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Abstract: As one of the critical branches of medical image processing, the task of segmentation of breast 
cancer tumors is of great importance for planning surgical interventions, radiotherapy and chemotherapy. 
Breast cancer tumor segmentation faces several challenges, including the inherent complexity and 
heterogeneity of breast tissue, the presence of various imaging artifacts and noise in medical images, low 
contrast between the tumor region and healthy tissue, and inconsistent size of the tumor region. 
Furthermore, the existing segmentation methods may not fully capture the rich spatial and contextual 
information in small-sized regions in breast images, leading to suboptimal performance. In this paper, 
we propose a novel breast tumor segmentation method, called the transformer and graph convolutional 
neural (TS-GCN) network, for medical imaging analysis. Specifically, we designed a feature aggregation 
network to fuse the features extracted from the transformer, GCN and convolutional neural network 
(CNN) networks. The CNN extract network is designed for the image’s local deep feature, and the 
transformer and GCN networks can better capture the spatial and context dependencies among pixels in 
images. By leveraging the strengths of three feature extraction networks, our method achieved superior 
segmentation performance on the BUSI dataset and dataset B. The TS-GCN showed the best 
performance on several indexes, with Acc of 0.9373, Dice of 0.9058, IoU of 0.7634, F1 score of 0.9338, 
and AUC of 0.9692, which outperforms other state-of-the-art methods. The research of this segmentation 
method provides a promising future for medical image analysis and diagnosis of other diseases. 
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1. Introduction 

Breast cancer is a common and serious health concern for women worldwide, resulting in 
increased mortality rates. Medical imaging, such as ultrasound, mammography and MRI, is a widely 
used tool for breast cancer detection and diagnosis [1,2]. Various features such as texture and 
smoothness captured through ultrasound scans can help to identify abnormalities in breast tumors. 
Manually analyzing ultrasound scans and distinguishing abnormal from normal breast tissue can be 
challenging and time-consuming, leading to delays in the diagnosis process [3]. However, segmenting 
small tumors in ultrasound images is challenging due to low-resolution scans, varying tumor shapes 
and sizes, and the presence of noise in the images. Therefore, automatic segmentation of tumor regions 
using computer-aided diagnosis systems is crucial for the early detection of cancer and for reducing 
mortality rates [4–6]. Traditional image segmentation methods have played a significant role in the 
field of medical imaging. These methods primarily rely on handcrafted features and heuristics to 
delineate the boundaries of structures or regions of interest in an image. Several well-established 
techniques fall under this category, including thresholding, edge-based methods, region growing, and 
watershed segmentation. They may struggle with handling irregular shapes, leading to inaccuracies 
segmentation results. However, with the advancements in deep learning, learning-based methods have 
gained prominence due to their ability to automatically learn complex features and adapt to diverse 
imaging conditions. Huang [7] proposed a fuzzy FC network to perform ultrasound image 
segmentation. Lei et al. proposed a boundary-regularized deep convolutional encoder-decoder network 
to alleviate the challenge of segmenting whole breast ultrasound images [8]. Therefore, it is essential 
to develop targeted tumor segmentation schemes that take into account the unique characteristics of 
the images. 

Deep learning-based computer-aided diagnosis systems are developed for the early detection of 
breast tumors for faster diagnosis and treatment, especially for the detection of ultrasound images. U-
Net is a popular CNN-based segmentation framework that has shown impressive performance in this 
regard, with several studies comparing its efficacy to other methods [9,10]. Wang et al. used deep 
supervision strategy constraints on the feature maps captured at each stage of U-net to segment breast 
lesions [11]. However, the existing mainstream methods cannot effectively extract the features of the 
small lesion. When segmenting breast tumors, CNN-based methods do not need precise image feature 
definitions, in contrast to conventional feature-oriented methods. Cheng et al. [18] presented the 
deepest semantically guided multi-scale feature fusion network (DSGMFFN), the SC-attention module 
is meant to incorporate both rich semantic information and finer-grained spatial information to reduce 
performance deterioration brought on by ambiguous boundaries and different tumor sizes. However, 
many existing segmentation methods rely on generic frameworks that may not effectively extract 
lesion information from ultrasound images or discriminate between relevant and irrelevant features. 

Inspired by human visual attention, many attention algorithms have been developed to strengthen 
the representation ability of CNNs [12–16]. The Transformer is a type of neural network architecture 
that was originally introduced for natural language processing tasks [17]. However, its self-attention 
mechanism has since been successfully applied to many other domains, including image processing. 
The self-attention mechanism allows the network to selectively focus on different parts of the input, 
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which is particularly useful for tasks such as object detection or segmentation [18]. This can result in 
feature redundancy and a loss of discriminant features, hindering the accuracy of the tumor 
segmentation process. But they still face some challenges, such as the imbalance of data distribution 
and the inability to capture the spatial relations among pixels. Among these methods, the transformer 
and graph convolutional neural network (GCN) have attracted considerable attention due to their 
ability to capture global and local features of images, respectively [19–21]. GCN is a powerful model 
for semantic image representation, which can encode structural information by featuring a pre-defined 
adjacency matrix [22–24]. Huang et al. proposed a boundary-rendering network for breast lesions 
segmentation by a differentiable boundary selection module and a GCN-based boundary rendering 
module [25]. As GCN models are based on fixed-size graph structures, they may fail to effectively 
capture the features of tumor regions at different scales. To visualize our overall research idea 
conveniently. The block diagram of the overall research route is shown in Figure 1, which contains in 
order the dataset, data pre-processing, automatic segmentation method design, the segmentation 
module optimization and end-to-end training, and the final output segmentation results. 

 

Figure 1. A block diagram of the overall study route. 

To overcome these challenges, we propose a novel approach that combines two powerful deep 
learning architectures, transformer, and graph convolutional networks, named TS-GCN. The 
transformer model has been proven effective in natural language processing and image recognition 
tasks, while GCN has demonstrated its ability to capture the relationships between nodes in graphs. 
By combining the strengths of these two models, our proposed approach can better capture the spatial 
dependencies among pixels in mammograms and improve the accuracy of breast cancer segmentation. 
Our work is to segment the tumor area, and the chief purpose of tumor segmentation is tumor 
assessment, change tracking, and distribution identification in clinical applications. In addition to its 
application in breast imaging, our proposed segmentation method has the potential for extension to 
other important imaging modalities, such as optical coherence tomography (OCT) [36]. OCT imaging 
procession provides valuable information for retinal diseases, cardiovascular conditions, and 
dermatological disorders. Our proposed method can be adapted and applied to this image analysis. The 
ability to capture spatial dependencies and accurately segment target structures, such as blood vessels 
or pathological features, can greatly assist in OCT-based [37,38] disease diagnosis and treatment 
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planning. This broader application scope highlights the versatility and potential impact of our proposed 
method beyond breast imaging. 

The contribution of this study is threefold. 
 The proposed TS-GCN method is the first to design improved tumor segmentation by 

transformer learning of medical image blocks, and this representation can be presented at GCN for 
lesion region information enhancement. 

 Segmentation branching is used as a novel architecture that combines transformer and GCN 
modules to learn more information and discriminate representations. 

 The segmentation performance of the proposed model is validated on two modalities of breast 
imaging using standard segmentation evaluation metrics, where it outperformed the other state-of-the-
art segmentation models. 

2. Materials and methods 

2.1. Overview 

In this section, we propose a tumor segmentation method, called TS-GCN, which integrates the 
strengths of both Transformer and GCN for accurate and efficient segmentation of breast cancer images. 
The overall architecture of TS-GCN is illustrated in Figure 2. Our proposed method consists of five 
steps: image deep feature extraction, image blocks feature, graph representation learning, feature 
fusion, and segmentation. Specifically, we first employ a pre-trained Transformer model to extract 
features from the input medical images. It is capable of capturing both global and local features by 
combining the transformer and local self-attention mechanisms. Secondly, the GCN is designed to 
further capture the local structure of the medical images, we construct a graph using the extracted 
image block features as nodes. The GCN model is capable of capturing the local features of the medical 
images and their relationships. Then, after obtaining the graph representation of the images, we 
aggregate the features of all the nodes to generate a global feature. We use the inverse degree of each 
node as the weight for feature aggregation. Finally, we use the global feature vector as the input to 
predict breast cancer diagnosis. It is mainly included four parts, Transformer, GCN, CNN and the 
combined method. 

2.2. Transformer feature encoder 

In our method, we use the Transformer as an encoder to extract features from the breast cancer 
images. The encoder is composed of multiple layers, each consisting of two sub-layers: a multi-head 
self-attention mechanism and a position-wise fully connected feed-forward network. The self-attention 
mechanism allows the network to attend to different parts of the input image, while the feed-forward 
network provides a non-linear mapping to a higher-dimensional space. The output of each layer is then 
passed through a layer normalization and residual connection before being fed to the next layer. The 
final output of the encoder is a set of feature maps that capture the high-level semantic information of 
the input image. 
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Figure 2. An overview of the TS-GCN method. It consists of five steps: image deep feature 
extraction, image blocks feature, graph representation learning, feature fusion, and 
segmentation. 

The Transformer encoder [5] first extracts a set of feature maps from the input image using a 
series of convolutional layers. These feature maps are then transformed into a set of key-value 
ሺ𝐾, 𝑉ሻ pairs, and the query ሺ𝑄ሻ vectors are generated by applying another convolutional layer on the 
input feature maps. The Transformer encoder then computes the self-attention scores between the 
query and key vectors, and applies a Softmax function to obtain the attention weights: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛ሺ𝑄, 𝐾, 𝑉ሻ ൌ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥ሺொ௄೅

√ௗ
ሻ𝑉                  (1) 

where 𝑇 denotes the transpose operation. The attention weights are used to compute a weighted sum 
of the value vectors, which is then fed into a feed-forward network to obtain the final output of the 
transformer encoder: 

𝐹𝐹𝑁ሺ𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛ሺ𝑄, 𝐾, 𝑉ሻሻ  ൌ 𝑅𝑒𝐿𝑈ሺ𝑊ଶ𝑅𝑒𝐿𝑈ሺ𝑊ଵ𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛ሺ𝑄, 𝐾, 𝑉ሻ ൅ 𝑏ଵሻ ൅ 𝑏ଶሻ (2) 

where 𝑊ଵ, 𝑊ଶ, 𝑏ଵ and 𝑏ଶ denote the parameters of the feed-forward network. 
The transformer module consists of multiple self-attention layers, which allow the model to attend 

to different parts of the image when making predictions. Each self-attention layer takes as input a 
feature map 𝐹 and produces a new feature map 𝐹′ as follows: 

𝐹ᇱ ൌ 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚൫𝐹 ൅ 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑ሺ𝐹ሻ൯                   (3) 

where 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚  is a layer normalization function, and 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑ሺ𝐹ሻ  is a multi-head self-
attention function defined as: 

MultiHeadሺFሻ ൌ Concatሺhଵ, . . . , h୧ሻw଴                    (4) 
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where ℎ௜ ൌ 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛ሺ𝐹𝑊௜
ொ, 𝐹𝑊௜

௄, 𝐹𝑊௜
௩ሻ  is the result of the i୲୦  attention head, and 𝑊௜

ொ , 𝑊௜
௄ , 

𝑊௜
௩ and 𝑤଴ are learnable weight matrices. The output feature maps of the Transformer encoder are 

then fed into the GCN module for further processing. 

2.3. GCN module 

The GCN module [22] is designed to capture the contextual relationships between the different 
pixels in the image. This is achieved by representing the feature of image blocks as a graph, the GCN 
module then performs graph convolution operations to extract features from the graph. In our method, 
we use the output feature maps of the Transformer encoder as the input to the GCN module. The feature 
maps are first transformed into a graph representation, where each pixel is a node in the graph and the 
edges represent the spatial relationships between the nodes. The graph convolution operation is then 
performed to capture the contextual relationships between the different pixels in the image. The output 
of the GCN module is a set of refined feature maps that encode both the high-level semantic 
information from the Transformer encoder and the contextual relationships between the pixels. 

First, the features of each image are represented as a matrix 𝑋௜ ∈ 𝑅ே೔ൈ஽, where 𝑁௜ is the number 
of pixels in the i୲୦ image and 𝐷 is the dimensionality of the feature vector. Then, to fuse the features 
of multiple images, we define a graph structure 𝐺 ൌ ሺ𝑉, 𝐸ሻ , where 𝑉 ൌ 𝑣ଵ, 𝑣ଶ ,..., 𝑣௄  denotes 𝐾 
images and 𝐸 denotes the relationship between images blocks, which can be any metric based on 
image similarity or distance. 

Next, for each image 𝑖 , we construct the adjacency matrix 𝐴௜ ∈ 𝑅ே೔ൈே೔   based on the nodes 
around each node, where 𝐴௜௝ ൌ 1 means that node 𝑣௝ is a neighbor of node 𝑣௜, otherwise, it is 0. 

Then, we use the GCN module for feature extraction. For each image 𝑖, we calculate the new 
features for each node using the following formula: 

H୧
୪ାଵ ൌ σሺD୧

ିభ
మAన෡ Dన෡ ିభ

మH୧
୪W୪ሻ                          (5) 

where 𝐻௜
௟ ∈ 𝑅ே೔ൈி೔ is the node identity matrix of the 𝐼௧௛ layer of the GCN, 𝐴ప෡ ൌ 𝐴௜ ൅ 𝐼𝑁௜ is the 

adjacency matrix plus the self-loop, 𝐷ప෡   is the degree matrix 𝐷ప෡ ൌ 𝑑𝑖𝑔𝑎ሺ𝐴ప෡ 𝐼ሻ , 𝑊௟  is the weight 
matrix of the 𝐼௧௛ layer of the GCN, and 𝜎ሺ. ሻ is the activation function. 

Next, the features of the nodes can be extracted by passing information between the GCN layers. 

Specifically, assuming that the feature of node i is represented as ℎ௩
ሺ௟ሻ  in the 𝑙௧௛  GCN layer, the 

feature ℎ௨
ሺ௟ିଵሻ of node u at the 𝑙 ൅ 1௧௛ layer can be calculated by the following equation: 

h୴
ሺ୪ሻ ൌ σሺ∑ ଵ

ୡ౫,౬
୳∈୒౟

Wሺ୪ሻh୳
ሺ୪ିଵሻሻ                       (6) 

where 𝑁௜ denotes the set of neighboring nodes of node i, and 𝑊ሺ௟ሻ denotes the parameter matrix 
used in the GCN layer at layer l. 

For feature extraction of multiple images, the feature representation of each image can be 
considered as a node, and the similarity between neighboring nodes can be calculated using the 
following formula: 

c୳,୴ ൌ expሺെ
‖୶౫ି୶౬‖మ

஢మ ሻ                           (7) 

where 𝑥௩  and 𝑥௨  denote the feature representations of node u and node v, and 𝜎  is a 
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hyperparameter to control the weight of similarity. 
Through the iteration of multiple layers of GCN, we can obtain the final hidden representation 

vector ℎ௩
ሺ௟ሻ of each node, where l represents the number of layers of the GCN model. These hidden 

representation vectors can be used as a new representation of image features for subsequent tasks, such 
as classification or segmentation. 

2.4. Combining transformer and GCN 

The Transformer and GCN modules are combined in a two-stage training process. In the first 
stage, the Transformer encoder is trained to extract high-level features from the input image. In the 
second stage, the GCN module is trained to capture the contextual relationships between the pixels in 
the image, using the output feature maps of the Transformer encoder as input. To combine the 
Transformer and GCN, we first pass the image patches through the Transformer to obtain the feature 
vectors. The adjacency matrix for the graph is then constructed based on the spatial relationships 
between the patches. The feature vectors are then passed through the GCN to refine their representation 
based on the graph structure. The TS-GCN can be represented by the following equations: 

F ൌ TransformerሺXሻ                           (8) 

A୧,୨ ൌ exp ቆെ
ฮ୮౟ି୮ౠฮ

మ

஢మ ቇ                          (9) 

H ൌ GCNሺF, Aሻ                               (10) 

where 𝑋  is the input image, 𝐹  is the feature matrix obtained from the transformer, 𝐴  is the 
adjacency matrix, and 𝐻 is the refined feature matrix. 

The loss function used during training is Dice loss, which is a commonly used loss function for 
image segmentation tasks. The Dice loss measures the overlap between the predicted segmentation 
mask and the ground truth mask, and is given by: 

After obtaining the final embedding from the transformer and GCN layers, we concatenate them 
and feed them through a fully connected layer to obtain the final segmentation map. The final loss 
function is a combination of the Dice loss and binary cross-entropy loss, given by: 

L ൌ Lୈ୧ୡୣ ൅ αL୆େ୉                           (11) 

where 𝐿஽௜௖௘ is the Dice loss, 𝐿஻஼ா is the binary cross-entropy loss, and 𝛼 is a hyperparameter to 
balance the two losses. 

𝐿஻஼ா here is based on sigmoid to do binary classification, where N is the number of samples, as 
this loss is equal to the average of the categorical cross-entropy loss on the two-category task. 

L୆େ୉ ൌ െ ଵ

୒
∑ y୧lnሺyనഥሻ ൅ ሺ1 െ y୧ሻlnሺ1 െ y୧ሻ

୒
୧ୀଵ                   (12) 

𝐿஽௜௖௘ appeared frequently with outstanding performance in tumor segmentation networks. For 
tumor segmentation of medical images, some small-size tumors occupy only a small area of the 
scanned image, often resulting in loss or partial loss of detection of the foreground, while network 
prediction is heavily biased toward the background. To solve the problem, the loss function based on 
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the dice coefficient is used to reweight the sample and enhance the importance of the foreground area, 
making it higher than the background area. The dice D is written as follows: 

D ൌ ଶ ∑ ୮౟୥౟
ొ
౟సభ

∑ ୮౟
మା∑ ୥౟

మొ
౟సభ

ొ
౟సభ

                            (13) 

where 𝑁 is the total number of pixels, 𝑝௜ is a single component of the predicted binary segmentation 
area P, and 𝑔௜ is that of the ground truth binary area G. 

2.5. Decoder network 

The decoder network takes the refined feature maps from the GCN module as input and generates 
a pixel-wise segmentation mask for the input image. The decoder is composed of multiple layers, each 
consisting of two sub-layers: a 2D transposed convolution layer and a position-wise fully connected 
feed-forward network. The transposed convolution layer is used to up-sample the feature maps, while 
the feed-forward network provides a non-linear mapping to a higher-dimensional space. The output of 
each layer is then passed through a layer normalization and residual connection before being fed to the 
next layer. The final output of the decoder is a pixel-wise segmentation mask that indicates the 
probability of each pixel belonging to the breast cancer region. In summary, the proposed method 
combines the GCN and Transformer models to classify breast cancer images. The GCN model captures 
the spatial relationships between pixels in the image, the prediction facilitates clinical interpretation. 

3. Results 

3.1. Datasets 

To evaluate the effectiveness of our proposed method, we conducted experiments on two publicly 
available datasets of breast images, including the public breast ultrasound Dataset BUSI [26] and 
dataset B [27]. Each image was equipped with the ground truth mask of the lesion to automatically 
interpret and analyze the breast ultrasound images. (1) BUSI, as a publicly available breast ultrasound 
dataset, contains both markers and annotation data. For a fair comparison with other methods, no 
additional processing is performed on this dataset, which is consistent with previous works. BUSI has 
780 breast ultrasound images, including 547 tumor images. (2) dataset B, consists of 163 images 
collected by Siemens ACUSON Sequoia C512 system, with 110 benign and 53 malignant tumor 
images. Specifically, we selected 109 images as the train set, 13 images as the validation set, and 41 
images as the test set in dataset B. The images were preprocessed by resizing them to a fixed size of 
224 × 224 pixels and normalizing them to have a mean of 0.5 and a standard deviation of 0.5. The 
links to the BUSI and dataset B datasets of our paper are https://scholar.cu.edu.eg/?q=afahmy/ 
pages/dataset and https://ieeexplore.ieee.org/abstract/ document/goo.gl/SJmoti, respectively. 
Additionally, we randomly resize, flip and rotate the training images for datasets augmentation. 

3.2. Evaluation metrics 

To evaluate the performance of our proposed method, we employ several widely-used evaluation 
metrics in the field of image segmentation. In the breast cancer segmentation model, the classifier 
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converts the logarithmic values into a probability distribution and uses the one with the highest 
probability value as the model prediction class. Specifically, we use the following metrics: the Dice 
similarity coefficient (Dice) measure the overlap between the predicted segmentation mask and the 
ground truth mask, while the measures the ratio of the intersection to the union (IoU) of the predicted 
and ground truth masks. All methods were trained using the same training, validation, and test sets, 
and were evaluated using those metrics. In addition, we also use two standard measures IoU and F1-
score to verify the effectiveness of the network design. F1-score reflects the comprehensive 
performance of Precision and Recall. The corresponding equations are as follows: 

Accuracy ൌ ୘୔ା୘୒

୘୔ା୊୔ା୘୒ା୊୒
                      (14) 

Precision ൌ ୘୔

୘୔ା୊୔
                            (15) 

Recall ൌ ୘୔

୘୔ା୊୒
                               (16) 

F1 െ score ൌ ଶൈ୔୰ୣୡ୧ୱ୧୭୬ൈୖୣୡୟ୪୪

୔୰ୣୡ୧ୱ୧୭୬ାୖୣୡୟ୪୪
                     (17) 

where FN represents the total number of false negatives, TP represents the total number of true 
positives, FP represents the total number of occurrences of false positive samples, TN represents the 
total number of true negative samples, and N represents the total number of samples. 

Then, the model is further evaluated using the Dice, which take values in the range of [0, 1] and 
is usually used to measure the similarity of the prediction mask to the true value. 

Dice ൌ ଶ୘୔

ଶ୘୔ା୊୔ା୊୒
                          (18) 

IoU ൌ ୘୔

୘୔ା୊୔ା୊୒
                           (19) 

The predicted mask represents the area of the tumor detected by an algorithm and the ground truth 
mask represents the actual area of the tumor as labeled by a medical expert. The IoU value ranges from 
0 to 1, with 1 indicating perfect overlap between the two sets and 0 indicating no overlap. In addition, 
the AUC metric is also used to evaluate the performance of the model, which takes values in the range 
[0.5, 1.0]. the closer the AUC is to 1.0, the better the performance of the model is and the more correctly 
it can distinguish between positive and negative samples. 

3.3. Experimental setups 

The entire model is trained end-to-end using binary cross-entropy loss between the predicted 
mask and the ground truth mask. The model is used PyTorch and is trained on a single NVIDIA Tesla 
V100 GPU. We used the Adam optimizer with a learning rate of 0.001 and trained the model for 200 
epochs. For 1 to 100 epochs, we set the initial learning rate as 0.0001 which is attenuated by 
multiplying 0.88 after every epoch. We trained the model for 100 epochs and selected the model with 
the best validation performance for testing. The proposed network has 55 M trainable parameters. In 
the testing stage, the inference time was 0.039 s per image. 

We compared our proposed method with several state-of-the-art methods, including mask 
RCNN [28], DeepLab-v3+ [29], GCN-based [30], U-Net [31], FCN [32], inception-UNet [33] and 
attention-UNet [34,35] methods. We used the same experimental setup for all the methods and 



18182 

Mathematical Biosciences and Engineering  Volume 20, Issue 10, 18173–18190. 

evaluated the models on the same test set. Mask RCNN is a deep-learning model for object detection 
and instance segmentation. U-Net is a popular deep-learning architecture for medical image 
segmentation. FCN is a fully convolutional neural network designed for semantic segmentation. 
Attention U-Net and inception U-Net is a variant of U-Net that uses an attention mechanism to improve 
segmentation performance. DeepLab-v3+ combines the benefits of atrous convolution and the spatial 
pyramid module to achieve high accuracy and efficiency. GCN-UNet is a variant of U-Net that uses 
GCN to model spatial dependencies. 

3.4. Result analysis 

3.4.1. Results of BUSI datasets 

The experiment aimed to evaluate the performance of different segmentation models on different 
datasets. The results of the experiment are summarized in the table provided. Table 1 shows the 
evaluation results of different methods on the BUSI breast dataset. The methods include mask RCNN, 
Deeplab-v3, GCN-based, U-Net, FCN, inception-UNet, attention-UNet and the proposed method TS-
GCN. From Table 1, we can see that the proposed method TS-GCN achieves the highest performance 
in terms of IoU, F1 and AUC. It achieves an accuracy of 0.9373, a Dice of 0.9058, IoU of 0.7634, F1 
score of 0.9338 and an AUC of 0.9692. The results can accurately capture the target object and achieve 
good segmentation results. Meanwhile, attention-UNet and Deeplab-v3 also have relatively high 
performance, indicating that their attention mechanism and deep learning architecture can also 
contribute to the segmentation accuracy. The second-best performing attention-UNet with an accuracy 
of 0.8883, Dice of 0.9027, IoU of 0.7338, F1 score of 0.9242 and AUC of 0.9605. Our proposed 
method achieved state-of-the-art performance on the BUSI dataset. 

Table 1. Shows the evaluation results of different methods on the BUSI breast dataset. 

The Deeplab-v3 model achieved an accuracy of 0.8717, a Dice of 0.8790, an IoU of 0.7509, an 
F1 score of 0.8602 and an AUC of 0.9187. These results suggest that the Deeplab-v3 model performed 
better than mask RCNN in terms of Dice and IoU, but not in terms of accuracy, F1 score and AUC. 
However, some methods such as GCN-based have lower performance, which suggests that their 
architectures may not be suitable for the specific task or need further improvement. 

Other methods performed moderately, such as U-Net with Acc of 0.8641, having high Dice and 

Method Acc Dice IoU F1 AUC 

Mask RCNN 0.8761 0.8055 0.7049 0.8760 0.9010 

Deeplab-v3 0.8717 0.8790 0.7509 0.8602 0.9187 
GCN-based 0.8422 0.8520 0.7300 0.8499 0.9229 

U-Net 0.8641 0.8924 0.7523 0.9001 0.9208 

FCN 0.8708 0.8827 0.7409 0.9110 0.9162 

Inception-UNet 0.8728 0.8956 0.7480 0.9184 0.9370 

Attention-UNet 0.8883 0.9027 0.7338 0.9242 0.9605 

Ours 0.9373 0.9058 0.7634 0.9338 0.9692 
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IoU scores. FCN had a relatively high F1 score of 0.9110, while inception-UNet had a high F1 score 
of 0.9184. Mask RCNN had the highest accuracy among all methods with a value of 0.8761. The 
inception-UNet model achieved an accuracy of 0.8728, a Dice of 0.8956, an IoU of 0.7480, an F1 
score of 0.9184 and an AUC of 0.9370. Overall, the proposed method TS-GCN outperforms other 
methods in terms of most evaluation metrics. The proposed method TS-GCN leverages both 
transformer and GCN in a novel way, allowing it to achieve superior performance compared to other 
methods on most evaluation metrics. This suggests that the combination of these two powerful 
architectures has a synergistic effect, enabling more accurate and efficient segmentation results. 

3.4.2. Results of dataset B 

Table 2 presents the results of various methods evaluated on dataset B for breast cancer tumor 
segmentation. It can be concluded that the proposed method (referred to as “Ours” in the table) 
outperformed other methods in most evaluation metrics, including accuracy, Dice, IoU, F1 score and 
AUC. Specifically, our method achieved the highest accuracy of 0.9501, and the second-highest Dice 
of 0.9139. Compared to other state-of-the-art methods, TS-GCN, which combines the Transformer and 
GCN techniques, achieved superior segmentation results. 

Table 2. Presents the results of various methods evaluated on dataset B. 

It is worth noting that some of the other methods, such as U-Net and attention-UNet. The U-Net 
and attention-UNet methods achieved Dice scores of 0.9885 and 0.9110, respectively. U-Net 
performed the best out of all the methods in terms of the Dice score. Attention-UNet, on the other hand, 
achieved the highest score, demonstrating its effectiveness in segmenting breast cancer tumors. 
However, U-Net outperformed attention-UNet in other metrics such as accuracy, F1 score and AUC. 
Therefore, both U-Net and attention-UNet are effective methods for breast cancer tumor segmentation, 
with U-Net performing better overall. Overall, these results provide important insights into the 
effectiveness of different deep-learning methods for breast tumor segmentation and demonstrate the 
potential of the proposed method in this task. This indicates that the combination of GCN and 
transformer can effectively model spatial and channel dependencies for breast ultrasound image 
segmentation. These results demonstrate that our proposed method is effective for the segmentation 
task of breast cancer tumors, and it can potentially be used as a useful tool for the diagnosis and 
treatment of breast cancer in clinical practice. 

Method Acc Dice IoU F1 AUC 

Mask RCNN 0.8882 0.8135 0.7158 0.9015 0.9152 

Deeplab-v3 0.8920 0.8890 0.7309 0.9259 0.9376 
GCN-based 0.9090 0.8780 0.7656 0.9299 0.9504 

U-Net 0.9371 0.9885 0.7632 0.9358 0.9315 

FCN 0.9127 0.9115 0.7521 0.9321 0.9435 

Inception-UNet 0.9358 0.9051 0.7422 0.9340 0.9519 

Attention-UNet 0.9254 0.9110 0.7388 0.9297 0.9556 

Ours 0.9501 0.9139 0.7821 0.9479 0.9739 
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3.4.3. Ablation studies 

Additionally, we conduct ablation studies to investigate the effectiveness of several different 
modules for medical image segmentation, including CNNs, GCNs and transformers. As shown in Table 
3, we compare the performance of the TS-GCN model with three variants: (1) the baseline model using 
only CNN without transformer and GCN( U-Net-only); (2) the baseline model using only Transformer 
without GCN and CNN (Transformer-only); (3) the baseline model using only GCN without 
Transformer and CNN (GCN-only); (4) the model using both CNN and GCN and Transformer(CNN-
GCN); 5) the model using both CNN and Transformer (CNN-TS); (6) the model using CNN, GCN 
and Transformer (TS-GCN). 

Table 3. Conducts an ablation study to investigate the effectiveness of different modules. 

Firstly, we evaluated the model with only CNN layers, which achieved an accuracy of 0.8641, 
Dice of 0.8924, IoU of 0.7523, F1 of 0.9001 and AUC of 0.9208. Then, we tested the GCN-only model, 
which resulted in lower performance than the CNN-only model, with an Acc of 0.8422. Next, we 
evaluated the Transformer-only model, which outperformed the GCN-only model but was inferior to 
the CNN-only model in terms of segmentation performance, achieving an accuracy of 0.8701. 
Subsequently, we tested the CNN + Transformer and CNN + GCN models, which showed significant 
improvements over the single-component models. The CNN + Transformer model achieved an 
accuracy of 0.9045, while the CNN+GCN model achieved an accuracy of 0.8956. When CNNs are 
combined with either GCNs or Transformers, there is a further performance improvement, indicating 
that the combination of these different types can effectively capture both local and global features. 
Finally, we compared our proposed TS-GCN method with the other models, which achieved the best 
segmentation performance with an accuracy of 0.9373 and AUC of 0.9692. This indicates that 
combining CNNs, GCNs, and Transformers in a single model can capture local and global features 
effectively and improve segmentation performance. By incorporating these strengths, TS-GCN can 
achieve state-of-the-art results in the segmentation task. 

3.4.4. Quality analysis 

We conducted a qualitative analysis to evaluate the quality of the segmentation masks generated 
by our proposed method. As shown in Figure 3, we randomly selected 5 images from the BUSI and 
dataset B and visually inspected the segmentation masks generated by our method and the ground truth 
masks provided by the radiologists. The ground truth mask is presented in the last column, while the 
remaining columns represent the segmentation outputs of different methods. As can be observed, our 

Method Acc Dice IoU F1 AUC 

CNN-only 0.8641 0.8924 0.7523 0.9001 0.9208 

GCN-only 0.8422 0.8520 0.7300 0.8499 0.9229 
Transformer-only 0.8701 0.8808 0.7690 0.9030 0.9276 

CNN + Transformer 0.9045 0.9205  0.8009  0.9240  0.9487 

CNN + GCN 0.8956  0.9132  0.7876  0.9155  0.9357 

TS-GCN (our method) 0.9373 0.9058 0.7634 0.9338 0.9692 
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proposed TS-GCN method achieves superior segmentation accuracy compared to the other methods, 
as evidenced by the high degree of overlap between predicted masks and ground truth masks. 

 

Figure 3. The quality of the segmentation masks generated by our proposed method. 

Additionally, the series of U-Nets and GCN-based methods tend to produce blurry and fragmented 
segmentation results, particularly around the edges of the tumor. The TS-GCN method effectively 
captures the spatial dependencies between the pixels in the image and generates more precise 
segmentation results. It is visible from the results that compared to existing techniques, TS-GCN 
techniques have demonstrated significant dominance in quality and accuracy regarding the 
segmentation of complex regions. Our approach will handle the glitches noticeably present in other 
approaches’ output. Our method smoothes the edge of tumor segmentation very well and achieves 
accurate segmentation of small tumor areas without leakage. The TS-GCN method demonstrates strong 
performance in accurately segmenting breast tumors, making it a promising tool for clinical 
applications in breast cancer diagnosis and treatment planning. 

 

Figure 4. Visual comparison of the proposed method. 
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In addition, to show the effectiveness of the feature aggregation network based on the TS-GCN 
more intuitively, we analyzed the attention maps of breast images. To visualize class-specific attention, 
we applied class activation mapping to generate attention maps of breast images, and the results were 
shown in Figure 4. We presented grad-cam maps of benign and malignant tumors respectively. It can 
be seen that TS-GCN can notice the key areas of tumor classification, including boundary, calcification, 
and so on. The attention map shows that TS-GCN pays more attention to edge-related areas. Although 
the interpretability of deep learning is still a difficult research field, from the attention maps, we can 
see that the proposed feature aggregation can effectively integrate the regions of interest of the 
Transformer and GCN networks. It can effectively fuse the features extracted from the two networks 
for breast tumor classification and segmentation. 

4. Discussion 

The TS-GCN method proposed in our work offers several advantages and also has some 
limitations. The method leverages the strengths of both the Transformer and GCN models, enabling it 
to capture spatial dependencies among pixels and improve the accuracy of tumor segmentation. The 
fusion of these models allows for more comprehensive feature integration and better representation of 
tumor regions. Also, based on the diffusion model theory, the TS-GCN considers the multimodality of 
labels, text, or images in the hidden space. This innovative approach enhances the synthesis of logo 
images by considering multiple modalities, leading to more diverse and high-quality samples. While 
our focus is on tumor segmentation in breast images, the TS-GCN method has the potential to be 
applied to other medical imaging tasks, as well as image super-resolution, deblurring and text-to-image 
translation. There are some Limitations of the method. The performance of TS-GCN heavily relies on 
the availability and quality of training data. Like many deep learning models, TS-GCN may lack 
interpretability in terms of understanding the specific decision-making process. While attention maps 
and visualizations can provide some insights, the exact reasoning behind the model's segmentation 
decisions may not be readily explainable. It is important to note that these advantages and limitations 
are specific to the TS-GCN method proposed in our work and may vary in different contexts and 
applications [39–41]. 

Society will benefit from this segmentation method in several ways. Firstly, the improved 
accuracy of tumor segmentation enables more precise and reliable disease diagnosis. This can lead to 
early detection of cancers and other diseases, allowing for timely intervention and treatment, ultimately 
saving lives and improving patient outcomes. Secondly, the computer-aided diagnostic system based 
on this segmentation method can enhance the efficiency of medical professionals. By automating the 
segmentation process, medical practitioners can save valuable time and resources, enabling them to 
focus on other critical tasks, such as treatment planning and patient care. Furthermore, the application 
of this segmentation method can contribute to advancing medical research and knowledge. This 
knowledge can drive further advancements in cancer research, personalized medicine, and the 
development of novel therapeutic approaches. Overall, the societal impact of this segmentation method 
lies in its potential to improve healthcare outcomes, enhance medical professionals’ efficiency, and 
advance medical research, ultimately benefiting individuals, healthcare systems, and society as a whole. 
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5. Conclusions 

In this paper, we proposed a novel breast tumor segmentation method, TS-GCN, based on the 
fusion of Transformer and GCN networks. Specifically, we designed a feature aggregation network to 
integrate the complementary features extracted from the Transformer, GCN and CNN networks, which 
improves the segmentation performance. The CNN feature extractor uses the common ResNet-50 
backbone network. The Transformer component enables the model to capture long-range dependencies 
and contextual information, while the GCN component allows for effective information propagation 
and aggregation across the graph structure. Experimental results on two publicly available datasets 
demonstrate that our proposed method achieves state-of-the-art performance in terms of various 
evaluation metrics. The attention map analysis also shows that the proposed method can effectively 
fuse the features of the two networks and highlight the important regions of the breast tumor. In 
addition, the ablation studies further verify the effectiveness of each module of our method. The 
application of this segmentation method can contribute to advancing medical research and knowledge. 
Accurate tumor segmentation allows for more accurate analysis and quantification of tumor 
characteristics, leading to a better understanding of disease progression, response to treatment, and 
potential biomarkers. In summary, the proposed TS-GCN method achieves superior performance in 
breast tumor segmentation and provides a promising direction and basic reference for future research 
in medical image analysis. 
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