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Abstract: This work examines a stochastic viral infection model with a general distributed delay.
We transform the model with weak kernel case into an equivalent system through the linear chain
technique. First, we establish that a global positive solution to the stochastic system exists and
is unique. We establish the existence of a stationary distribution of a positive solution under the
stochastic condition Rs > 0, also referred to as a stationary solution, by building appropriate Lyapunov
functions. Finally, numerical simulation is proved to verify our analytical result and reveals the impact
of stochastic perturbations on disease transmission.
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1. Introduction

In the past few decades, there has been a lot of interest in mathematical models of viral dynamics
and epidemic dynamics. Since viruses can directly reproduce inside of their hosts, a suitable model
can shed light on the dynamics of the viral load population in vivo. In fact, by attacking infected
cells, cytotoxic T lymphocytes (CTLs) play a crucial part in antiviral defense in the majority of virus
infections. As a result, recent years have seen an enormous quantity of research into the population
dynamics of viral infection with CTL response (see [1–4]). On the other hand, Bartholdy et al. [3] and
Wodarz et al. [4] found that the turnover of free virus is much faster than that of infected cells, which
allowed them to make a quasi-steady-state assumption, that is, the amount of free virus is simply
proportional to the number of infected cells. In addition, the most basic models only consider the
source of uninfected cells but ignore proliferation of the target cells. Therefore, a reasonable model
for the population dynamics of target cells should take logistic proliferation term into consideration.
Furthermore, in many biological models, time delay cannot be disregarded. A length of time τ may be
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required for antigenic stimulation to produce CTLs, and the CTL response at time t may rely on the
antigen population at time t − τ. Xie et al. [4] present a model of delayed viral infection with immune
response 

x′(t) = λ − dx(x) − βx(t)y(t),
y′(t) = βx(t)y(t) − ay(t) − py(t)z(t),
z′(t) = cy(t − τ)z(t − τ) − bz(t),

(1.1)

where x(t), y(t) and z(t) represent the number of susceptible host cells, viral population and CTLs,
respectively. At a rate of λ, susceptible host cells are generated, die at a rate of dx and become infected
by the virus at a rate of βxy. According to the lytic effector mechanisms of the CTL response, infected
cells die at a rate of ay and are killed by the CTL response at a rate of pyz. The CTL response occurs
proportionally to the number of infected cells at a given time cy(t − z)(t − z) and exponentially decays
according to its level of activity bz. Additionally, the CTL response time delay is τ.

The dynamical behavior of infectious diseases model with distributed delay has been studied by
many researchers (see [5−8]). Similar to [5], in this paper, we will mainly consider the following viral
infection model with general distribution delay

dx
dt
= λ − dx(t) − βx(t)y(t),

dy
dt
= βx(t)y(t) − ay(t) − py(t)z(t),

dz
dt
= c
∫ t

−∞

F(t − τ)y(τ)z(τ)dτ − bz(t).

The delay kernel F : [0,∞)→ [0,∞) takes the form F(s) = snαn+1e−αs

n! for constant α > 0 and integer
n ≥ 0. The kernel with n = 0, i.e., F(s) = α e−αs is called the weak kernel which is the case to be
considered in this paper.

However, in the real world, many unavoidable factors will affect the viral infection model. As a
result, some authors added white noise to deterministic systems to demonstrate how environmental
noise affects infectious disease population dynamics (see [9–12]). Linear perturbation, which is the
simplest and most common assumption to introduce stochastic noise into deterministic models, is
extensively used for species interactions and disease transmission. Here, we establish the stochastic
infection model with distributed delay by taking into consideration the two factors mentioned above.

dx(t) =
[
λ − dx(t) − βx(t)y(t)

]
dt + σ1x(t)dB1(t),

dy(t) =
[
βx(t)y(t) − ay(t) − py(t)z(t)

]
dt + σ2y(t)dB2(t),

dz(t) =
[
c
∫ t

−∞

F(t − τ)y(τ)z(τ)dτ − bz(t)
]
dt + σ3z(t)dB3(t).

(1.2)

In our literature, we will consider weight function is weak kernel form. Let

w(t) =
∫ t

−∞

αe−α(t−τ)y(τ)z(τ)dτ.

Based on the linear chain technique, the equations for system (1.2) are transformed as follows
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

dx(t) =
[
λ − dx(t) − βx(t)y(t)

]
d(t) + σ1x(t)dB1(t),

dy(t) =
[
βx(t)y(t) − ay(t) − py(t)z(t)

]
dt + σ2y(t)dB2(t),

dz(t) =
[
cw(t) − bz(t)

]
dt + σ3z(t)dB3(t),

dw(t) =
[
αy(t)z(t) − αw(t)

]
dt.

(1.3)

For the purpose of later analysis and comparison, we need to introduce the corresponding deterministic
system of model (1.3), namely,

dx(t) =
[
λ − dx(t) − βx(t)y(t)

]
dt,

dy(t) =
[
βx(t)y(t) − ay(t) − py(t)z(t)

]
dt,

dz(t) =
[
cw(t) − bz(t)

]
dt,

dw(t) =
[
αy(t)z(t) − αw(t)

]
dt.

(1.4)

Using the similar method of Ma [13], the basic reproduction of system (1.4) can be expressed as
R0 = λβ/ad. If R0 ≤ 1, system (1.4) has an infection-free equilibrium E0 = (λd , 0, 0, 0) and is globally
asymptotically stable. If 1 < R0 ≤ 1 + bβ/cd, in addition to the infection-free equilibrium E0, then
system (1.4) has another unique equilibrium E1 = (x̄, ȳ, z̄, w̄) = ( a

β
, βλ−ad

aβ , 0, 0) and is globally
asymptotically stable. If R0 > 1 + bβ

cd , in addition E0 and E1, then system (1.4) still has another unique

infected equilibrium E2 = (x+, y+, z+, w+) =
(

cλ
cd+bβ ,

b
c ,

cβλ−acd−abβ
cdp+bpβ ,

b(cβλ−acd−abβ)
c(cdp+bpβ)

)
.

We shall focus on the existence and uniqueness of a stable distribution of the positive solutions to
model (1.3) in this paper. The stability of positive equilibrium state plays a key role in the study of the
dynamical behavior of infectious disease systems. Compared with model (1.4), stochastic one (1.3) has
no positive equilibrium to investigate its stability. Since stationary distribution means weak stability in
stochastic sense, we focus on the existence of stationary distribution for model (1.3). The main effort is
to construct the suitable Lyapunov function. As far as we comprehend, it is very challenging to create
the proper Lyapunov function for system (1.3). This encourages us to work in this area. The remainder
of this essay is structured as follows. The existence and uniqueness of a global beneficial solution to
the system (1.3) are demonstrated in Section 2. In Section 3, several suitable Lyapunov functions are
constructed to illustrate that the global solution of system (1.3) is stationary.

2. Existence and uniqueness of a global positive solution

Theorem 2.1: For any initial value (x(0), y(0), z(0),w(0)) ∈ R4
+, there is a unique solution

(x(t), y(t), z(t),w(t)) of system (1.3) on t ≥ 0 and the solution will remain in R4
+ with probability 1, i.e.,

(x(t), y(t), z(t),w(t)) ∈ R4
+ for t ≥ 0 almost surely (a.s.).

Proof. In light of the similarity with [14], the beginning of the proof is omitted. We only present
the key stochastic Lyapunov function.
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Define a C2-function Q(x, y, z,w) by

Q(x, y, z,w) = x − c1 − c1 ln
x
c1
+ y − c2 − c2 ln

y
c2
+ z − 1 − ln z + c3w − 1 − ln c3w.

where c1, c2, c3 are positive constant to be determined later. The nonnegativity of this function can be
seen from

u − 1 − ln u ≥ 0 for any u > 0.

Using Itô’s formula, we get

dQ = LQdt + σ1(x − c1)dB1 + σ2(y − c2)dB2 + σ3(z − 1)dB3,

where

LQ = (1 −
c1

x
)
(
λ − dx − βxy

)
+ (1 −

c2

y
)
(
βxy − ay − pyz

)
+ (1 −

1
z

)
(
cw − bz

)
+ (c3 −

1
w

)
(
αyz − αw

)
+

1
2

c1σ
2
1 +

1
2

c2σ
2
2 +

1
2
σ2

3

= λ − dx − βxy + c1(−
λ

x
+ d + βy +

1
2
σ2

1) + βxy − ay − pyz + c2(−βx + a + pz +
1
2
σ2

2)

+ cw − bz −
cw
z
+ b +

1
2
σ2

3 + c3(αyz − αw) −
αyz
w
+ α

≤ λ + c1d + c1
1
2
σ2

1 + c2a +
1
2

c2σ
2
2 + b +

1
2
σ2

3 + α + (c1β − a)y + (c2 p − b)z + (c3α − p)yz

+ (c − c3α)w.

Let c1 =
a
β
, c2 =

b
p , 0 < c3 ≤ min{ p

α
, c
α
} such that c1β − a = 0, c2 p − b = 0, c3α − p ≤ 0, c − c3α ≤ 0.

Then,

LQ ≤ λ + c1d + c1
1
2
σ2

1 + c2a +
1
2

c2σ
2
2 + b +

1
2
σ2

3 + α := k0.

Obviously, k0 is a positive constant which is independent of x, y, z and w. Hence, we omit the rest
of the proof of Theorem 2.1 since it is mostly similar to Wang [14]. This completes the proof.

3. Existence of stationary distribution

We need the following lemma to prove our main result. Consider the integral equation:

dX(t) = X(t0) +
∫ t

t0
b(s, X(s))ds +

m∑
n=1

∫ t

t0
σn(s, X(s))dβn(s). (3.1)

Lemma 3.1 ([15]). Suppose that the coefficients of (3.1) are independent of t and satisfy the
following conditions for some constant B:

|b(s, x) − b(s, y)| +
m∑

n=1

|σn(s, x) − σn(s, y)| ≤ B|x − y|,

|b(s, x)| +
m∑

n=1

|σn(s, x)| ≤ B(1 + |x|),

(3.2)
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in Dρ ∈ Rd
+ for every ρ > 0, and that there exists a nonnegative C2-function V(x) in Rd

+ such that

LV ≤ −1 outside some compact set. (3.3)

Then, system (3.1) has a solution, which is a stationary Markov process.
Here, we present a stationary distribution theorem. Define

Rs :=
Λ

2
−

8c2r2

λ(d − σ2
1)(r − σ2

2)2

[(
1 +

(d − σ2
1)(r − σ2

2)
2r2

)
σ2

1 x̄ +
ȳ
2

(a
β
+

(d − σ2
1)(r − σ2

2)ȳ
r2

)
σ2

2

]
,

where Λ = cȳ − (b + σ
2
3

2 ) > 0, r = d ∧ a, and we denote a ∧ b = min{a, b}, a ∨ b = max{a, b}.

Theorem 3.1. Assume Rs > 0, d − σ2
1 > 0 and r − σ2

2 > 0. Then there exists a positive solution
(x(t), y(t), z(t),w(t)) of system (1.3) which is a stationary Markov process.

Proof. We can substitute the global existence of the solutions of model (1.3) for condition (3.2)
in Lemma 3.1, based on Remark 5 of Xu et al. [16]. We have established that system (1.3) has a
global solution by Theorem 2.1. Thus condition (3.2) is satisfied. We simply need to confirm that
condition (3.3) holds. This means that for any (x, y, z,w) ∈ R4

+\Dϵ , LV(x, y, z,w) ≤ −1, we only need
to construct a nonnegative C2-function V and a closed set Dϵ . As a convenience, we define

V1(x, y, z,w) = − ln z −
e1

α
ln w + l

[ (x − x)2

2
+

a
β

(
y − y − y ln

y
ȳ

)
+

(d − σ2
1)(r − σ2

2)
2r2

(x − x̄ + y − ȳ)2

2

+
apȳ
bβ

z +
apȳc
αbβ

w
]

:= Q1 + l
[
U1 +

a
β

U2 +
(d − σ2

1)(r − σ2
2)

2r2 U3 + Q3

]
:= Q1 + l(Q2 + Q3),

where e1 is a positive constant to be determined later, l = 8r2c2

(d−σ2
1)(r−σ2

2)Λ , U1 =
(x−x̄)2

2 , U2 = y − ȳ − ȳ ln y
ȳ ,

U3 =
(x−x̄+y−ȳ)2

2 , Q1 = − ln z − e1
α

ln w, Q2 = U1 +
a
β
U2 +

(d−σ2
1)(r−σ2

2)
2r2 U3, Q3 =

apȳ
bβ z + apȳ c

αβb w.
Since λ − dx̄ = βx̄ y = aȳ, we apply Itô’s formula to obtain

LU1 = (x − x̄)
[
λ − dx − βxy

]
+

1
2
σ2

1x2

= (x − x̄)
[
− d(x − x̄) + β(x̄ ȳ − xy)

]
+

1
2
σ2

1(x − x + x̄)2

= (x − x̄)
[
− d(x − x̄) + β

(
x̄ ȳ − x̄y + x̄y − xy

)]
+

1
2
σ2

1(x − x̄ + x̄)2

≤ −d(x − x̄)2 − β(x − x̄)2y − β(x − x̄)(y − ȳ)x̄ + σ2
1 x̄2 + σ2

1(x − x̄)2

≤ −d(x − x̄)2 − a(x − x̄)(y − ȳ) + σ2
1(x − x̄)2 + σ2

1 x̄2

= −(d − σ2
1)(x − x̄)2 − a(x − x̄)(y − ȳ) + σ2

1 x̄2,

(3.4)
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LU2 = (1 −
ȳ
y

)(β xy − ay − pyz) +
1
2

ȳσ2
2

= (y − ȳ)(βx − a − pz) +
1
2
σ2

2ȳ

= (y − ȳ)(βx − βx̄ + βx̄ − a − pz) +
1
2
σ2

2ȳ

= (y − y)
(
β(x − x̄) − pz

)
+

1
2
σ2

2ȳ

= β(x − x̄)(y − y) − p(y − y)z +
1
2
σ2

2ȳ

≤ β(x − x̄)(y − ȳ) + pȳz +
ȳ
2
σ2

2,

(3.5)

and

LU3 =

(
x − x̄ + y − ȳ

)(
λ − dx − ay − pyz

)
+

1
2
σ2

1x2 +
1
2
σ2

2y2

=

(
x − x̄ + y − ȳ

)(
λ − dx + dx̄ − dx̄ − ay − pyz

)
+

1
2
σ2

1x2 +
1
2
σ2

2y2

=

(
x − x̄ + y − ȳ

)(
− d(x − x̄) − a(y − ȳ) − pyz

)
+

1
2
σ2

1

(
x − x̄ + x̄

)2
+
σ2

2

2

(
y − ȳ + ȳ

)2
≤ −

(
d ∧ a

)(
x − x̄ + y − ȳ

)2
− p
(
x − x̄ + y − ȳ

)
yz + σ2

1

(
x − x̄

)2
+ σ2

1 x̄2 + σ2
2(y − ȳ)2 + σ2

2ȳ2

= −

(
d ∧ a

)(
x − x̄

)2
−

(
d ∧ a

)(
y − ȳ
)2
− 2
(
d ∧ a

)(
x − x̄

)(
y − ȳ
)
+ p
(
x̄ + ȳ
)
yz + σ2

1

(
x − x̄

)2
+ σ2

1 x̄2 + σ2
2

(
y − ȳ
)2
+ σ2

2ȳ2

= −(r − σ2
1)
(
x − x̄

)2
− (r − σ2

2)
(
y − ȳ
)2
− 2r
(
x − x̄

)(
y − ȳ
)
+

p(a2 + βλ − ad)
aβ

yz

+ σ2
1 x̄2 + σ2

2ȳ2

≤ −(r − σ2
2)
(
y − ȳ
)2
+

(r − σ2
2)

2

(
y − ȳ
)2
+

2r2

r − σ2
2

(
x − x̄

)2
+

p(a2 + βλ − ad)
aβ

yz

+ σ2
1 x̄2 + σ2

2ȳ2

= −
(r − σ2

2)
2

(
y − ȳ
)2
+

2r2

r − σ2
2

(
x − x̄

)2
+

p(a2 + βλ − ad)
aβ

yz + σ2
1 x̄2 + σ2

2ȳ2,

(3.6)

where r = d ∧ a, we also use the basic inequality (a+ b)2 ≤ 2(a2 + b2) and Young inequality. It follows
from (3.4)–(3.6) that

LQ2 ≤ −
(d − σ2

1)(r − σ2
2)

4r2 (y − ȳ)2 +
(d − σ2

1)(r − σ2
2)

2r2

p(a2 + βλ − ad)
aβ

yz +
ap ȳ
β

z

+

(
1 +

(d − σ2
1)(r − σ2

2)
2r2

)
σ2

1 x̄2 +

(a
β
+

(d − σ2
1)(r − σ2

2)ȳ
r2

)σ2
2ȳ
2
,
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Making use of Itô’s formula to Q3 yields

LQ3 =
apȳ
bβ

(cw − bz) +
apȳ c
αbβ

(αyz − αw)

= −
apȳ
β

z +
apȳc
bβ

yz.

Therefore,

L(Q2 + Q3) ≤ −
(d − σ2

1)(r − σ2
2)

4r2 (y − ȳ)2 +
p
β

(acȳ
b
+

(d − σ2
1)(r − σ2

2)(a2 + βλ − ad)
2r2a

)
yz

+

(
1 +

(d − σ2
1)(r − σ2

2)
2r2

)
σ2

1 x̄2 +

(a
β
+

(d − σ2
1)(r − σ2

2)ȳ
r2

)σ2
2ȳ
2
.

(3.7)

In addition,

LQ1 = −
cw
z
−

e1yz
w
+ e1 + b +

1
2
σ2

3

≤ −2
√

y c e1 + e1 + b +
1
2
σ2

3

= −2
√

ȳ c e1 + e1 + b +
1
2
σ2

3 − 2
√

c e1(
√

y −
√

ȳ).

Letting e1 = c · ȳ , by virtue of Young inequality, one gets

LQ1 ≤ −cȳ + b +
1
2
σ2

3 +
2c
√

ȳ |y − ȳ|
√

y +
√

ȳ

≤ −Λ + 2c|y − ȳ|

≤ −
Λ

2
+

2c2

Λ
(y − ȳ)2.

Together with (3.7), this results in

LV1 ≤ −Rs +

( 2r2acȳ
b(d − σ2

1)(r − σ2
2)
+

a2 + βλ − ad
a

) 4c2 p
(r − σ2

2)λβ
yz

= −Rs + qyz,
(3.8)

where

q =
( 2r2acȳ
b(d − σ2

1)(r − σ2
2)
+

a2 + βλ − ad
a

) 4c2 p
(r − σ2

2)λβ
.

Define
V2(x) = − ln x, V3(w) = − ln w.

Then, we obtain

LV2 = −
λ

x
+ d + βy +

1
2
σ2

1,

and
LV3 = −

yz
w
+ α. (3.9)
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Define
V4(x, y, z,w) =

1
θ + 2

(x + y +
p

2c
z +

p
α

w)θ+2,

where θ is a constant satisfying 0 < θ < min{ d−
σ2

1
2

d+
σ2

1
2

,
a−
σ2

2
2

a+
σ2

2
2

,
b−
σ2

3
2

b+
σ2

3
2

}. Then,

LV4 =

(
x + y +

p
2c

z +
p
α

w
)θ+1(
λ − dx − ay −

pb
2c

z −
p
2

w
)

LV4 =

(
x + y +

p
2c

z +
p
α

w
)θ+1(
λ − dx − ay −

pb
2c

z −
p
2

w
)

+
θ + 1

2

(
x + y +

p
2c

z +
p
α

w
)θ(
σ2

1x2 + σ2
2y2 +

( p
2c
)2
σ2

3z2
)

≤ λ
(
x + y +

p
2c

z +
p
α

w
)θ+1

− dxθ+2 − ayθ+2 − b
( p
2c
)θ+2zθ+2 −

1
2

pθ+2

αθ+1 wθ+2

+
θ + 1

2

(
x + y +

p
2c

z +
p
α

w
)θ(
σ2

1x2 + σ2
2y2 +

( p
2c
)2
σ2

3z2
)

≤ F1 − dθxθ+2 − aθyθ+2 − bθ
( p
2c
)θ+2 zθ+2 −

1
4

pθ+2

αθ+1 wθ+2,

(3.10)

in which

F1 = sup
(x,y,z,w)∈R4

+

{
λ
(
x + y +

p
2c

z +
p
α

w
)θ+1

− d(1 − θ)xθ+2 − a(1 − θ)yθ+2 − b(1 − θ)
( p
2c
)θ+2zθ+2

−
1
4

pθ+2

αθ+1 wθ+2 +
θ + 1

2

(
x + y +

p
2c

z +
p
α

w
)θ(
σ2

1x2 + σ2
2y2 +

( p
2c
)2
σ2

3z2
)}
< ∞.

Construct
G(x, y, z,w) = MV1(x, y, z,w) + V2(x) + V3(w) + V4(x, y, z,w),

where M > 0, satisfies
−MRs + F2 ≤ −2,

and

F2 = sup
y∈R+

{
βy −

aθ
2

yθ+2 + d + α +
1
2
σ2

1 + F1

}
. (3.11)

Note that G is a continuous function and lim inf
n→∞,(x,y,z,w)∈R4

+\Qn

G(x, y, z,w) = +∞, where Qn = ( 1
n , n) ×

( 1
n , n) × ( 1

n , n) × (1
n , n). Thus, G(x, y, z,w) has a minimum point (x0, y0, z0,w0) in the interior of R4

+.
Define a nonnegative C2 -function by

V(x, y, z,w) = G(x, y, z,w) −G(x0, y0, z0,w0)

In view of (3.8)–(3.10) and (3.11), we get

LV ≤ −MRs + M q y z −
λ

x
−

yz
w
− dθxθ+2 −

aθ
2

yθ+2 − bθ
( p
2c
)θ+2zθ+2 −

1
4

pθ+2

αθ+1 wθ+2 + F2, (3.12)
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One can easily see from (3.12) that, if y→ 0+ or z→ 0+, then

LV ≤ −MRs + F2 ≤ −2;

if x→ 0+ or w→ 0+ or x→ +∞ or y→ +∞ or z→ +∞ or w→ +∞, then

LV ≤ −∞.

In other words,
LV ≤ −1 for any (x, y, z,w) ∈ R4

+\Dϵ ,

where Dϵ = {(x, y, z,w) ∈ R4
+ : ϵ ≤ x ≤ 1

ϵ
, ϵ ≤ y < 1

ϵ
, ϵ ≤ z ≤ 1

ϵ
, ϵ3 ≤ w ≤ 1

ϵ3
} and ϵ is a sufficiently

small constant. The proof is completed.
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Figure 1. The solution(x(t), y(t), z(t)) in system (1.4) and stochastic system (1.3) with the
white noise σ1 = σ2 = σ3 = 0.0001 are numerically simulated in the left-hand column. The
frequency histograms for x, y and z in system (1.3) are displayed in the right-hand column.

Remark 3.1. In the proof of above theorem, the construction of V1 is one of the difficulties. The
term Q3 in V1 is is constructed to eliminate ap ȳ

β
z in LQ2. The item l(Q2 + Q3) is used to eliminate

2c2

Λ
(y − ȳ)2 in LQ1.
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Remark 3.2 . From the expression of Rs, we can see that if there is no white noise, Rs > 0 is
equivalent to R1 > 1 + bβ

cd .

4. Numerical simulations

Using the well-known numerical method of Milstein [17] , we get the discretization equation for
system (1.3) 

xk+1 = xk +

(
λ − dxk − βxkyk

)
△t + σ1xk

√
△tη1,k +

σ2
1xk

2
(η2

1,k − 1)△t,

yk+1 = yk +

(
βxkyk − ayk − pykzk

)
△t + σ2yk

√
△tη2,k +

σ2
2yk

2
(η2

2,k − 1)△t,

zk+1 = zk +

(
cwk − bzk

)
△t + σ3zk

√
△tη3,k +

σ2
3zk

2
(η2

3,k − 1)△t,

wk+1 = wk +

(
αykzk − αwk

)
△t.

where the time increment △t > 0 and ηi,k (i = 1, 2, 3) are three independent Gaussian random variables
which follow the distribution N(0, 1), equivalently, they come from the three independent from each
other components of a three dimensional Wiener process with zero mean and variance △t, for k =
1, 2, · · · . According to Xie et al. [4], the corresponding biological parameters of system (1.3) are
assumed: λ = 255, α = 1, d = 0.1, β = 0.002, a = 5, p = 0.1, c = 0.2, b = 0.1, r = d ∧ a = 0.1, σ1 =

σ2 = σ3 = 0.0001. The initial condition is (x0, y0, z0,w0) = (2600, 0.5, 0.5, 0.25). Then, we calculate
that Rs = 0.05 > 0. Based on Theorems 2.1 and 3.1, we can conclude that system (1.3) admits a
global positive stationary solution on R4

+, see the left-hand figures of Figure 1 and the corresponding
histograms of each population can be seen in right-hand column.

5. Conclusions

In this paper, we consider a special kernel function F(t) = αe−αt to investigate the continuous delay
effect on the population of stochastic viral infection systems. We derived the sufficient conditions for
the existence of stationary distribution by constructing a suitable stochastic Lyapunov function. In
addition, we only consider the effect of white noise on the dynamics of the viral infection system with
distributed delays. It is interesting to consider the effect of Lévy jumps. Some researchers [18,19]
studied the persistence and extinction of the stochastic systems with Lévy jumps. Furthermore, it
should be noted that the system may be analytically solved by using the Lie algebra method [20,21].
In our further research, we will study the existence of a unique stationary distribution of the stochastic
systems with distributed delay and Lévy jumps. Also, it may be possible to solve the stochastic model
via the Lie algebra method.
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