoted by

dk,k+1
u :=

acb2ū$
dvk2(k + 1)2 ; (3.14)

(ii) for k > k̄,

α∗(k, du) > α∗(k + 1, du) > α∗(k + 2, du) > · · · ,
α∗(k, du) > α∗(k − 1, du) > α∗(k − 2, du) > · · · > α∗(k̄, du)

(3.15)

for dk,k+1
u < du < dk−1,k

u , where dk̄−1,k̄
u := dk̄

u;
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(iii) for k̂ < k < k̄

α∗(k̄, du) > α∗(k̄ − 1, du) > · · · > α∗(bk̂c + 1, du), for 0 < du < dk̄
u. (3.16)

Proof. The part (i) is obvious. As for parts (ii) and (iii), below we only give the proof when dbk∗cu 6
dbk∗c+1

u , with k̄ = bk∗c + 1, and the other cases can be proved similarly.
For part (ii), if k > k̄, then for the first sequence, if du > dk,k+1

u , it follows that

α∗(k, du) − α∗(k + 1, du) =
(2k + 1)(dudvk2(k + 1)2 − acb2ū$)

cb2v̄$k2(k + 1)2 > 0,

that is, α∗(k, du) > α∗(k+1, du). In addition, if du > dk+1
u > dk,k+1

u , together with the definition of α∗(k, du)
in (3.13), then α∗(k + 1, du) = α∗(k + 2, du) = · · · = 0, implying that for du > dk,k+1

u , α∗(k, du) > α∗(k +

1, du) > α∗(k + 2, du) > · · · . Similarly, if du > dk+1,k+2
u , α∗(k + 1, du) > α∗(k + 2, du) > α∗(k + 3, du) > · · ·

holds, and the rest can be done in the same manner. And by (3.14), dbk∗c+1
u > dk,k+1

u > dk+1,k+2
u > · · · > 0

also holds. Thus, when du > dk,k+1
u , α∗(k, du) > α∗(k + 1, du) > α∗(k + 2, du) > · · · .

If du < dk−1,k
u , it analogously follows that

α∗(k, du) − α∗(k − 1, du) =
(2k − 1)(−dudvk2(k − 1)2 + acb2ū$)

cb2v̄$k2(k − 1)2 > 0,

that is, α∗(k, du) > α∗(k−1, du). So if du < dk−2,k−1
u , then α∗(k−1, du) > α∗(k−2, du) and so on. By (3.14)

again, 0 < dk−1,k
u < dk−2,k−1

u < · · · < dbk∗c+1
u holds. Hence, when du < dk−1,k

u , α∗(k, du) > α∗(k − 1, du) >
α∗(k − 2, du) > · · · > α∗(bk∗c + 1, du).

For part (iii), according to Lemma 2 and Lemma 3, if k̂ < k < k̄, then α∗(bk∗c+1, du) > α∗(bk∗c, du) >
· · · > α∗(bk̂c + 1, du), 0 < du < dk̄

u.

(a) (b)

Figure 1. (a): Turing bifurcation curves for α = α∗(k, du) when 0 < du < dk̄
u for different

values of k ∈ Λ in the (du, α)-plane. (b): The first Turing bifurcation curve α = α∗(du), 0 <

du < dk̄
u. The non-smooth points Tk̄,k̄+1, Tk̄+1,k̄+2, · · · are Turing-Turing bifurcation points.

Synthesizing the above discussions, for k ∈ Λ and 0 < du < dk̄
u, define

α∗(du) := α∗(k, du), du ∈ [dk,k+1
u , dk−1,k

u ), k > k̄, (3.17)
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with k̄ as defined in (3.11). Then
α = α∗(du), 0 < du < dk̄

u (3.18)

is called the first Turing bifurcation curve, which is the critical curve for the Turing instability of Ē.

Lemma 5. For any a, b1, b2,m1, dv > 0, provided that c > m1
b1

and r0 < r0 < r0, it holds that, for any
du ∈ (0, dk̄

u), there must exist some integer k1 > k̄ such that du ∈ [dk1,k1+1
u , dk1−1,k1

u ). Specifically,

(i) if du ∈ (dk1,k1+1
u , dk1−1,k1

u ) and α = α∗(du), 0 is a simple root of characteristic equation (3.5) with
k = k1, and the other roots of (3.5) have strictly negative real parts; also, let λ1(k1, 0, α) be the
root of (3.5) satisfying λ1(k1, 0, α∗(du)) = 0; then,

dλ1(k1, 0, α∗(du))
dα

=
−k2

1cb2v̄$
pk1 + sk1

< 0; (3.19)

(ii) if du = dk1,k1+1
u and α = α∗(d

k1,k1+1
u ), then 0 is a simple root of characteristic equation (3.5) for

both k1 and k1 + 1, and the other roots of (3.5) have strictly negative real parts.

Proof. Inspired by the proof of [43], we only give the proof of part (i), as the second assertion can be
analogously proved.

Note that in (3.5), DETk = 0 if and only if α = α∗(k, du) for k ∈ Λ and 0 < du < dk̄
u. So, for any

k1 ∈ Λ, λ1(k1, 0, α) = 0 is always a root of (3.5) with such a k1 when α = α∗(k1, du). By the definitions
of α∗(du) and α∗(k, du), if du ∈ (dk1,k1+1

u , dk1−1,k1
u ) and α = α∗(du), then 0 is a root of (3.5) with k = k1.

Moreover, it follows from
dDk1(λ, 0, α)

dλ
|λ=0= −TRk1 > 0

that λ = 0 is simple. The condition (3.6) ensures that TRk < 0 for all k ∈ N0 and DETk > 0 for
k > k̄, k ∈ N and k , k1. Thus, all other roots of (3.5) have strictly negative real parts. Differentiating
(3.5) with respect to α, the transversality conditions in (3.19) can be obtained directly.

In Figure 1 , we show the schematic diagram of Turing bifurcation curves for α = α∗(k, du) when
0 < du < dk̄

u for different values of k ∈ Λ in the (du, α)-plane to illustrate the properties presented
in Lemma 4. The corresponding first Turing bifurcation curve α = α∗(du), 0 < du < dk̄

u is plotted in
Figure 1, and the non-smooth points of α = α∗(du), 0 < du < dk̄

u, Tk̄,k̄+1, Tk̄+1,k̄+2, · · · are Turing-Turing
bifurcation points.

So in summary, we have the following theorem.

Theorem 6. For model (1.2) with τ = 0 and any a, b1, b2,m1, dv > 0, provided that c > m1
b1

, it follows
that

(1) when r0 > r0, for du > 0 and α > 0, the positive constant steady state Ē is always locally
asymptotically stable;

(2) when r0 < r0 < r0,

(a) if du > dk̄
u, Ē is locally asymptotically stable for α > 0;

(b) when 0 < du < dk̄
u,

(i) Ē is locally asymptotically stable for α > α∗(du), and unstable for 0 < α < α∗(du);
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(ii) if du ∈ (dk1,k1+1
u , dk1−1,k1

u ) for some k1 > k̄ and k1 ∈ N, (1.2) undergoes mode-k1 Turing
bifurcation when α = α∗(du);

(iii) if du = dk1,k1+1
u for some k1 > k̄ and k1 ∈ N, (1.2) undergoes mode-(k1, k1 + 1) Turing-

Turing bifurcation when α = α∗(d
k1,k1+1
u ).

Remark 1. (Turing patterns and Turing-Turing patterns) Note that sufficient conditions for the for-
mations of spatial patterns have been provided in [22], while the condition that 0 < α < α∗(du), 0 <

du < dk̄
u given in Theorem 6 is not only sufficient but also necessary for pattern formations.

As shown in Figure 1(b), the first Turing bifurcation curve α = α∗(du), 0 < du < dk̄
u, is formed

by connecting Turing bifurcation curves of mode-k̄, mode-k̄ + 1, mode-k̄ + 2, · · · with Turing-Turing
bifurcation points Tk̄,k̄+1, Tk̄+1,k̄+2, · · · , which indicates that the positive constant steady state can be
destabilized by mode-k Turing bifurcation; thus, system (1.2) will harvest the spatially inhomogeneous
steady states shaped like cos kx, and it also suggests that the positive constant steady state can be desta-
bilized by a mode-(k, k + 1) Turing-Turing bifurcation; thus, system (1.2) will harvest more complex
spatial patterns, such as multiple superposition solutions of cos kx and cos(k + 1)x, or the coexistence
of multi-stable spatial patterns shaped like cos kx and cos(k + 1)x, where the possible values of k are
k̄, k̄ + 1, · · · .

Moreover, it can be concluded that strong predator-taxis has the effects of eliminating spatial pat-
terns which arise due to the random dispersal of predator and prey. Besides, it follows from Lemma 3
and (3.17) that α = α∗(du) is decreasing with respect to du for 0 < du < dk̄

u, which means that when the
self-diffusion du of prey is small, the heterogeneity of the spatial distributions of the two populations
can be eliminated by increasing the predator-taxis coefficient α, that is to say, strong predator-taxis
can supplement weak self-diffusion of prey.

Next, we provide some examples to intuitively explain the above theoretical analysis.

Here we refer to the parameter selections in [44] and let

a = 0.4902, r0 = 0.5, c = b1 = 1
b2 = 0.9804, m1 = 0.6, τ = 0.

Then (3.6) is satisfied; thus, Ē = (0.1877, 0.1276) is locally asymptotically stable for the local ODE
system.

Further, when dv = 0.2, 1.8, respectively, the Turing bifurcation sets are as given in Figure 2,
where α = α∗(k, du) for k = 1, 2, 3, 4, · · · are Turing bifurcation curves and the regions in which
multiple spatial patterns exist are marked. For ease of citation, stable regions are denoted as D, the
mode-2 Turing bifurcation region is denoted as D2 and the mode-(1, 2) and mode-(2, 3) Turing-Turing
bifurcation regions are denoted as D1,2 and D2,3, respectively.
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(a) dv = 0.2 (b) dv = 1.8

Figure 2. Stable region, Turing bifurcation region and Turing-Turing bifurcation region for
dv = 0.2, 1.8, respectively.

Example 1. (Turing bifurcation and spatial patterns)
Let dv = 0.2; we want to show the effects of predator-taxis on pattern formations.
It follows from (3.11) that k̄ = 2. Due to (3.10), dk̄

u = d2
u = 0.0241. And by (3.14), d2,3

u = 0.0031.
When du ∈ (d2,3

u , d2
u), Theorem 6 indicates that system (1.2) undergoes a mode-2 Turing bifurcation

at α = α∗(du). And the eigenfunction corresponding to the eigenvalue µ2 is

(ū + cos 2x, v̄ +
cb1b2v̄2

µ2dv(b2v̄ + ū)2 + cb1b2ūv̄
cos 2x)T = (ū + cos 2x, v̄ + 0.1569 cos 2x)T . (3.20)

Bifurcation theory indicates that when (du, α) ∈ D2, there will be spatially inhomogeneous patterns
and the waveforms are consistent with those of eigenfunctions given by (3.20).

(1) Let du = 0.02; then, α∗(0.02) = 0.1384. Let α = 0 < α∗(0.02) and α = 0.087 < α∗(0.02) re-
spectively; then, (du, α) ∈ D2 (see Figure 2 (a)). Thus, a mode-2 Turing bifurcation occurs and Ē
becomes unstable. Meanwhile, spatially inhomogeneous patterns shaped like cos 2x are theoret-
ically expected to appear. Specifically, when choosing (0.1877 + 0.1 cos 2x, 0.1276 + 0.1 cos 2x)
as initial values, the numerical results are as presented in Figure 3, where the third column of
Figure 3 illustrates that the waveforms of spatially inhomogeneous patterns are consistent with
the waveforms of the corresponding eigenfunctions given by (3.20).

(2) If we further choose a larger predator-taxis coefficient α = 0.5 > α∗(0.02) = 0.1384, then
(du, α) ∈ D (see Figure 2 (a)). Thus Ē is locally asymptotically stable. Let (0.1877 +

0.1 cos 2x, 0.1276 + 0.1 cos 2x) be initial values, and the numerical results are as presented in
Figure 4.

Consequently, it is numerically confirmed by comparing Figure 3 with Figure 4 that strong predator-
taxis contributes to eliminating spatial patterns resulting from self-diffusion.
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(a) (du, α) = (0.02, 0)
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(b) (du, α) = (0.02, 0.087)

Figure 3. The spatial distributions of the two populations are inhomogeneous when (a)
(du, α) = (0.02, 0) and (b) (du, α) = (0.02, 0.087).

(a) u(x, t) (b) v(x, t)
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(c) u(x, t) and v(x, t)

Figure 4. The spatial distributions of the two populations are homogeneous when (du, α) =

(0.02, 0.5).

Remark 2. Actually, when the system (1.2) undergoes a mode-k Turing bifurcation, the appearance of
the spatially inhomogeneous patterns shaped like cos kx is independent of the choice of initial values.
By taking the mode-2 Turing bifurcation of the system as an example, we additionally perform several
sets of numerical examples for different initial values, with the other parameters chosen to be the same
as in Figure 3 (b). As shown in Figure 5, we specially plot the shapes of the initial values (u0, v0),
indicating that the solutions of the system (1.2) will tend to the same spatial patterns regardless of the
selection of initial values.

Example 2. (Turing-Turing bifurcation and multi-stable spatial patterns)

(1) Let dv = 0.2. Compared with Example 1(2), we further choose a smaller self-diffusion coefficient
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(a) The initial values are u0 = 0.1877 + 0.1, v0 = 0.1276 − 0.05 cos 2x
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(b) The initial values are u0 = 0.1877 − 0.05 cos 3x, v0 = 0.1276 − 0.1 cos 3x

Figure 5. For the initial values u0 = 0.1877 + 0.1, v0 = 0.1276 − 0.05 cos 2x and the initial
values u0 = 0.1877−0.05 cos 3x, v0 = 0.1276−0.1 cos 3x, the spatial distributions of the two
populations shaped like cos 2x are shown for (du, α) = (0.02, 0.087).

of prey du = 0.0055. It follows from (3.10), (3.13) and (3.14) that

α∗(2, du) = 0.6308, α∗(3, du) = 0.5513, α∗(4, du) = 0.3310,
d2

u = 0.0241, d3
u = 0.0138, d2,3

u = 0.0033;

thus, du ∈ (d2,3
u , d3

u) and (du, α) ∈ D2,3, that is, (du, α) is selected in the mode-(2, 3) Turing-Turing
bifurcation region (see Figure 2 (a)), where superposition patterns of cos 2x and cos 3x or multi-
stable spatial patterns shaped like cos 2x and cos 3x are theoretically expected to emerge. When
we choose (0.1877 + 0.1 cos 2x, 0.1276 + 0.1 cos 2x), (0.1877 − 0.1 cos 2x, 0.1276 − 0.1 cos 2x),
(0.1877 + 0.1 cos 3x, 0.1276 + 0.1 cos 3x) and (0.1877− 0.1 cos 3x, 0.1276− 0.1 cos 3x) as initial
values respectively, as shown in Figure 6, a pair of spatially inhomogeneous patterns with wave
frequency 2 and a pair of spatially inhomogeneous patterns with wave frequency 3 coexist, which
are multi-stable spatial patterns.

(2) Let du = 0.02. Compared with Example 1(2), we further choose a larger self-diffusion coefficient
for the predator, dv = 1.8. It follows from (3.10), (3.13) and (3.14) that

α∗(1, du) = 6.9267, α∗(2, du) = 3.9413, α∗(3, du) = 0,
d1

u = 0.124, d2
u = 0.0362, d1,2

u = 0.0033;

thus du ∈ (d1,2
u , d2

u) and (du, α) ∈ D1,2, that is, (du, α) is selected in the mode-(1, 2) Turing-
Turing bifurcation region (see Figure 2 (b)), where superposition patterns of cos x and cos 2x
or multi-stable spatial patterns shaped like cos x and cos 2x are theoretically expected to emerge.
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When we choose (0.1877 + 0.1 cos x, 0.1276 + 0.1 cos x), (0.1877 − 0.1 cos x, 0.1276 − 0.1 cos x),
(0.1877 + 0.2 cos 2x, 0.1276 + 0.1 cos 2x) and (0.1877− 0.2 cos 2x, 0.1276− 0.1 cos 2x) as initial
values respectively, as shown in Figure 7, a pair of spatially inhomogeneous patterns with wave
frequency 1 and a pair of spatially inhomogeneous patterns with wave frequency 2 coexist, which
are multi-stable spatial patterns.

Consequently, the results of Example 2 show that, on the one hand, the positive constant steady
state can be destabilized via Turing-Turing bifurcation, resulting in multi-stable spatial patterns. On
the other hand, by comparing the results of Figure 6 and Figure 7 with those of Figure 4, respectively,
it is numerically illustrated that either minimal self-diffusion of the prey or a large amount of self-
diffusion of the predator will encourage spatial patterns to appear, which suggests that predator-taxis
can balance the spatial heterogeneity caused by self-diffusion.

For convenience, we summarize the results of Example 1 and Example 2 in Table 1 and make the
following comparisons.

Table 1. Formations and comparisons of multiple spatial patterns.

Case dv (du, α) Figures Spatial Patterns

I 0.2
(0.02, 0) 3 (a) Spatial patterns with wave frequency 2
(0.02, 0.087) 3 (b) Spatial patterns with wave frequency 2

II 0.2 (0.02, 0.5) 4 Spatially homogeneous patterns

III 0.2 (0.0055, 0.5)
6 (a) (b) Multi-stable spatial patterns with

wave frequencies 2 and 36 (c) (d)

IV 1.8 (0.02, 0.5)
7 (a) (b) Multi-stable spatial patterns with

wave frequencies 1 and 27 (c) (d)

The comparison of cases I and II shows that strong predator-taxis can eliminate spatial patterns
caused by self-diffusion, that is to say, the more sensitive the prey to predation (i.e., strong predator-
taxis), the more evenly distributed are the two populations.

Beyond that, a reasonable phenomenon is explained, that is, when only self-diffusion is considered,
fast predator dispersal leads to the appearance of spatial patterns, which will eventually disappear when
further considering the chemotaxis behavior of prey avoiding predator, suggesting that predator-taxis
can partially cancel out the non-uniform advantage caused by self-diffusion of the predator.

The comparison of cases II and III shows that spatial patterns will exist as long as the value of
self-diffusion of the prey is small enough. From another perspective, it also shows that predator-taxis
and self-diffusion of the prey are complementary, that is, predator-taxis is equivalent to accelerating
the self-diffusion of the prey, and the spatial distributions of the two populations will finally reach
homogeneity if predator-taxis is strong enough.

The comparison of cases II and IV shows that the spatial patterns will exist as long as the value of
self-diffusion of the predator is large enough. From another perspective, the accelerated self-diffusion
of predator is equivalent to the weakened ability of the prey to avoid the risk of being targeted, thus
increasing the probability of emergence of spatial inhomogeneous patterns.

Case III and Case IV show that spatially inhomogeneous steady states with different wave frequen-
cies can coexist, which in turn indicates that the constant stationary can be destabilized by Turing-
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(a) The initial values are u0 = 0.1877 + 0.1 cos 2x, v0 = 0.1276 + 0.1 cos 2x
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(b) The initial values are u0 = 0.1877 − 0.1 cos 2x, v0 = 0.1276 − 0.1 cos 2x
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(c) The initial values are u0 = 0.1877 + 0.1 cos 3x, v0 = 0.1276 + 0.1 cos 3x
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(d) The initial values are u0 = 0.1877 − 0.1 cos 3x, v0 = 0.1276 − 0.1 cos 3x

Figure 6. For the initial values u0 = 0.1877 + 0.1 cos 2x, v0 = 0.1276 + 0.1 cos 2x, u0 =

0.1877−0.1 cos 2x, v0 = 0.1276−0.1 cos 2x, u0 = 0.1877+0.1 cos 3x, v0 = 0.1276+0.1 cos 3x
and u0 = 0.1877−0.1 cos 3x, v0 = 0.1276−0.1 cos 3x, multi-stable spatial patterns are shown
for (du, α) = (0.0055, 0.5). The first two columns are spatial distribution patterns of the two
populations shaped like cos 2x and cos 3x when different initial values are selected, and the
third column is a comparison of the shapes of spatial distribution patterns and shapes of the
eigenfunctions.
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(a) The initial values are u0 = 0.1877 + 0.1 cos x, v0 = 0.1276 + 0.1 cos x
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(b) The initial values are u0 = 0.1877 − 0.1 cos x, v0 = 0.1276 − 0.1 cos x
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(c) The initial values are u0 = 0.1877 + 0.2 cos 2x, v0 = 0.1276 + 0.1 cos 2x
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(d) The initial values are u0 = 0.1877 − 0.2 cos 2x, v0 = 0.1276 − 0.1 cos 2x

Figure 7. For the initial values u0 = 0.1877 + 0.1 cos x, v0 = 0.1276 + 0.1 cos x, u0 =

0.1877−0.1 cos x, v0 = 0.1276−0.1 cos x, u0 = 0.1877 + 0.2 cos 2x, v0 = 0.1276 + 0.1 cos 2x
and u0 = 0.1877−0.2 cos 2x, v0 = 0.1276−0.1 cos 2x, multi-stable spatial patterns are shown
for dv = 1.8 and (du, α) = (0.02, 0.5). The first two columns are spatial distribution patterns
of the two populations shaped like cos x and cos 2x when different initial values are selected,
and the third column is a comparison of the shapes of spatial distribution patterns and shapes
of the eigenfunctions.
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Turing bifurcation, thus giving rise to multi-stable spatial patterns.

4. Hopf bifurcation and spatiotemporal staggered periodic patterns

In this part, we discuss the effects of time delay on the stability of the positive constant steady state
of system (1.2).

First, the following result concerning the nonoccurence of Hopf bifurcation for system (1.2) with
τ = 0 holds.

Theorem 7. For model (1.2) with τ = 0 and a, b1, b2,m1, dv > 0, provided that c > m1
b1

and r0 > r0, it
follows that, for du, α > 0, there is no Hopf bifurcation.

Next, we establish the conditions for the occurrence of Hopf bifurcation for system (1.2) with τ > 0.
Let λ = ±iωk(α) with ωk(α) > 0 be a pair of purely imaginary roots of (3.3). For the sake of

convenience, denote ωk(α) , ωk. Then, for k ∈ N0,

Dk(iωk, τ, α) = σk − ω
2
k + qk(α) cos(ωkτ) + skωk sin(ωkτ)

+ i[pkωk + skωk cos(ωkτ) − qk(α) sin(ωkτ)] = 0.
(4.1)

Separating the real and imaginary parts yields

sin(ωkτ) =
skωk(ω2

k − σk) + pkqk(α)ωk

s2
kω

2
k + qk(α)2

,

cos(ωkτ) =
qk(α)(ω2

k − σk) − pkskω
2
k

s2
kω

2
k + qk(α)2

,

(4.2)

which implies that
ω4

k + (p2
k − s2

k − 2σk)ω2
k + σ2

k − qk(α)2 = 0. (4.3)

Denote

ω±k :=

√√
s2

k − p2
k + 2σk ±

√
(s2

k − p2
k + 2σk)2 − 4(σ2

k − qk(α)2)

2
. (4.4)

So, we first discuss the sign of σ2
k − qk(α)2 = (σk + qk(α))(σk − qk(α)). Since σk + qk(α) > 0 is

guaranteed by Theorem 7, the sign of σ2
k − qk(α)2 coincides with that of σk − qk(α), and

σk − qk(α) = (duk2 + (aū −$))(dvk2 − cb2$) − cb2$
2 − k2cb2v̄$α. (4.5)

Because σk−qk(α) = 0 with respect to k has only one positive root, denoted as K0 for simplicity, where

K0 =

√
−Γ +

√
Γ2 + 4dudvacb2ū$

2dudv
(4.6)

with Γ := dv(aū −$) − ducb2$ − αcb2v̄$, we can conclude that

σ2
k − q2

k(α) < 0, k ∈ (0,K0),
σ2

k − qk(α)2 > 0, k ∈ (K0,∞).

And, the following theorem deals with the case concerning the roots of (4.3).
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Theorem 8. For a, b1, b2,m1, dv > 0, provided that c > m1
b1

and r0 > r0, for du, α > 0 and k ∈ N0, it
follows that

(1) when 0 6 k < K0, ω+
k is the unique positive root of (4.3);

(2) when k > K0, (4.3) has no positive root.

Proof. For 0 6 k < K0, since σ2
k − q2

k(α) < 0, ω+
k is the only positive root of (4.3), regardless of the

positivity or negativity of s2
k − p2

k + 2σk.
For k > K0, σ2

k − q2
k(α) > 0 holds, and it follows from (4.5) that for k = K0,

(du(K0)2 + (aū −$))(dv(K0)2 − cb2$) = cb2$
2 + (K0)2cb2v̄$α > 0. (4.7)

Note that
s2

k − p2
k + 2σk = −

[
(duk2 + (aū −$))2 + (dvk2 + cb2$)(dvk2 − cb2$)

]
; (4.8)

thus,

(a) if r0 < r0 < r0, that is to say, aū −$ < 0, one can show that s2
k − p2

k + 2σk = 0 with respect to k
has a unique positive root, denoted as K+. And by (4.6), we have

2dudv(K0)2 = −Γ +
√

Γ2 + 4dudvacb2ū$, (4.9)

so it can be verified that

du(K0)2 + (aū −$) = 2dv(du(K0)2 + (aū −$))

= −Γ +
√

Γ2 + 4dudvacb2ū$ + 2dv(aū −$)
> 2cb2$(du + αv̄) > 0,

dv(K0)2 − cb2$ = 2du(dv(K0)2 − cb2$)

= −Γ +
√

Γ2 + 4dudvacb2ū$ − 2ducb2$

= −2dv(aū −$) + 2αcb2v̄$ > 0,

(4.10)

which yields that s2
K0 − p2

K0 + 2σK0 < 0, that is to say, s2
k − p2

k + 2σk < 0 for k > K0 > K+. Hence,
from (4.4), we know that (4.3) has no positive root for k > K0;

(b) if r0 > r0, that is to say, aū − $ > 0, then du(K0)2 + (aū − $) > 0. It follows from (4.7) that
dv(K0)2 − cb2$ > 0. By a similar argument to (a), (4.3) has no positive root for k > K0 either.

Thus, due to Theorem 8, if the positive root ωk = ω+
k of (4.3) exists, denote the root of (4.2) in

(0, 2π] as τk(α). For a, b1, b2,m1, dv > 0, provided that c > m1
b1

and r0 > r0, given that du, α > 0, denote
the critical values for τ by

τ
( j)
k (α) := τk(α) +

2π j
ω+

k

, j, k ∈ N0, 0 6 k < K0. (4.11)

Suppose that λ2(k, τ, α) = ξ(k, τ, α)±iω(k, τ, α) are a pair of conjugated complex roots of the charac-
teristic equation Dk(λ, τ, α) = 0 near τ = τ

( j)
k (α) with ξ(k, τ( j)

k (α), α) = 0 and ω(k, τ( j)
k (α), α) = ω+

k > 0.
According to [45, 46], we obtain the conclusion regarding the transversality conditions.
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Theorem 9. For a, b1, b2,m1, dv > 0, provided that c > m1
b1

and r0 > r0, it follows that for du, α > 0,

sign

dξ(k, τ( j)
k (α), α)
dτ

 > 0, 0 6 k < K0, k ∈ N0.

Proof. For 0 6 k < K0 and k ∈ N0, denote

P(λ) := λ2 + pkλ + σk, Q(λ) := skλ + qk(α).

Obviously, P(iω+
k ) + Q(iω+

k ) , 0. For ∀ωk > 0, define

F(ωk) :=| P(iωk) |2 − | Q(iωk) |2= (σk − ω
2
k)2 + ω2

k p2
k − (ω2

k s2
k + qk(α)2). (4.12)

Hence, F(ωk) = 0 implies that (4.3) holds, and its roots are given by (4.4). If we denote

∆ω := (s2
k − p2

k + 2σk)2 − 4(σ2
k − qk(α)2),

then for ωk = ω+
k , it follows that

2(ω+
k )2 − (s2

k + 2σk − p2
k) =

√
∆ω > 0. (4.13)

By (4.12) and (4.13), we have

dF(ω+
k )

dωk
= 2ω+

k [2(ω+
k )2 − (s2

k + 2σk − p2
k)] = 2ω+

k

√
∆ω > 0. (4.14)

By (4.2), define

S ( j)
k (τ) := τ −

θk(α) + 2π j
ω+

k

, j ∈ N0,

with

θk(α) := arccos
(
qk(α)((ω+

k )2 − σk) − pksk(ω+
k )2

s2
k(ω+

k )2 + qk(α)2

)
.

It follows from (4.11) that

τ
( j)
k (α) := τk(α) +

2π j
ω+

k

=
θk(α) + 2π j

ω+
k

, j ∈ N0

which is independent of τ. Therefore,

dS ( j)
k (τ( j)

k (α))
dτ

= 1, j ∈ N0. (4.15)

Then, by [45], we have

sign

dξ(k, τ( j)
k (α), α)
dτ

 = sign
{

dF(ω+
k )

ωk

}
sign

dS ( j)
k (τ( j)

k (α))
dτ

 > 0.

Thus, we have completed the proof.
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Finally, we have the conclusion on the Hopf bifurcation of system (1.2).

Theorem 10. For a, b1, b2,m1, dv > 0, provided that c > m1
b1

and r0 > r0, it follows that, for du, α > 0,
there exists k2 ∈ [0,K0) such that

τk2(α) := min
k∈[0,K0), k∈N0

τk(α). (4.16)

So,

(1) when τ = τk2(α), Dk2(λ, τ, α) = 0 has a pair of purely imaginary roots for λ and all other roots
of (3.3) have strictly negative real parts for k ∈ N0. When τ ∈

[
0, τk2(α)

)
, the steady state Ē is

locally asymptotically stable;
(2) if k2 is unique, system (1.2) undergoes a mode-k2 Hopf bifurcation when τ = τk2(α); and if there

are exactly k2 and k̃2 satisfying (4.16), with k2, k̃2 ∈ [0,K0) and k2 , k̃2, system (1.2) will undergo
a mode-(k2, k̃2) Hopf-Hopf bifurcation when (τ, α) = (τk2(αH), αH), where αH denotes the root of
τk2(α) = τk̃2

(α).

Remark 3. (Hopf patterns and Hopf-Hopf patterns) In Theorem 8, the range of wave numbers in
which system (1.2) undergoes a Hopf bifurcation is determined, which is upper bounded by K0.

Hopf bifurcation sets are given in Figure 8 (a), where some Hopf bifurcation curves for different
modes are plotted and the regions in which multiple periodic patterns exist are marked, including
Hopf bifurcation regions DH

0 , DH
1 , DH

2 where stable spatially homogeneous or inhomogeneous peri-
odic patterns are expected to appear, and Hopf-Hopf bifurcation regions DH

0,1, DH
1,2, DH

2,3 where peri-
odic patterns with different spatial wave frequencies coexist or quasi-periodic patterns are anticipated
to emerge.

And the corresponding first Hopf bifurcation curve is plotted in Figure 8 (b), which was formed
by connecting Hopf bifurcation curves of mode-0, mode-1, mode-2, · · · , mode-bK0c with Hopf-Hopf
bifurcation points H0,1, H1,2, . . . , HbK0c−1,bK0c, indicating that the positive constant steady state can be
destabilized by mode-k Hopf bifurcation; thus, system (1.2) will harvest the spatially homogeneous or
inhomogeneous staggered periodic solutions shaped like cos kx cosωt, also suggesting that the positive
constant steady state can be destabilized by mode-(k, k + 1) Hopf-Hopf bifurcation. Thus, system
(1.2) will harvest more complex spatiotemporal patterns, such as the coexistence of periodic solutions
with two different spatial wave frequencies, or some quasi-periodic solutions, where ω is a positive
constant and 0 6 k < K0, k ∈ N0. This is completely different from systems with only self-diffusion
[37,47], where the positive constant steady state can only be destabilized by a mode-0 Hopf bifurcation,
producing a stable spatially homogeneous periodic solution.

Combining Theorems 6 and 10, it is found that predator-taxis α and delay τ can induce other high
codimensional bifurcations under certain conditions, such as Turing-Hopf bifurcation.

Theorem 11. For a, b1, b2,m1, dv > 0, provided that c > m1
b1

and r0 < r0 < r0, it follows that,

(1) if du ∈ (dk1,k1+1
u , dk1−1,k1

u ) for some k1 > k̄ and k1 ∈ N, system (1.2) undergoes a mode-(k1, k2)
Turing-Hopf bifurcation near Ē when (τ, α) = (τk2(α∗(du)), α∗(du)), where k̄ is defined as in (3.11)
and k2 is uniquely determined by (4.16);
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(a) (b)

Figure 8. (a): Stable region, Hopf bifurcation regions and Hopf-Hopf bifurcation regions.
(b): The first Hopf bifurcation curve; the non-smooth points H0,1, H1,2, · · · are Hopf-Hopf
bifurcation points.

(2) if du ∈ (dk1,k1+1
u , dk1−1,k1

u ) for some k1 > k̄ and k1 ∈ N, system (1.2) will undergo a mode-(k1, k2, k̃2)
Turing-Hopf-Hopf bifurcation near Ē when (du, τ, α) = (dH

u , τk2(αH), αH), where dH
u denotes the

root of α∗(du) = αH, αH is defined in Theorem 10, k̄ is defined as in (3.11) and k2, k̃2 are determined
by Theorem 10;

(3) if du = dk1,k1+1
u for some k1 > k̄ and k1 ∈ N, system (1.2) will undergo a mode-(k1, k1 + 1, k2)

Turing-Turing-Hopf bifurcation near Ē when (du, τ, α) = (dk1,k1+1
u , τk2(α∗(d

k1,k1+1
u )), α∗(d

k1,k1+1
u )),

where k̄ is defined as in (3.11) and k2 is determined by (4.16).

Next, we illustrate some examples to support and extend our analytical results.
With reference to the parameter selections in [22], let

r0 =2.1155, a = 0.8481, b1 = 4.5677,
m1 =1.6615, c = 0.9130, b2 = 1.4380.

(4.17)

Then, (3.6) is satisfied and Ē = (0.2412, 0.2533) is locally asymptotically stable for the local ODE
system.

In the following discussions, we observe that the spatiotemporal distribution types of the two pop-
ulations are always analogous. Therefore, we only take the prey distribution as examples to show
distribution patterns. Besides, the distribution patterns in (u, x, t)-plane and (x, t)-plane are presented
separately in each of the following figures.

Example 3. (Hopf bifurcation and spatially inhomogeneous staggered periodic patterns, Hopf-Hopf
bifurcation and bistable periodic patterns)

Let
dv = 0.17, du = 0.113.

It follows from (3.11) that k̄ = 3 and du > dk̄
u = 0.0284; then, due to Theorem 6, for α > 0, the positive

steady state Ē is locally asymptotically stable. According to Theorem 10, Hopf bifurcation curves in
the (α, τ)-plane can be characterized for different modes as in Figure 8. And,

α0,1
H = 0.5846, α0,2

H = 0.7487, α1,2
H = 0.8554,

α1,3
H = 1.2704, α2,3

H = 2.2277.
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(a) Spatially inhomongnous staggered periodic pat-
terns with wave frequency 2.

(b) Corresponding projections of (a) on (x, t)-
plane.

Figure 9. Results for (α, τ) = (1.2, 0.72), showing that the spatially inhomogeneous stag-
gered periodic patterns with wave frequency 2 appear.

When
α ∈ (0, α0,1

H ), α ∈ (α0,1
H , α1,2

H ), α ∈ (α1,2
H , α2,3

H ),

respectively, either Ē is locally asymptotically stable or system (1.2) may accordingly generate stable
spatially homogeneous periodic patterns or spatially inhomogeneous periodic patterns with spatial
wave frequency 1 or 2, which are bifurcated from Ē through mode-0, mode-1 and mode-2 Hopf bifur-
cation respectively.

Further, when
α ∈ (α0,1

H , α0,2
H ), α ∈ (α0,2

H , α1,3
H ),

respectively, in addition to the above mentioned periodic patterns, system (1.2) may also generate
quasi-periodic patterns or the coexisting periodic patterns with different spatial wave frequencies,
which are bifurcated from Ē through mode-(0, 1) and mode-(1, 2) Hopf-Hopf bifurcation, respectively.
Specifically speaking, suppose we have the following.

(1) Let (α, τ) = (1.2, 0.72). By (4.9), we have that K0 = 5.1978 and

τ(0)
0 (1.2) = 0.8870, τ(0)

1 (1.2) = 0.7585,

τ(0)
2 (1.2) = 0.7004, τ(0)

3 (1.2) = 0.7748,

τ(0)
4 (1.2) = 1.0375, τ(0)

5 (1.2) = 2.8230.

(4.18)

Thus, (α, τ) ∈ DH
2 . It follows from Theorem 10 that system (1.2) undergoes a mode-2 Hopf

bifurcation when τ = τ(0)
2 (1.2) = 0.7004 and spatially inhomogeneous staggered periodic patterns

shaped like cos 2x cosωt are theoretically expected to appear, where ω is a positive constant. The
numerical results are shown in Figure 9.
Let (α, τ) = (0.7, 0.87); then, by a similar process, (α, τ) ∈ DH

1 ; thus, system (1.2) undergoes a
mode-1 Hopf bifurcation when τ = τ(0)

1 (0.7) = 0.8607 and spatially inhomogeneous staggered pe-
riodic patterns shaped like cos x cosωt are theoretically expected to appear, where ω is a positive
constant; see Figure 10.
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(a) Spatially inhomongnous staggered periodic pat-
terns with wave frequency 1.

(b) Corresponding projections of (a) on (x, t)-
plane.

Figure 10. Results for (α, τ) = (0.7, 0.87), showing that the spatially inhomogeneous stag-
gered periodic patterns with wave frequency 1 appear.

(2) Let (α, τ) = (0.61, 0.91364). By (4.9), we have that K0 = 4.4040, and

τ(0)
0 (0.61) = 0.8870, τ(0)

1 (0.61) = 0.8819,

τ(0)
2 (0.61) = 0.9525, τ(0)

3 (0.61) = 1.2115,

τ(0)
4 (0.61) = 2.4037.

(4.19)

Thus (α, τ) ∈ DH
0,1. Then bistable spatiotemporal periodic patterns shaped like cosωt and

cos x cosωt or their superposition are theoretically expected to appear, where ω is a positive
constant. When choosing (0.2412, 0.2533) and (0.2412+0.01 cos x, 0.2533+0.01 cos x) as initial
values respectively, as shown in the first two columns of Figure 11, spatially homogeneous and
inhomogeneous staggered periodic patterns coexist. When choosing (0.2412, 0.2533 + 0.01 cos x)
as an initial value, transient quasi-periodic patterns are as presented in the third column of Figure
11. Hence, these phenomena are bistable periodic patterns.
Let (α, τ) = (0.87, 0.8415); then, by a similar process, we know that (α, τ) ∈ DH

1,2. Then
spatiotemporal periodic patterns shaped like cos x cosωt and cos 2x cosωt or their superpo-
sition are theoretically expected to appear, where ω is a positive constant. When choosing
(0.2412 + 0.01 cos x, 0.2533 + 0.01 cos x) and (0.2412 + 0.01 cos 2x, 0.2533 + 0.01 cos 2x) as
initial values respectively, as shown in the first two columns of Figure 12, spatially inhomoge-
neous staggered periodic patterns with wave frequencies 1 and 2 coexist. When further choosing
(0.2412 + 0.01 cos x, 0.2533 + 0.01 cos 2x) as an initial value, transient quasi-periodic patterns
are as presented in the third column of Figure 12. That is, bistable periodic patterns are also
found, but the spatial wave frequencies are different from those shown in Figure 11.

Example 4. (Turing-Hopf bifurcation and bistable spatially inhomogeneous synchronous periodic
patterns)

Let
dv = 0.17, du = 0.0113;

then du ∈ (d3,4
u , d1,2

u ) = (0.0084, 0.0334), and by Theorems 6 and 10, we conclude that k1 = 3 and
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(a) Spatially homogeneous patterns, inhomogeneous staggered periodic patterns and transient quasi-periodic patterns,
respectively.

(b) Corresponding projections of (a) on (x, t)-plane.

Figure 11. Spatially homogeneous patterns, inhomogeneous staggered periodic patterns,
transient quasi-periodic patterns and corresponding projections of (a) on (x, t)-plane when
(α, τ) = (0.61, 0.91364).

(a) Spatially inhomogeneous staggered periodic patterns with spatial wave frequencies 1 and 2, and transient quasi-
periodic patterns, respectively.

(b) Corresponding projections of (a) on (x, t)-plane.

Figure 12. Spatially inhomogeneous staggered periodic patterns with spatial wave frequen-
cies 1 and 2, transient quasi-periodic patterns and corresponding projections of (a) on (x, t)-
plane when (α, τ) = (0.87, 0.8415).
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k2 = 0. It follows from Theorem 11 that system (1.2) undergoes a mode-(3, 0) Turing-Hopf bifurcation
when (τ, α) = (τ0(α∗(0.113)), α∗(0.113)) = (0.887, 0.1712).

We show the corresponding bifurcation sets for system (1.2) in Figure 13 (a), and the intersection
of the mode-3 Turing bifurcation curve α = α∗(0.0113) = 0.1712 and mode-0 Hopf bifurcation curve
τ = τ∗ = 0.8870 is denoted by T H0. We have marked the Turing-Hopf bifurcation region and Turing
bifurcation region as DT H0 and DT , respectively.

In particular, we have plotted the corresponding first bifurcation curve in Figure 13 (b), which was
formed by connecting the first Turing bifurcation curve α = α∗(du), 0 < du < dk̄

u, Hopf bifurcation
curves of mode-0, mode-1, mode-2, . . . , mode-bK0c with Turing-Hopf bifurcation point T H0 and Hopf-
Hopf bifurcation points H0,1, H1,2, . . . , HbK0c−1,bK0c, indicating that the positive constant steady state
can not only be destabilized by a mode-k2 Hopf bifurcation or mode-(k2, k2 + 1) Hopf-Hopf bifurca-
tion, but also by a mode-(k1, 0) Turing-Hopf bifurcation, where system (1.2) will harvest the spatially
inhomogeneous synchronous periodic solutions shaped like h1 cos k1x ± h2 cosωt, where h1 and h2 are
constants, ω is a positive constant, k1 = k̄, k̄ + 1, · · · and 0 6 k2 < K0, k2 ∈ N0.

Further, let (α, τ) = (0.06, 0.9) ∈ DT H0 , and we find a pair of stably coexisting spatially inhomo-
geneous synchronous periodic patterns, as shown in Figure 14. Unlike in Figure 9 and Figure 10, the
spatial non-homogeneity is caused by the occurrence of Turing bifurcation in system (1.2). Actually,
Turing-Hopf bifurcation can also reveal other spatiotemporal patterns [39, 43], which we will explore
later.

(a) (b)

Figure 13. (a): Turing-Hopf bifurcation sets in (α, τ)-plane. (b): The first bifurcation curve.
The point T H0 is a mode-(3, 0) Turing-Hopf bifurcation point. The points H0,1,H1,2, · · · are
Hopf-Hopf bifurcation points.

Remark 4. (Turing-Hopf patterns and other patterns) Although it is almost impossible to theoret-
ically prove that for system (1.2) with chemotaxis, a Turing-Hopf bifurcation of mode-(k, 0) usually
occurs first when the positive constant steady state is destabilized via Turing-Hopf bifurcation, some
numerical simulations indicate that stable spatially inhomogeneous synchronous periodic solutions
can only be generated via mode-(k, 0) Turing-Hopf bifurcation.

In Theorem 11, we assert that Turing-Turing-Hopf bifurcation can occur theoretically, but it is chal-
lenging to reveal spatiotemporal patterns resulting from this type of bifurcation. In addition, although
we cannot rule out the existence of Turing-Hopf-Hopf bifurcation theoretically, we never numerically
found Turing-Hopf-Hopf bifurcation points after exhaustive numerical practices. But obviously, if
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(a) The initial values are u0(x, t) = 0.2412 + 0.01 cos x, v0(x, t) = 0.2533 +

0.01 cos x.

(b) The initial values are u0(x, t) = 0.2412 − 0.01 cos x, v0(x, t) = 0.2533 −
0.01 cos x

Figure 14. For the initial values u0(x, t) = 0.2412 + 0.01 cos x, v0(x, t) = 0.2533 − 0.01 cos x
and u0(x, t) = 0.2412−0.01 cos x, v0(x, t) = 0.2533−0.01 cos x, results for (α, τ) = (0.06, 0.9),
showing that a pair of spatially inhomogeneous synchronous periodic patterns coexist.

Turing-Hopf bifurcation points such as T H1, T H2, · · · do not exist, Turing-Hopf-Hopf bifurcation must
not occur.

Summarizing the results about Turing bifurcation in Section 3 and Hopf bifurcation in Section 4 in
Table 2, we show the possible bifurcations for system (1.2) when the parameters are chosen in different
ranges. For convenience, we use notations T-T, H-H, T-H, T-H-H and T-T-H instead of Turing-Turing,
Hopf-Hopf, Turing-Hopf, Turing-Hopf-Hopf and Turing-Turing-Hopf bifurcations, respectively.

Table 2. The possible bifurcations for system (1.2).

r0 du α τ Turing Hopf Other Theorems

> r0 > 0 > 0
0 - - - 6, 7
τk2(α) - Yes H-H 6, 10

< r0 > dk̄
u > 0

0 - - - 6, 7
τk2(α) - Yes H-H 6, 10

< r0 < dk̄
u α∗(du)

0 Yes - - 6, 7
τk2(α) Yes Yes T-H, H-H or T-H-H 6, 10, 11

< r0 dk1,k1+1
u α∗(du)

0 Yes - T-T 6, 7
τk2(α) Yes Yes T-T-H 6, 10, 11
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5. Conclusions

The formation mechanisms for populations’ survival patterns in a predator-taxis model with con-
version delay, such as multi-stable spatial patterns and spatially staggered periodic patterns, have been
discussed by studying the Turing bifurcation, Turing-Turing bifurcation, Hopf bifurcation, Hopf-Hopf
bifurcation and Turing-Hopf bifurcation of system (1.2), among others.

In the absence of a delayed effect of conversion of capture behavior into predator growth, the critical
condition 0 < α < α∗(du), 0 < du < dk̄

u that the positive constant steady state loses stability and
system (1.2) exhibits spatial patterns is provided, which is not only sufficient, but is also necessary,
and thus can be regarded as a supplement to the sufficient conditions in [22]. With the aid of the
condition, one can predict potential spatial patterns with arbitrary wave frequencies that system (1.2)
could exhibit. In addition to this, it is also theoretically expected that the positive constant steady state
will be destabilized via Turing-Turing bifurcation, resulting in superposition spatial patterns or the
coexistence of spatially inhomogeneous patterns with different wave frequencies; see Theorem 6 and
Figures 6 and 7. Moreover, we suggest that the amplitudes of changes in the spatial distributions of the
two populations are consistent with the corresponding eigenfunctions when Turing bifurcation occurs.

The above results theoretically show that with the increase of the sensitivity of the prey to predation,
the spatial distributions of the two populations will gradually transition from spatially heterogeneous
patterns to spatially homogeneous patterns; see Figures 3 and 4. Conversely, when the random move-
ment speed of the prey is sufficiently low or the random movement speed of the predator is sufficiently
high, the spatial distributions’ homogeneity of the two populations will disappear and heterogeneity
will appear; see Figures 3 and 6 or Figures 3 and 7. In other words, relatively strong predator-taxis
can be regarded as accelerating the self-diffusion of the prey by complementing the self-diffusion of
the prey, making two populations achieve their steady states eventually. And, a higher self-diffusion
rate for the predator is equivalent to lowering the prey’s ability to avoid the risk of predation, caus-
ing the spatial distributions of the two populations to be heterogeneous; however, the relatively strong
predator-taxis counteracts the spatially heterogeneous distributions caused by the self-diffusion of the
predator, bringing the spatial distributions of the two populations back to homogeneity. In a word, re-
inforcing the sensitivity of the prey to predation is beneficial for maintaining the stable survival states
of the populations.

When taking a delayed effect of the conversion of capture behavior into predator growth into ac-
count, by choosing time delay τ as a parameter, we can establish the critical conditions when Ē is
destabilized, which demonstrate that Hopf bifurcation, Hopf-Hopf bifurcation, Turing-Hopf bifurca-
tion, etc., can also destabilize the positive constant steady state, as described by Theorems 10 and
11, leading to various spatiotemporal periodic patterns, such as stable spatially inhomogeneous stag-
gered periodic patterns (Figures 9, 10), bistable spatiotemporal periodic patterns in which two stable
periodic patterns with different spatial wave frequencies coexist (Figures 11, 12), stable spatially inho-
mogeneous synchronous periodic patterns (see Figure 14) and so on. We assert that the existence of
stable spatially inhomogeneous staggered periodic patterns and coexistence of bistable spatiotemporal
periodic patterns are due to the addition of a predator-taxis term.

These phenomena are different from the results in [37] for the ratio-dependent predator-prey system
only with time delay, as well as the corresponding system with only predator-taxis in [22]. When
only the delay effect of capture behavior translated into predator growth is considered, the survival of
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the populations is only described in a spatially homogeneous form with a single type of time-periodic
oscillations. Influenced by the avoidance behavior of prey, the survival states of the populations can
also be represented as time-periodic with spatially staggered oscillations. Therefore, the chemotactic
behavior of the prey makes the populations’ survival patterns more diverse.

Further, there are still some issues to be resolved in theory. One is how to provide a definite order
for these finite Hopf bifurcation curves when the system generates stable spatially inhomogeneous
periodic solutions via mode-k (0 6 k < K0) Hopf bifurcation, as has been shown for the Turing
bifurcation curves associated with Lemma 4. Moreover, since, numerically, we only found that it
is always a mode-(k, 0) Turing-Hopf bifurcation that destabilizes the positive constant steady state,
how to prove this finding theoretically is still a problem. Finally, it is worth mentioning that some
other new spatiotemporal patterns can also arise via Turing-Turing bifurcation, Hopf-Hopf bifurcation,
Turing-Hopf bifurcation and Turing-Turing-Hopf bifurcation as expected by theory, so it will be of
interest to establish the existence of other coexistence patterns analytically. We leave them as possible
future work.
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