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Abstract: The mathematical oncology has received a lot of interest in recent years since it helps illuminate
pathways and provides valuable quantitative predictions, which will shape more effective and focused
future therapies. We discuss a new fractal-fractional-order model of the interaction among tumor
cells, healthy host cells and immune cells. The subject of this work appears to show the relevance
and ramifications of the fractal-fractional order cancer mathematical model. We use fractal-fractional
derivatives in the Caputo senses to increase the accuracy of the cancer and give a mathematical analysis
of the proposed model. First, we obtain a general requirement for the existence and uniqueness of
exact solutions via Perov’s fixed point theorem. The numerical approaches used in this paper are based
on the Griinwald-Letnikov nonstandard finite difference method due to its usefulness to discretize the
derivative of the fractal-fractional order. Then, two types of stabilities, Lyapunov’s and Ulam-Hyers’
stabilities, are established for the Incommensurate fractional-order and the Incommensurate fractal-
fractional, respectively. The numerical results of this study are compatible with the theoretical analysis.
Our approaches generalize some published ones because we employ the fractal-fractional derivative in the
Caputo sense, which is more suitable for considering biological phenomena due to the significant memory
impact of these processes. Aside from that, our findings are new in that we use Perov’s fixed point result
to demonstrate the existence and uniqueness of the solutions. The way of expressing the Ulam-Hyers’
stabilities by utilizing the matrices that converge to zero is also novel in this area.
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1. Introduction

Cancer 1s a word used to describe disorders in which aberrant cells divide uncontrollably and can
infiltrate neighboring tissues. According to the World Health Organization (2020), cancer is the second
leading cause of mortality globally, accounting for approximately one in every six deaths [1]. Since
the middle of the 1960s, mathematical modeling and nonlinear simulations of the tumor growth process
has been researched due to the significant public health issues and the requirement for immediate health
measures [2-9].

Edward Lorenz, a meteorologist and mathematician, discovered the chaos phenomenon in the
unpredictable and irregular behavior of nonlinear dynamical systems in 1963 [10]. Chaos can be
expressed mathematically via deterministic iterations of nonlinear difference equations or the
development of nonlinear ordinary differential equations (ODEs) or partial differential equations (PDEs).
The study of chaotic systems has been heralded as one of the most significant scientific accomplishments
of the twentieth century. While the field is still in its infancy, there is no doubt that it is becoming
increasingly important in various of scientific disciplines. To that end, chaos has been demonstrated to
exist in a wide range of systems, including electronics [11], chemistry [12], economics and
finance [13, 14], biological systems [15—18] and so on.

It is worth noting that fractional calculus is a vital branch of mathematics. Because of the memory and
genetic peculiarity of fractional-order differential equations, several researchers have modeled biological
phenomena using fractional calculus derivatives. As a result, it is a very useful tool for describing genuine
natural processes. Many papers on fractional-order dynamical models have recently been published [19—
21].

Atangana [22] presented a new advanced type of fractal fractional derivative in 2017, bridging the gap
between fractional and fractal calculus. Fractal-fractional operators contain two components: the
fractional order and the fractal dimension (order). Differential equations using the fractal-fractional
derivative transform the assumed system’s order and dimension into a rational order system. The major
goal of defining these derivatives is to examine fractal nonlocal boundary and initial value problems in
nature. Certain mathematicians developed various results and designed some fractal-fractional models
that exhibit improved simulations for representing mathematical structures in this direction [23-26].

The nonstandard finite deferential numerical methods were first introduced by Mickens in 1994 [27].
These methods are well known for maintaining the positivity, boundedness and stability of nonlinear
systems’ equilibrium points [27,28].

In the paper [15], authors introduced and on studied the following three-dimensional order cancer
model

¥ =ax(1 —y)(1+2)—x%y, x(0)=x020,
Yy =by(1 =2)(1+x)—y*z, y(0) =y >0, (1.1)
7 =cz(1 —x)(1+y)—22x, z(0) =75 >0,

where x(¢) stands for the number of tumor cells at time ¢ y(¢) for the number of healthy host cells at time ¢,
and z(7) for the number of effector immune cells present at time ¢ within the single tumor-site compartment,
and xg, yo and zy are the associated initial values of system (1.1). Here, the parameters a, b and c are
positive real numbers that indicate the growth rates of populations of x(z), y(¢) and z(¢), respectively. If
a; = a for every i = 1,...,3, then the system (1.3) is called commensurate order; otherwise, it is named
incommensurate order [29]. The fractional version of system (1.1) was considered in the paper [16], and
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were described by

SD"x=ax(1-y)(1+2)—x*y, x0)=x, 0<a <1,
SD™y =by(1 -2)(1+x)—y*2, yO0)=yp, O<a <1, (1.2)
D™z =cz(1-x)(1+y)-2’x, 20)=2zp, O0<az<I,

where {D” is the a-order Caputo differential operator.
The three-dimensional fractal-fractional-order cancer model is the main topic of this research:

SD*Pix =ax(1 —y)(1+2)—x*y = Fi(x,y,2)®), x0)=xp, 0<ap,pi<],
5Dy = by(1 = 2)(1 + x) = ¥’z = F2(x,5,2)(1), y(0)=yo, 0<aBr<1, (1.3)
oDz =cz(l =01 +y) = 22x = F3(x, 3,290, 20) =2, 0<asp;<1,

where { D*# is the (@, B) fractal-fractional-order Caputo differential operator.

The rest of this paper is organized as follows. Section 2 provides some fundamental definitions of
generalized Banach spaces in the sense of Perov, its properties and fractal fractional operators in the
Caputo sense. Section 3 is devoted to the existence and the uniqueness with Perov fixed point theorem. In
Section 4, the suggested model’s numerical solution was achieved using the Griinwald-Letnikov
nonstandard finite difference scheme of Caputo derivative (in short GL-NSFDM) scheme using
MATLAB software. Section 5 presents the Lyapunov’s stability of the equilibrium points of the proposed
system by varying the fractional order and the set of parameter (a, b, c), and by maintaining the fractal
dimension (81, B>, B3) = (1,1,1). Section 6 shows the Ulam-Hyers stability of the Incommensurate
fractal-fractional-order cancer model (1.3). Finally, the discussion and the conclusion are given in the last
two sections.

2. Preliminary

We present some basic notation, results of generalized Banach spaces in the sense of Perov, matrices
converges to zero and Fractal-Fractional calculus in Caputo sense, which will be essential in the next
sections. We begin with defining on M,,,(R;) the partial order relation as follow:
LetA, T € Myxu(Ry),m >1andn > 1. Put A = (A;) i5en and T = (1) 5. Then,

A<‘Y,if‘ri,]‘2/\i’j forallj:1,~--,m,i:l,--~,n_
A<Tif7’,~,]~>/\,~’j foralljzl,---,m,i:l’...,n'

and we write [, for the identity n X n matrix and O, for the zero n X n matrix.

Definition 2.1. Let & be a vector space over K = R or C. A generalized norm on & is a map

I-llg : & —> [0, +e0)"
191l

¥ - |19lle =
1911
has the next properties

(i) For all © € &; if |[9]|g = Ogs, then & = O,
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@) llad|lc = lall|?|c for all # € & and a € K, and
@) |9 + wlle < 1Ml + llwllg for all ¥, w € &E.

The pair (&, ]| - ||g) 1s called a generalized normed space. Moreover, (&, || - ||g) 1s called a generalized
Banach space (in short, GBS), if the vector-valued metric space generated by its vector-valued metric
06(x,y) = |lx — yl|g is complete.

Let (&, || - ll) be a generalized Banach space. In the rest of this article for r = (ry,--- ,r,) € R}, %) € &
andi =1,---,n, we denote by:

B(ty,r) = {3 € & : [y — Vg < r},
for the open ball centered at 9}, with radius r, and by:
B9y, r) = {9 € E: |19y — g <1},

for the closed ball centered at ¥y with radius r. If ¢y = 0 we simply denote B, = B(0, r) and B, = B(O, r).
Finally, we respectively denote by K and co(K) for the closure and the convex hull of a subset K of &.

Definition 2.2. A matrix 7" € M,,(R) is said to be convergent to zero if
r — 0, as m—> oo,

Lemma 2.3. [30] Let T’ € M,«,(R,). The following assertions are equivalent:
@Hr"—a0, a m— oo,

(ii) The matrix I, — 7" is invertible, and (I, — ¥)~' € M, (R,).

(iii) The spectral radius of 7’ is strictly less than 1.

Definition 2.4. Let (&, 6¢) be a generalized metric space and N be an operator from & into itself. N is
called 7-contraction with matrix 7" € M,,(R,) that is converges to O,, if for all o, v € & we have

06(N(@), N(v)) < T65(0, V).
In the following, an extension of the Banach contraction principle by Perov is given.

Theorem 2.5. [31] Let & be a complete generalized metric space and let N : & — & be an M-contraction
operator. Then, N has a unique fixed point in &E.

Next, we give some important concepts from fractal-fractional calculus in Caputo sense. We refer the
reader for the reference [32] for more details.

Definition 2.6. Let o be differentiable in opened interval (a, b), if o is fractal differentiable on (a, b) with
order S, then the FF-derivative of o of order « in the Caputo sense with power law is given as:

Do) = f( et Q(T) dr n-1<af<nneN. (2.1)

@)

where

do(t) .. o(s) — (1)
ds _l.slirl} BB

Lemma 2.7. The Eq (2.1) can be written as follows:

(02 o] 1
6D o(t) = §D; Q(I)W’ where, n=1,a=0.

Mathematical Biosciences and Engineering Volume 20, Issue 10, 18083-18103.



18087

3. Existence and uniqueness results

Lemma 3.1. (x,y, ) is a solution of the fractal-fractional-order system (1.3), if and only if it is a solution
of the following problem

_ B -9 )
x(t) = xo + Ty fo T [ax(s)(1 = y(s)(1 + z(s)) — x“(s)y(s)]ds,
R ()
[(ay) 0 s
By (=)@
[(az) 0 s

[by(s)(1 = 2())(L + x(5)) = y*(5)z(s)]ds, (3.1

y(@) = yo +

A =20+ [ez(s)(1 = x())(1 + ¥(5)) = Z2(s)x(5)]ds.

Theorem 3.2. Suppose that there is a vector with positive entries fulfills

ﬁl Ta/1+ﬁ1—1 )
1) |(Frgn M@ Bo)ati( = 11+ 15) = 137
ﬁzTa2+ﬁ2—1 )
Y= |12 | > |(Fm—H (@2, ) bTa(1 = To)(1 + T1) = Y375, (3.2)
[(az)
ﬁ Ta3+ﬁ3—l
o)\ (Frgg—H@s a))lers(t = T + 12) = 73T
in addition, if the matrix
2717, (aTi[1 + 73]+ T%) (aTi[1+7%))
_ ﬁiTa,-+ﬁ,-—1 )
O = max { ——H(a;,5) bTL[1 + 73D 27,75 O+ 711+ 717)
i=1,...,.3 F(a,-)
(CTg[l + Tz] + 7'32,) (CT:,*[I + Tl]) 2T3T1
3.3)

converges to O3, where H(«a;, ;) denotes the beta function of @; and §;, then the system (3.1) has a unique
solution in the space C([0, T']) x C([0, T]) x C([0, T]).

Proof. Let K be the closed ball B((xy, yo,20), T) on & = C([0, T],R) x C([0, T],R) x C([0, T1,R) centered
at (xo, Yo, 20) of radius 7" > ORi where r satisfies the above inequality in (3.2). We recall that the space
E=C(0,T],R) xC([0,T],R) x C([0, T],R) is generalized Banach space endowed with the generalized

norm
. 3
I.llg :& — R}

[1x]]co
X = (x’y’ Z) = ||(x’y,Z)||G = ”y”oo .

llzlleo

The proof will be broken up into several steps.
Step 1: First, we shall show that the mapping

N:C(0,T],R)xC([0, T],R) x C([0,T],R) — C([0, T],R) x C([0, T],R) x C([0, T],R)
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1s G-contraction where N defined by the following formula:

Nl(x’ Y, Z)(t)

N(x,y,2)() = | Na(x,y,2)(0)

N3(x9 ) Z)(f)
_ a1—1
o+ 1“26;1) 0[ ‘ Sls—)ﬁl [ax(s)(1 = y($))(1 + z(5)) — X*()y(s))d's

By o (t—s)2!
[ay) 0 sl

By o (t—s5)"7!
F(Q_O,) 0 s1=5s

— y0+

[by(s)(1 = 2())(1 + x(5)) = Y*(8)z(5)]ds

[ez(s)(1 = x()(1 + y(5)) = 22 (s)x(s)]ds

20+

To this end, let X; = (x1,y1,21), X> = (x2,¥2,22) € &and for t € [0, T] we have

a1—1
N1 (222,220 = Wi 20001 € o f U fara(s)(1 = ya(s)(1 -+ 22() — B(5)ya(s)

— ax;(s)(1 = y1())(1 + z4(5)) + x7(s)y1(5)|dss

a;—1
F(a’l)f ¢ sl) aTl( V2(8) — y2($)22(s) + 1 + 22(5))

= 55($)y2(s) = aV1(=y1(s) = yi(9)z1(s) + 1 +21(s)) + Xf(S)yl(S)'ds

! _ ar-1
= FI(LZI) 0 ! sli)ﬂl X (a'rl[b’z(s) = y1(9)] + [y2(8)z2(s)

= yi($)z1 ()] + [22(5) = 22(9)I] + [B($)y2(5) = X} ($)y1()])ds.
And we have for all A, A,, By, B, € R

1
1By — AaBa| = - [(Ar = A2)(By + By) + (A + A2)(B) = By

then

f e a1
B Iﬂ(ﬂll) - sls—i*l X (arl[lyZ(S) = 1($)] + [z2(s) — z1(s)|

+ 5[|yz(s) = 31()llza(5) + 21($)] + ya(s) + Y1 (Dllza(s) = 21 ()]

IN1(x2, y2, 22)(1) = Ni(x1,y1,20)(@)] <

1
+ —[|x§<s> = 21 ($)ly2(s) + 31(8)] + [5() + F(SIya(s) = y1(9)l])dls

t— a)—1
5 F(al) f : 1P ) X (@[ (1 + T)lya(s) = y1(9)
+ (1 + T2)lza(s) - 21(s)|] + Ta|x3(s) = K2(8)] + T2]ya(s) — yl(s)l)ds
by taking the supermum over ¢ we find

ﬁlTal‘hBl_l
[(a1)
2 2 2
+ (1 + T2 = zlleo]| + T2ll3 = 21l + TTly2 = yills)

IN) (2, 2, 22) = N1ty 2l <

H(ar, ) 1|4 + Tlly2 = yillo
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And we have for all positive numbers 01, 0, and y > 1

lol — 031 <y sup(oi, 02" 'lo1 — ol

then,

ﬂlTa/1+ﬁ1—1
['(a;)
+ (1 + T)llzo - Zl”oo] + 271 Tallxs = xilleo + Lilly2 — yllloo)

INY (22, y2,22) = N1 (1, 1, 2l < Har,B)(aT1[(1+ T2 =yl

It is clear that
Fz(x’y’Z) = Fl(y,Z, X)

F3(xayaz) = FI(Z,an)

then
IBZTaz+Bz—1
IN2(x2, 2, 22) = NaCx1, y1, 20l < (Wﬂ(az,ﬁz))(b%[(l + T)llz2 = 21l
2
+ (1L + T2 = xillo] + 272750ly2 = Yillo + V3llz2 = 21lles)
and

ﬁ Ta3+ﬁ3—1
oy H@B)(Ts|( + Tl =~ xills

+ (1 + T3)lly2 = yillso| + 2757122 = 2lleo + T3z = 311l

[IN3(x2, ¥2,22) = N3(x1, ¥1, 2Dl < (

As conclusion

277, @ri(l1+ 751+ 7% @”\[1+ 73]
INX2) - NXDlle < T:|  (OT2[1+ T3] 27575 G111+ 7111+ 73) |IXi = Xallg,
(V5[ + 151+ 13) (cT3[1 + 711D 2757,
where Py
T. = max {ll“(—ai)q{(ai’ ,8,-)}.

Step 2: Our objective here is to prove that the operator N maps K into itself. Todo so, let X = (x,y,z), € K
and for ¢ € [0, T'] we have

! _ Nar-1
IN1(x, y, 2)(1) — Xo| < = j(; SE lax(s)(1 = y())(1 +2(5)) = £ (s)y(s)lds

I'a)) sl=p
<(Mw ) (1= T+ T3) — T2
<y (a1,B1))laT( 2)( 3) 1 1

Then
ﬁ Ta/1+ﬂ| -1

||N1(x,y,z)(t) - x0||oo < ( !

W?‘((m,ﬁ]))la‘rl(l — o)L+ T) = 127

Mathematical Biosciences and Engineering Volume 20, Issue 10, 18083-18103.



18090

By the same manner, we find

(ﬁZ Taz+ﬁ2—1

INV2(x, ¥, 2) = Yolleo < W(az,ﬁz))lb%(l —T3)(1+ 7)) - 1373

['(a2)
and
ﬁ T(y3+,63—1 5
IN3(x,, 2) = 2ollee < (Fm—H(@3,85))lcT3(1 = T)(A + T2) = V374,
T(a3)
Hence,
ﬂl T(11+,Bl—1 5
(F=——H(a1.8))laTi(1 = T(1 + T3) - T275l| (T,
[(a)
ﬁzT(lz+ﬂ2—1 )
IF (6 y,2) = Xollo < | (Fo———"H (2. B))IbT2(1 = T3)(1 + T1) = T375] | < | T2 |.
[(az)
Ta(3+ﬁ3—l
(B @ p)ers( = (1 + 1) = 121y | T

['(a3)

By using Perov fixed point Theorem 2.5, we conclude that the system (3.1) has a unique solutionin K. O
4. Numerical method for solving fractal-fractional cancer model

According to Lemma 2.7, the system (1.3) can be written as follows:

SDY' x(r) = BitP " Fi(x, y,2)(1),  x(0)=xp, O0<ap,pBi<1
EDEY(D) = Bt Fa(x, 3, 2)(1),  ¥(O0)=yo, 0<anfBr<1 (4.1)
CDPz(t) = Bt Fa(x,y, (1), 2(0) =20, O <as,fs< L.

The discretization of fractional derivative is given by GL approach [33,34]:

n+l
gD;“x(f)L:,n = At“l Xn+ 2#1 Xn+1-i 6]1,,+1x0),
where 1, = nAt, At = % is the time-step size, N is a natural number, u;, = (=Dt ( a;j )’lujl =},q) =
HIL—IQJ) andi=1,2,...,n+1, j=1,2,3. In addition, let us assume that [35]:
O<pj, <pj,<...<uj=a;<lI,
0<gj, <g;;<...<gqj = ﬁ.

Using the GL approximation and the NSFD framework [27], we discretize the first equation in (1.3) as

follows:
n+1

SOy x| _, = Mt)m X me,m, a1, Xo

where,
$(A1) = A1)+ O(A®)?), 0<¢(An <1, A®) — 0.
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From the first equation in (4.1), we have:

n+l1
-1
ﬁllg Fl (-xnayn, Zn) (tn) ¢(Al)al Xn+ Zﬂl Xn+1-i = 41,.,%0 | >
hence
n+l
Xn+l = ¢(At)m,81t'gl_1Fl (-xm Yno Zn) (tn) + Z,ul;xnﬂ—i + q1n+|x0- (42)

i=1
Looking that the function F; can be written as next:
Fl (xn’ Yns Zn) (tn) = axn(l - yn)(l + Zn) - xn(xnyn)
= 81, (X, Yns 20)(tn) + X815 (X5 Y, Zn) (L)

By substituting this latter in (4.2), and wusing the fact that the nonlinear term
gll(-xn,yna Zn)(tn) + xnglz(-xn,yn’ Zn)(tn) iS aPPYOXimated by gh(-xn,yna Zn)(tn) + -er—lglz(xn’yn’ Zn)(tn) iI’l a

nonlocal way, we find that:
?:11 M1 X1 + 41, X0 +ﬁlzﬁ ¢(At)m (gll(xn’ Yn» Zn)(tn))
L+ Bty ™ $(AD™ g1, (X, Y 20)(82)

Repeating the same procedure to the second and the third equation of the system (1.3), we conclude
that the discretization of system (1.3) using GL-NSFDM can be formulated as follows:

Xn+l =

o B S+ @ Ko+ Bity $AD" (@x(1 = y)(1+2,)
n+l — —
, L+ Bita” §(AD™ x,,
b = S o Vus1i + oy Yo + Batsr H(ADP (by,(1 = z,)(1 + x,)) 43)
n+l — .
i 1 L+ Bt (A0,
- S szt + @320 + Bt GAD™ (cza(1 = x,)(1 )
n+l —
" 1+ B2 p(AD® x,2,

5. Lyapunov’s stability of the incommensurate fractional-order cancer model

In this section we analyze the dynamics of the incommensurate by taking the initial conditions
(x0, ¥, 20) = (0.4,0.5,0.5), (B1,02,83) = (1,1,1) and by selecting different values of the
fractional-orders a;, @,, a3 and varying the set of parameter (a, b, ¢).

Definition 5.1. [36] The equilibrium point E is called a saddle point of index one (two) if the Jacobian
matrix evaluated at point E has exactly one (two) eigenvalue with non-negative real part. Scrolls are
generally created only around the saddle points of index two.

The Following Lemma gives the sufficient condition to exhibit the equilibrium point E a stability nature.

Lemma 5.2. [37] The equilibrium point E of the fractional-order system is locally asymptotically stable
in the Lyapunov sense if the following condition is satisfied:

ﬂ .
25 /le{ﬂr:%l(rﬂl):m ‘ arg(/l)' <0, (5.1

where A(1) = det(J — diag(1°®, ..., 2°%)) and J = ( )l j=1...x is the Jacobian matrix evaluated at E.
J

The parameter ¢ is the least common multiple of the denominators ¢;s of «;s, where «@; = —l, (pi-q) =1,
i

Pinqi €Z".
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If the condition (5.1) does not satisfy, we are in the following state.

Lemma 5.3. [38] A necessary condition for fractional-order system to exhibit the chaotic attractor is

Vs

— — 1 >
26 et Moy ‘ arg(/l)' 2 0. (5.2)

Furthermore, the number /26 — min ey a)=0 | arg(A)| is called the instability measure for equilibrium
points in fractional order systems (in short IMFOS).

The Jacobian matrix of system (1.3) is

a(l —y)(1 +2z)—2xy —ax(1 +z) - x* ax(1-y)
J = by(l —z) b(1 —2)(1 +x) —2yz -by(1 +x)—y2
—cz(1 +y) -7 cz(l1 — x) c(l—x)(1+y)—2zx

In [39], the authors established that the system (1.3) has five real equilibrium points, where four of
them are obtained analytically and can be described as follows:

1) Eo = (0,0,0),

2) Ey = (0,-1,(G%), if b # 1,
3) E> = ((z5),0,-1), if ¢ # 1,
4) E3 = (-1,(:%),0), ifa # 1,

Because they have negative coordinates, the equilibrium points E;, E,, and E; are irrelevant to the
ensuing dynamics (negative populations are not defined and, consequently, the dynamics must take place
in the positive octant). The equilibrium point Ej relates to a situation in which there is no cell at all. The
fifth equilibrium point changes according to the set of parameters (a, b, c). The following Table 1 gives

the index of saddle points (ISP), and the IMFOSs of three sets selected parameters and different
fractional-orders.

Table 1. The IMFOSs and the index of saddle points (ISP) of the incommensurate fractal-
fractional-order cancer model (1.3) for different fractional-orders and system parameters, and

(ﬂl’ﬁ%ﬁ?)) = (17 1’ 1) .

Cases Paramaters ISP Equilibrium point as IMFOS
a=0.2834 0.450576 0.96
1 b = 0.6825 2 E.=| 0.510738 a=| 0.88 % -0.0327 = -1.34271073
¢ =0.3581 0.65968 0.9
a=0.55 0.582529 0.97
2 b=0.7 2 E..=| 0.608397 a=| 096 ﬁ -0.016217 = -5.091 x 10~
¢ =0.56 0.645491 0.85
a=038 0.493405 0.98
3 b=0.78 2 E.. =] 0563188 a=| 099 %0 -0.003622 = 1.2086 x 1072
c=042 0.674089 0.96
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According to Table 1 the IMFOSs for the equilibrium points E, and E.. are negative numbers, which
implies that E, and E.. are stables. Therefore, for the given derivative orders, the systems in case 1 and
case 2 do not have the necessary condition to exhibit chaos. Numerical simulation results in Figures 1
and 2, respectively, confirm this conclusion. In the third case, Table 1 shows that the IMFOS is
non-negative number, and the equilibrium point E... is a saddle point of index 2. This implies that the
system (1.3) in case 3 in The Table 1 satisfies the necessary condition for exhibiting a 1-scroll attractor.
As shown in Figure 3, numerical simulation results confirm this conclusion.

x(t)
v
0.7 z(t)
0.65
0.6
N
> 0.55 >
=
o5l
0.45
0.4
500 1000 1500 2000 2500 3000 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5
Time X
(a) (b)
0.75 0.75
0.7 0.7
0.65 0.65
N 0.6F N 0.6
0.55 0.55
0.5F — 0.5
0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5
, s
(©) d
0.75
0.7
0.65
N~ 06

0.55

05

0.45
0.7

y 04 035

(e

Figure 1. Numerical simulation for the system in (1.3) of the case 2 as stated in the Table 1
using the GL-NSFDM scheme. (a): Time behaviors of the three state variables: x(¢), y(f) and
z(t). (b)—(d): The corresponding projection in xy; yz and xz planes, respectively. (e):Behavior of
the model in xyz-plane.
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Figure 2. Results of the numerical simulation for the system in (1.3) of the case 2 as stated
in the Table 1 using the GL-NSFDM scheme. (a): Time behaviors of the three state variables:
x(1), y(t) and z(¢). (b)-(d): The corresponding projection in xy; yz and xz planes, respectively.
(e):Behavior of the model in xyz-plane.
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Figure 3. Results of the numerical simulation for the system in (1.3) of the case 3 as stated
in the Table 1 using the GL-NSFDM scheme. (a): Time behaviors of the three state variables:
x(t), y(¢) and z(#). (b)—(d): The corresponding projection in xy;yz and xz planes, respectively.

(e):Behavior of the model (1.3) in xyz-plane.

6. Ulam-Hyers stability of the incommensurate fractal-fractional-order cancer model

Here, we are going to demonstrate the stability of Ulam-Hyers sense of the proposed model. We adopt

the following definitions from [40].

Definition 6.1. Let (X, d;) be a generalized metric space and F : X — X be an operator. Then, the fixed

point equation

Mathematical Biosciences and Engineering
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X =F(X), 6.1)

is said to be generalized Ulam-Hyers stable if there exists an increasing function ¢ : R7 — R, continuous
in Ogn with ¥(0) = 0, such that, for any € := (&1,...,&,) with g; > 0 fori € {1,...,m} and any solution
Y* € X of the inequalities

de(Y",F(Y") <&,

there exists a solution X* of (6.1) such that
dg (X*,Y") < Y(e).

Consider a small perturbation ®@ := (®, ©,, ®3) € C([0, T]) X C([0, T']) X C([0, T']) such that ®(0Og3) = Ogs.
Let

o |(D,(t)| <eg, for & > 0i=1,.3.

OCD(l3ﬁ3Z = cz(] — x)(l + y) - ZZX + q)3(t)'

Lemma 6.2. The solution of the perturbed model

§Dx = BiP = (ax(1 = y)(1 +2) = Py + ©1(1), x(0) = xo,
§D™y = B~ (by(1 = (1 + %) = Y2+ (1)), (0) = yo, (6.3)
§D™z = Byt (cz(1 = (1 +) = 2+ D30, 2(0) = 20,

fulfills the relation given below

ﬁl Ta+Bi-1

‘ ——H(ay,
x(t) = (x(0) + 25 [ P71t = )M Fi(x, 7, 2)(5)ds) ( ;((1%3)2_1 (an.B)er
W6y = () + £ [ 5571 = 5y Fa(x,y, )(0)ds) ||| < %W(az,m))@ . (6.4)
Z(t) N (Z(O) + r(ﬁtzs) Ot Sﬁ3_1(t - S)a3_1F3(x, Y, Z)(S)dS) G ﬁ3T03+2,33—1
: ~ oy Hes Bs))es

Proof. The solution of (6.3) is given by

ﬁ " ([ _ S)(tl—l

x(t) = xo + F(oil) S | (F1 (x,y,2)(s) + (I)l(s))ds,
B r (t— 5)*2~

Y0 =0+ mos | g 1(onc,y, 2)(s) + Da(s))ds, (6.5)
B ¢ (1 — 5)%"

z2(t) = z0 + r(;) —— (Fg(x, y,2)(s) + (D3(s))ds.
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Then, we have

X

f sﬁl—‘(t—s)“"‘Fl(x,y,zxs)ds)\= sup |xo + b

su x(r
b ‘ © €[0T I'(ay)

1
—|x0 +
[0 T] (“ T(a)

_ ar—1
f ¢ Slsza Fl(x, y,2)(s) + d)l(s))ds

—(x0+r(al)fsﬂ1 (t— )Y 'F(x, y,z)(s)ds)‘

_ (t—s)m!
53%'F(m)f )

<(51 To+hPi=

-V Iay)

Repeating the same procedure to the second and the third equations of the system (6.3), we have

7‘{(@1,,31))81,

Taz+ﬁ2—1
sup [y(r) - (y0+ f 7= 5" Falx, y,z)(S)dS)‘ < (B (an p)es,

1€[0T] [(a») [(a?)
ﬁ3Ta3+,33—1
sup |[z(8) = [zo + 7Nt = )P R(x, y, 2)(5)ds — H(as, &
sup et (0 o )f (1= 97 F3(x,5,2)(5) )\ (P H@sB)e
Hence, the proof is completed. O

Theorem 6.3. If the matrix © (3.3) converges to O3, then (1.3) is generalized Ulam-Hyers stable.

Proof. Let X = (x,y,z) be any solution of the inequality (6.4), and let X* = (x*,y",z") be the unique
solution of (1.3), then

llx — x*le0 = sup
te[0T]

x(t)—(x0 @ 1)f Pt — T (7 Y z)(s)ds)

< sup x(t)—(x0+ f&ﬁl (t— ) F(x, y,z)(s)ds)
t€[0T] F( )
+ sup (x0+ b f R s)“]_lFl(x,y,z)(s)ds)
te[0T] F( )
—(xo e 1)f SN = )T E (a7, Y z)(s)ds)
a1+ﬂ1 T01+ﬂ1
< (ﬁ‘rﬁwm,ﬁl))s] + (ﬁ‘FTw(al,ﬁl))(an [+ 79y = ylle

+ (1 + Tl = Zlleo | + 271 T2llx = Xl + Ty = 3 llo).
By the same manner, we find

18 Taz+/32—1 ﬁ T(Yz*'ﬁz—l *
ZF(TZ)W(az,ﬁz))SQ + (ZF(TW(M,,BO)(I?‘Y’Z[(I + Tz = 2o

+ (L4 Tllx = x| + 272750y = ¥l + T3z = 2l ).

Iy = Il < (

and
T+B3-1 T+B3-1
Iz =2l < (%W(as,ﬁs))@ + (%wmg,m))(m[(l + T)llx = Xl

F L+ Ty =l | + 27371l = 2l + T2 = ),
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Consequently, one can write

Ta1+,6’1—]
(ﬁerl)W(al,,Bl))é‘l
i 32T02+,32—1 .
IX = Xlle <| (S H(@B2)e: [+ 01X = X'l
Ta3+,33—1
(%7{(%,33))83

Since the matrix @ converges to zero, then we have

ﬁle+B|—1
L H(ay,
) (@1,8)e1
. 3 T02+ 2~
IX =Xl < (1= 0" | (B ——Haa o)) |
ﬁ3T03+,33—1
2 H(as,
Ty Hes B))es
Hence, the solution of the proposed problem is generalized Ulam-Hyers stable. m|

Example 6.4. Consider the following fractal-fractional-order cancer model

SO0y = 0.38x(1 — y)(1 +2) — x%y, x(0) = 0.4,
(()?DO.99,O.8y =0.78y(1 —2)(1 + x) —y*z,  y(0) = 0.5, (6.6)
§DO96097 = 0.42z(1 — x)(1 +y) — 2%x,  z(0) = 0.5.

Note that for 8 = (1,1, 1) the system (6.6) was stated in the third case in Table 1 and exhibit a chaotic
behavior, as it have shown in Figure 3. By taking 7" = (1,1, 1) we find

ﬁlT(11+ﬁ1—l
(F——H (1. B))laT (1 = To)(1 + T3) = T375| 14017
['(ay)
Ta2+,32—1
T > ('BZFT?-{(Q/Z,,BZ))IZ?'Y}G —T3)(1 + 1) - 7273 | = 107 x| 3.1789 . (6.7)
2
T(y3+,63—1
(B rt(as, g)es(1 - 1)1 + 1) - 127 14322
['(as)
Furthermore,

6.3577 5.5948 2.4159
0 =107 x| 49590 63577 8.1379 |. (6.8)

5.8491 2.6702 6.3577

Then, the eigenvalues of matrix @ are as follows:

0.016069
A =10.0015018 + 0.002671i
0.0015018 — 0.0026711,

hence, the spectral radius of @ is p = 1.6069 x 1072 < 1. As a result, the system (6.6) has a unique solution
that is generalized Ulam-Hyers stable according Theorem 3.2 and Theorem 6.3. Figure 4 illustrates the
conclusion.
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Figure 4. Numerical simulation for the system in (1.3) of the case 3 as stated in the Table 1
using the GL-NSFDM scheme. (a): Time behaviors of the three state variables: x(¢), y(f) and
z(t). (b)—(d): The corresponding projection in xy; yz and xz planes, respectively. (e):Behavior of
the model in xyz-plane.

7. Discussion

This section is devoted to numerical simulations of the proposed model under investigation in the
present paper. As described in Table 1 and Example 6.4, the approximate solutions of the fractal-fractional
system (1.3) are given in Figures 1-4 with varying values of fractional-order parameters (@, a,, @3), the
fractal dimension (84, 5,, ;) and the set parameters (a, b, c). We briefly presented the simulation of this
model using the GL-NSFDM numerical method as given in (4.3). The time interval is [0,3000] and
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¢(t) = exp(t) — 1. MATLAB computer language was used to accomplish all computations in this work.

By maintaining the fractal dimension (8, 5>, 53) = (1,1,1), the phase plots in Figures 1 and 2
presented above indicated that the system exhibits a non-chaotic behavior, counter to Figure 3, where the
phase portrait shows a chaotic behavior. By varying the fractal dimension of the previous case to
B = (0.88,0.8,0.9), the fractal-fractional cancer model widths a stable behavior in Figure 4. This
demonstrates how the fractal dimension -which is absent in both the fractional and classical models- can
turn the behavior of the solutions from chaotic into a stable state and vice versa. By returning to the
proposed model, we observe that the parameters (a, b, c) are constants. However, from the biological
point of view, these parameters may show a randomness behavior; that is a limitation of our study. In
future research, we are focusing on replacing these parameters with Ornstein-Uhlenbeck process to make
the model more realistic.

8. Conclusions

A mathematical study of the growth of tumor has been discussed in this paper. The contribution is based
on describing the cancer process by a novel fractal-fractional order model. This is inspired by population
dynamics and contains terms that refer to tumor cells, effector immune cells and healthy tissue cells. The
study in [16] is a special case from the present paper. Perov’s fixed point theorem showed the existence
and the uniqueness result. Besides, the numerical simulations were received with the Griinwald-Letnikovv
nonstandard finite difference scheme. The dynamics of the proposed Incommensurate fractal-fractional
cancer model were analyzed by varying the value of the fractional order, the fractal dimension and the
values of the system parameters.The obtained results are also compatible with theoretical analysis. The
proposed model could describe a wide range of biologically observed tumor states, including stable and
chaotic states.
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