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Abstract: In this paper, we demonstrate emergent dynamics of various Cucker–Smale type
models, especially standard Cucker–Smale (CS), thermodynamic Cucker–Smale (TCS), and relativistic
Cucker–Smale (RCS) with a fractional derivative in time variable. For this, we adopt the Caputo
fractional derivative as a widely used standard fractional derivative. We first introduce basic concepts
and previous properties based on fractional calculus to explain its unusual aspects compared to standard
calculus. Thereafter, for each proposed fractional model, we provide several sufficient frameworks
for the asymptotic flocking of the proposed systems. Unlike the flocking dynamics which occurs
exponentially fast in the original models, we focus on the flocking dynamics that occur slowly at an
algebraic rate in the fractional systems.
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1. Introduction

Collective behaviors of interacting many-body systems are frequently observed in nature and human
society, for example, synchronization of fireflies and pacemaker cells [1–3], aggregation of bacteria [4],
flocking of birds [5], swarming of fish [6, 7], etc. To introduce these subjects, we refer to [8–14].
Among them, we are primarily interested in asymptotic “flocking” (see Definition 3.1, 4.1 and 5.1
for mathematical description), in which each agent uses limited environmental information and simple
laws and its velocity converges to a common value. Since the joint work [15] on the flocking model
for birds proposed by Vicsek et al., several mathematical models describing collective motion have
been lively studied in community. After a seminal paper [5], mathematicians and physicists have
focused on the Cucker–Smale (CS) model and its variants based on Newtonian second-order model
for position-velocity. The time-evolutionary behavior of CS particles are governed by the following
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Cauchy problem: 

dxi

dt
= vi, t > 0, i ∈ [N] := {1, · · · ,N},

dvi

dt
=
κ

N

N∑
j=1

ψ(∥xi − x j∥)
(
v j − vi

)
,

(xi(0), vi(0)) ∈ Rd × Rd,

(1.1)

where (xi, vi) is position-velocity pair of i-th particle, N is the number of particles, κ is a nonnegative
coupling strength, ∥ · ∥ denotes the standard l2-norm, and ψ : R+ := [0,∞) −→ R+ satisfies the
following assumptions for the global well-posedness of (1.1):

0 ≤ ψ(r) ≤ ψ(0) = 1, (ψ(r1) − ψ(r2))(r1 − r2) ≤ 0, ψ(·) ∈ C0,1
loc(R+;R+).

To date, lots of studies on the CS model (1.1) and its variants have been conducted, to name a few,
the mean-field limit [16–18], kinetic model [19, 20], hydrodynamic descriptions [21–23], particle
analysis [19], time-delay effect [24], stochastic analysis [25], bi-cluster flocking [26], unit-speed
constraint [27] and collision avoidance [28]. For the survey paper, we refer to [9]. Herein, we note
that most frameworks for the CS model have proceeded via the Markovian approach. However, the
behaviors of agents (human, animal, insects, etc) in ecosystem tend to be influenced by memories and
past experiences. Fractional calculus can be a nice tool to mathematically describe this memory
effect, and is being studied very actively to this day (refer to [29]). In addition, many models
concerning fractional-order derivative can be applied in biology, chemistry, microbiology,
electrochemistry, viscoelasticity, medical science and diffusion (see [30]). Therefore, it is natural to
consider the CS-type flocking systems in non-Markovian sense under the interplay of memory effect.
For this, we propose the following fractional CS system by changing usual time-derivative to the
Caputo fractional derivative with κ = 1:

Dc
αxi = vi, t > 0, i ∈ [N],

Dc
αvi =

1
N

N∑
j=1

ψ(∥xi − x j∥)
(
v j − vi

)
,

(xi(0), vi(0)) ∈ Rd × Rd,

(1.2)

where Dc
α is the Caputo fractional derivative of order α ∈ (0, 1) (See Definition 2.1). Unlike the

standard CS model (1.1), which is the case of α = 1 in (1.2), there are very few works on (1.2), to
name a few, the discrete model analysis for (1.2) using the linearization method [31, 32], the
Riemann-Liouville fractional derivative under constant communication weight based on optimal
control problem [33], the Caputo derivative under general communication weight through optimal
consensus control problem approach [34, 35] and flocking estimate under general communication
weight applying the iterative method [36]. In this paper, we adopt the iterative method for the integral
form of the fractional system (1.2), used in [36]. One of the difficulties in analysis is that the proposed
fractional system is non-autonomous. However, using integral form makes it possible to analyze the
model. We refer to [37, 38] for readers interested in the method employing an integral form. In
addition, it is worth to mention that after deriving the flocking estimate of (1.2) through the proposed
method, by taking α = 1, one can obtain the flocking estimates of the standard CS model (1.1)
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(see [9]). Furthermore, we will present more improved sufficient frameworks than [36] for the
flocking dynamics of (1.2) on general communication weights. For the detailed and rigorous
descriptions, see Section 3.

To set up the second stage, we notice that the aforementioned model (1.2) was conducted without
considering temperature field. In order to describe more realistic flocking dynamics, the authors of [39]
extended the standard CS model (1.1) to a thermodynamic Cucker–Smale (TCS), which is derived
from the system of gas mixtures using rational methods and reductions. In other words, they proposed
the TCS model to deal with the collective behaviors of agents with a time varying internal variable
by generalizing (1.1). Since then, the authors of a follow-up paper [40] reduced the TCS model to
derive the approximated TCS model for position–velocity–temperature under the assumption that the
diffusion velocities are sufficiently small. The approximated TCS model is given by the following
Cauchy problem in terms of (xi, vi,Ti):

dxi

dt
= vi, t > 0, i ∈ [N],

dvi

dt
=
κ1

N

N∑
j=1

ϕ(∥xi − x j∥)
(

v j

T j
−

vi

Ti

)
,

dTi

dt
=
κ2

N

N∑
j=1

ζ(∥xi − x j∥)
(

1
Ti
−

1
T j

)
,

(xi(0), vi(0),Ti(0)) ∈ Rd × Rd × (R+ − {0}),

(1.3)

where κ1 and κ2 are nonnegative coupling strengths. Here, ϕ, ζ : [0,∞) → R+ are communication
weights which are nonnegative, uniformly bounded, locally Lipschitz continuous and monotonically
decreasing, equivalently,0 ≤ ϕ(r) ≤ ϕ(0) = 1, (ϕ(r1) − ϕ(r2))(r1 − r2) ≤ 0, ϕ(·) ∈ C0,1

loc(R+;R+),

0 ≤ ζ(r) ≤ ζ(0) = 1, (ζ(r1) − ζ(r2))(r1 − r2) ≤ 0, ζ(·) ∈ C0,1
loc(R+;R+).

We introduce various literature concerning the flocking dynamics of (1.3) and its variants, to name
a few, derivation of model [39], asymptotic behavior [40], uniform stability and uniform-in-time
mean-field limit [41], hydrodynamic description [42], time-delay effect [43] and Riemannian
manifold setting [44]. However, a fractional TCS system based on non-Markovian approach has not
been studied. Hence, we suggest the following fractional TCS model with the Caputo derivative of
order α ∈ (0, 1) and κ1 = κ2 = 1:

Dc
αxi = vi, t > 0, i ∈ [N],

Dc
αvi =

1
N

N∑
j=1

ϕ(∥xi − x j∥)
(

v j

T j
−

vi

Ti

)
,

Dc
αTi =

1
N

N∑
j=1

ζ(∥xi − x j∥)
(

1
Ti
−

1
T j

)
,

(xi(0), vi(0),Ti(0)) ∈ Rd × Rd × (R+ − {0}).

(1.4)
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To demonstrate suitable sufficient frameworks for the flocking dynamics of the above system (1.4),
we provide several preparatory estimates for temperatures, and then we apply methodology used in
Section 3 to (1.4). For detailed descriptions, see Section 4.

To set up the final stage, we point out that (1.1) and (1.3) are based on a classical Newtonian
mechanics without suitable relativistic corrections. In other words, relativism is not considered in (1.1)
and (1.3). For instance, we can imagine interaction system among space shuttles, hypersonic rockets,
and satellites. Then, the velocity of each agent is comparable to the speed of light c so that one
should consider appropriate relativistic corrections. With this motivation, the relativistic Cucker–Smale
(RCS) model was rigorously proposed in [45] via reduction process from the Euler system of the
homogeneous relativistic fluids mixture. This RCS model is given by the following Cauchy problem
regarding (xi,wi): 

dxi

dt
= vi, t > 0, i ∈ [N],

dwi

dt
=

1
N

N∑
j=1

ρ(∥xi − x j∥)
(
v j − vi

)
,

(xi(0),wi(0)) ∈ Rd × Rd,

(1.5)

where ρ : R+ → R+ is a communication weight satisfying

0 ≤ ρ(r) ≤ ρ(0) = 1, (ρ(r1) − ρ(r2))(r1 − r2) ≤ 0 and ρ(·) ∈ C0,1
loc(R+;R+),

c denotes the speed of light, and wi is a relativistic variable satisfying

wi := Fivi = f (vi), Fi := Γi

(
1 +
Γi

c2

)
= g(∥vi∥), Γi :=

1√
1 − ∥vi∥2

c2

i ∈ [N].

Here, Γi is the Lorentz factor of i-th particle. Note that the bijective function f and strictly increasing
function g : [0, c)→ R+ are expressed by

f (x) =
cx√

c2 − ∥x∥2
+

x
c2 − ∥x∥2

, x ∈ {v ∈ Rd | ∥v∥ < c},

g(x) =
c

√
c2 − x2

+
1

c2 − x2 , x ∈ [0, c).
(1.6)

Due to the bijectivity of f , the RCS model (1.5) can be formulated in terms of both (xi, vi) or (xi,wi).
To introduce the RCS model (1.5) and its variants, we refer to the uniform stability and

uniform-in-time mean-field limit [46], Riemannian manifold setting [47], singular kernel [48],
flocking dynamics [45], uniform-in-time nonrelativistic limit [49], time delay [50] and approximated
RCS model and its kinetic and hydrodynamic descriptions [51]. However, as in the case of the TCS
model (1.3), there is no research on the RCS system (1.5) in non-Markovian sense. Therefore, we
propose the following fractional RCS system with the Caputo derivative of order α ∈ (0, 1):

Dc
αxi = vi, t > 0, i ∈ [N],

Dc
αwi =

1
N

N∑
j=1

ρ(∥xi − x j∥)
(
v j − vi

)
,

(xi(0),wi(0)) ∈ Rd × Rd,

(1.7)
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where we used the abuse of notation as follows: “c” in Dc
α is the abbreviation of Caputo derivative,

and “c” in the definition of Γ denotes the speed of light. However, they can be distinguished without
confusion in context. To obtain the flocking estimates of the above system (1.7), we follow the
methodology used in Sections 3 and 4. For the detailed descriptions, refer to Section 5.

With these various CS-type model under memory effects, in this paper, we are primarily concerned
with the following issue:

• (Question): Under what sufficient conditions for initial data and system parameters do the
proposed fractional systems (1.2), (1.4) and (1.7) exhibit asymptotic flocking, respectively?

To answer this question, as aforementioned, we adopt the iterative method for the integral form of the
fractional systems (1.2), (1.4) and (1.7).

The rest of paper is organized as follows. In Section 2, we briefly review previous results on
fractional calculus and (1.2), and present several conserved quantities for (1.4) and (1.7). In Section 3,
we provide improved flocking estimates of (1.2). In Section 4, with the methodology employed in
Section 3, we present a sufficient framework for the flocking dynamics of (1.4). In Section 5, we
demonstrate the asymptotic flocking of (1.7) under admissible data. Finally, Section 6 is devoted to a
brief summary of the main results and some discussion on the remaining issues to be investigated in a
future work.

Notation We employ the following notation for simplicity.

[N] := {1, · · · ,N}, Id = d × d identity matrix, xi, vi,wi ∈ R
d×1,

X =: (x1, · · · , xN)T , V =: (v1, · · · , vN)T , W =: (w1, · · · ,wN)T , T =: (T1, · · · ,TN)T ,

C =: the set of complex numbers, Z =: the set of integers, [·] =: Gauss integer,
N =: the set of natural numbers, Z≤0 =: the set of nonpositive integers, R+ := [0,∞),
|z| =: the modulus of z ∈ C, Rm×n =: the set of m × n matrices, AT =: the transpose of A.

Note that X,V,W ∈ RN×d and T ∈ RN×1.

2. Preliminaries

In this section, we briefly introduce previous results covered in fractional calculus and analysis.
Thereafter, we provide several conserved quantities in the fractional systems (1.2), (1.4) and (1.7),
which will be used to represent the systems in matrix form.

2.1. Fractional calculus and analysis

In this subsection, we provide essential materials for fractional calculus and analysis to develop the
main results in Sections 3–5. We begin with the definitions of the Caputo fractional derivative and
Gamma and Beta functions.

Definition 2.1. [29] For a given strictly positive number α ∈ (0,∞), the Caputo fractional derivative
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Dc
α f of order α is defined by

Dc
α f (t) =:


1

Γ([α] + 1 − α)

∫ t

0

f ([α]+1)(s)
(t − s)α−[α] ds, if α , [α],

f α(t), if α = [α],

if the right sides are well defined.

We note that when α = 1, the fractional systems (1.2), (1.4), and (1.7) can be reduced to (1.1), (1.3)
and (1.5), respectively. From Definition 2.1, we recall the definitions of the Gamma function and Beta
function as follows:

Definition 2.2. The Gamma function Γ = Γ(z) : C − Z≤0 → C − {0} and Beta function B = B(z,w) for
Re(z) > 0 and Re(w) > 0 are given by

1) (Gamma function) Γ(z) =:
∫ ∞

0
e−ttz−1dt, z ∈ C.

2) (Beta function) B(z,w) =:
∫ 1

0
tz−1(1 − t)w−1dt, for Re(z),Re(w) > 0.

Then, we revisit the basic properties for the Gamma function and Beta function as follows because
these appear in the proofs of main results studied in Sections 3–5:

Remark 2.1. It is well known that for the Gamma function Γ(z) and Beta function B(z,w),

1) Γ(1) = 1, Γ(n) = (n − 1)! for all positive integer n, Γ(z + 1) = zΓ(z).

2) B is symmetric, i.e., B(z,w) = B(w, z), B(z,w) =
Γ(z)Γ(w)
Γ(z + w)

.

Now, we move on to the definition of the Mittag-Leffler function, which appears frequently as
solutions of fractional ODE systems. In the fractional flocking systems (1.2), (1.4), and (1.7), we also
have flocking estimates associated with the Mittag-Leffler function.

Definition 2.3. For α, β ∈ C, the Mittag-Leffler function Eα,β is defined as

Eα,β(z) =:
∞∑

k=0

zk

Γ(αk + β)
.

We then present the following several relations and basic lemmas with respect to the Mittag-Leffler
function:

Proposition 2.1. [29, 36] Let α, β, γ ∈ C. Then, it follows that

1) Eα,β(z) = zEα,α+β(z) +
1
Γ(β)

.

2)
1
Γ(γ)

∫ t

0
(t − s)γ−1Eα,β(λsα)sβ−1ds = tβ+γ−1Eα,β+γ(λtα), λ ∈ C, β, γ > 0.
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3) For y, z ∈ C, and β, γ > 0, we have∫ t

0
sγ−1Eα,γ(ysα)(t − s)β−1Eα,β(z(t − s)α)ds

=
yEα,β+γ(ytα) − zEα,β+γ(ztα)

y − z
tβ+γ−1, β, γ > 0.

Proposition 2.1 will be crucially used to estimate the asymptotic flocking of the fractional systems
(1.2), (1.4) and (1.7). Subsequently, the following proposition is related to the algebraic flocking rates
of (1.2), (1.4) and (1.7) described in Sections 3–5.

Proposition 2.2. [29, 36] Assume that the constants α, β, and γ satisfy

α ∈ (0, 2), β ∈ R,
πα

2
< γ < min(π, πα).

Then, one has the following relations for all n ∈ N:

1) For |arg(z)| ≤ γ,

Eα,β(z) =
1
α

exp(z
1
α ) −

n∑
k=1

z−k

Γ(β − αk)
+ O(|z|−1−n), as |z| → ∞.

2) For γ ≤ |arg(z)| ≤ π,

Eα,β(z) = −
n∑

k=1

z−k

Γ(β − αk)
+ O(|z|−1−n), as |z| → ∞.

3) As a direct consequence of (2), the following assertion holds:

Eα,1(−Ctα) ∼
t−α

CΓ(1 − α)
, as t → ∞, for every positive constant C.

Next, we present a concept of “completely monotone” and basic relationship with this and the
Mittag-Leffler function to deal with the fractional Caputo derivative of order α ∈ (0, 1) throughout the
paper.

Definition 2.4. [52] We say a C∞-function f defined on (0,∞) is completely monotone if it satisfies

(−1)k f (k)(t) ≥ 0, t ∈ (0,∞), ∀k ∈ N ∪ {0}.

Note that the completely monotone function is always nonnegative, monotonically decreasing, and
convex. For the detailed proof, see [52]. The following proposition offers some sufficient condition to
guarantee the complete monotonicity of Eα,β(−t).

Proposition 2.3. [53] Let Eα,β(z) be the Mittag-Leffler function defined in Definition 2.4. Then, Eα,β(−t)
is completely monotone on t ∈ (0,∞) if and only if α ∈ (0, 1] and β ≥ α.
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In what follows, we display some properties regarding relationships between monotone functions
and sign changes of their Caputo derivatives.

Proposition 2.4. [54] Let a function f ∈ C1[a, b] be monotone on [a, b] and α ∈ (0, 1). Then, the
following assertions hold:

1) It follows that ∀t ∈ [a, b],

Dc
α f (t)

≤ 0, if f is monotonically decreasing,

≥ 0, if f is monotonically increasing.

2) Assume that f ∈ C1[a, b] satisfies Dc
α f (t) ≥ 0 (≤ 0) for ∀t ∈ [a, b] and all α ∈ (α0, 1) for some

α0 ∈ (0, 1). Then, f is monotone increasing (decreasing).

3) Suppose that f ∈ C1[a, b] satisfies Dc
α f (t) ≥ 0 (≤ 0) for ∀t ∈ [a, b] and all α ∈ (α0, 1) for some

α0 ∈ (0, 1). Then, Dc
α f (t) ≥ 0 (≤ 0) for ∀t ∈ [a, b] and all α ∈ (0, 1).

From now on, we briefly introduce an alternative expression for fractional ODE system which
generalizes the fractional flocking systems (1.2), (1.4) and (1.7). For α ∈ (0, 1) and T > 0,

Dα
c x(t) = f (t, x(t)), t ∈ [0,T ), x(0) = x0. (2.1)

Then, it is widely known that the above equation (2.1) can be reformulated into the following integral
equation when f is continuous:

x(t) = x0 + D−αc f (t, x(t)) = x0 +
1
Γ(α)

∫ t

0

f (s, x(s))
(t − s)1−α ds. (2.2)

In particular, when f (t, x(t)) = Ax(t) + y(t) where A ∈ Rd×d is a constant coefficient for some d ∈ N,
x : [0,T )→ Rd, and y : [0,T )→ Rd, we have that for α ∈ (0, 1),

Dα
c x(t) = Ax(t) + y(t), t ∈ [0,T ), x(0) = x0. (2.3)

Then, there exists a unique solution x(t) on [0,T ] to (2.3) under appropriate conditions.

Proposition 2.5. [36, 55] Let x(t) be a solution to (2.3) of order α ∈ (0, 1) and we assume that y(t) is
an element of a space C1−α([0,T ]), where C1−α([0,T ]) is given by

C1−α([0,T ]) =:
{

f (t) ∈ C0[0,T ] | ∥ f ∥C1−α =: sup
t∈[0,T ]

∥t1−α f (t)∥ < ∞
}
.

Then, a unique solution of (2.3) is represented by

x(t) = Eα,1(Atα)x0 +

∫ t

0
(t − s)α−1Eα,α(A(t − s)α)y(s)ds,

where Eα,β(A) is given by

Eα,β(A) =:
∞∑

k=0

Ak

Γ(αk + β)
, where A ∈ Rd×d.
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Before we end this subsection, we provide the standard Cauchy–Lipschitz theory for the fractional
ODE system (2.1) of order α ∈ (0, 1].

Proposition 2.6. [56] We consider the following fractional ODE system of order α ∈ (0, 1]:

Dα
c x(t) = f (t, x(t)), x(t0) = x0. (2.4)

Further assume that f is locally Lipschitz continuous in x and continuous in t. Then, for some strictly
positive number ϵ, there exists a unique solution x(t) to (2.4) on the interval [t0 − ϵ, t0 + ϵ].

2.2. Comparison of (1.1) and (1.2) via numerical experiments

In this subsection, we provide some numeric examples comparing convergence rate of (1.1)
and (1.2). For simplicity, we set κ = 1, ψ ≡ 1 and d = 1. For fixed N = 10, let (X1,V2) be a solution of
(1.1) and (X2,V2) and (X3,V3) be solutions of (1.2) with α = 0.8 and α = 0.4, respectively.
Furthermore, we choose initial data satisfying

x1
i (0) = x2

i (0) = x3
i (0), v1

i (0) = v2
i (0) = v3

i (0), i ∈ [10],

which are chosen randomly in [0, 1]. Under these setting, we observe the dynamics until t = 10.
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Figure 1. Various decaying rates of diameters of V i’s.
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In Figure 1 (A), we plot time evolutionary behavior of

max
j,k∈[N]

∥vi
j − vi

k∥, i = 1, 2, 3,

which are monotonically decreasing. Since (1.1) is a special case of (1.2) where α = 1, it can be seen
that the larger α implies the faster decay of diameter of V i’s. Moreover, from Figure 1(B)–(D), one
can infer the exponential decay of max j,k∈[N] ∥v1

j − v1
k∥ and the algebraic decay of max j,k∈[N] ∥vi

j − vi
k∥,

i = 2, 3, respectively.

2.3. Basic estimates of the fractional systems

In this subsection, we provide several conserved quantities of the proposed fractional systems (1.2),
(1.4), and (1.7), which will be used to represent (1.2), (1.4), and (1.7) as matrices. First, we briefly
introduce the following previous results of the fractional CS system (1.2):

Proposition 2.7. [36] Let (X,V) be a solution to (1.2). Then, for any t ≥ 0, we have

N∑
i=1

vi(t) =
N∑

i=1

v0
i ,

N∑
i=1

xi(t) =
N∑

i=1

x0
i +

tα

Γ(α + 1)

N∑
i=1

v0
i .

Similarly, we also present the propagation of conserved quantities in the fractional TCS system (1.4)
as follows:

Lemma 2.1. Let (X,V,T ) be a solution to (1.4). Then, it follows that for any t ≥ 0,

N∑
i=1

vi(t) =
N∑

i=1

v0
i ,

N∑
i=1

xi(t) =
N∑

i=1

x0
i +

tα

Γ(α + 1)

N∑
i=1

v0
i ,

N∑
i=1

Ti(t) =
N∑

i=1

T 0
i .

Proof. We use the standard trick of interchanging i and j and dividing 2 in (1.4)2 to get

Dc
α

 N∑
i=1

vi(t)

 = 1
N

N∑
i, j=1

ϕ(∥xi − x j∥)
(

v j

T j
−

vi

Ti

)
=

1
N

N∑
i, j=1

ϕ(∥xi − x j∥)
(

vi

Ti
−

v j

T j

)
= 0,

Dc
α

 N∑
i=1

Ti(t)

 = 1
N

N∑
i, j=1

ζ(∥xi − x j∥)
(

1
T j
−

1
Ti

)
=

1
N

N∑
i, j=1

ζ(∥xi − x j∥)
(

1
Ti
−

1
T j

)
= 0.

Thus, we combine the above results with (2.2) to have the desired first and third assertions.

N∑
i=1

vi(t) =
N∑

i=1

v0
i ,

N∑
i=1

Ti(t) =
N∑

i=1

T 0
i .

Now, for the second assertion, we note from (1.4)1 that

Dc
α

 N∑
i=1

xi(t)

 = N∑
i=1

vi(t).

Here, we apply this and the first assertion to (2.2) to yield that
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N∑
i=1

xi(t) =
N∑

i=1

x0
i +

1
Γ(α)

∫ t

0
(t − s)α−1

 N∑
i=1

vi(s)

 ds

=

N∑
i=1

x0
i +

1
Γ(α)

∫ t

0
(t − s)α−1

 N∑
i=1

v0
i

 ds

=

N∑
i=1

x0
i +

tα

αΓ(α)

N∑
i=1

v0
i =

N∑
i=1

x0
i +

tα

Γ(α + 1)

N∑
i=1

v0
i ,

where we used the relation Γ(α + 1) = αΓ(α). Hence, we obtain the desired second assertion. □

Finally, we describe the following lemma on the fractional RCS system (1.7), which is a counterpart
of Proposition 2.7 and Lemma 2.1:

Lemma 2.2. Let (X,W) be a solution to (1.7). Then, we attain that for t ≥ 0,

N∑
i=1

wi(t) =
N∑

i=1

w0
i .

Proof. As in the proof of Lemma 2.1, we again use the standard trick of interchanging i and j and
dividing 2 to (1.7)2 to find

Dc
α

 N∑
i=1

wi(t)

 = 1
N

N∑
i, j=1

ρ(∥xi − x j∥)
(
v j − vi

)
=

1
N

N∑
i, j=1

ρ(∥xi − x j∥)
(
vi − v j

)
= 0.

Therefore, by using (2.2), we can show that

N∑
i=1

wi(t) =
N∑

i=1

w0
i .

□

Throughout the paper, we assume that

N∑
i=1

v0
i = 0 in (1.2) and (1.4) ,

N∑
i=1

w0
i = 0 in (1.7), and

N∑
i=1

T 0
i =: NT∞ > 0 in (1.4).

3. Improved flocking dynamics of fractional CS model

In this section, we improve the asymptotic flocking dynamics of (1.2) addressed in the previous
paper [36]. To do this, we first present the following basic notion for the asymptotic flocking:

Definition 3.1. Let Z =: (X,V) be a solution to the fractional CS system (1.2). Then, the configuration
Z exhibits asymptotic flocking if the following assertions hold:

(i) (Group formation) ⇐⇒ sup
t∈R+

max
i, j∈[N]

∥xi(t) − x j(t)∥ < ∞.

(ii) (Velocity alignment) ⇐⇒ lim
t→∞

max
i, j∈[N]

∥v j(t) − vi(t)∥ = 0.
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Subsequently, we give the following simple matrix representation in terms of X, V in the
system (1.2) to obtain its asymptotic flocking estimate.

Dc
αX(t) = V(t), Dc

αV(t) = Ψ(X(t))V(t). (3.1)

To explicitly write a matrix Ψ(X(t)) ∈ RN×N , we set each (i, j)-th element, (Ψ(X(t)))i j, as

(Ψ(X(t)))i j =
1
N


ψ(∥xi − x j∥), if i , j,

−
∑
k,i

ψ(∥xi − xk∥), if i = j, for i, j ∈ [N].

Then, we introduce the previous result on asymptotic flocking of (1.2) as follows:

Proposition 3.1. [36] Suppose that

d = 1, ψM =: sup
x∈R+

ψ(x), ψ0
m =: min

i, j,i, j∈[N]
ψ(∥x0

i − x0
j∥),

and that initial data and communication weight satisfy the following relations: there exists ϵ ∈ (0, 1)
such that

ψM < 2ψ∗, ψ(X∞) > ψ∗ > 0,

where ψ∗ and X∞ are given by

ψ∗ =:
(1 + ϵ)

2
ψ0

m, X∞ =:
√

2
(
∥X0∥ +

∥V0∥

2ψ∗ − ψM

)
.

Let (X,V) be a solution to (1.2) with d = 1. Then, for any t ≥ 0, we have

∥V(t)∥ ≤ ∥V(0)∥Eα,1(−λtα), ∥X(t)∥ ≤ ∥X(0)∥ +
∥V(0)∥
λ

,

where λ =: 2ψ∗ − ψM is a positive constant.

Note that the sufficient conditions for the asymptotic flocking of Proposition 3.1 is somewhat
restrictive due to the positivity of λ. Indeed, when we assume α = 1 in Proposition 3.1, it may not
match the flocking dynamics of the standard CS model (1.1) (see [9]). Hence, we need to describe
more improved flocking estimate of (1.2) in Rd. To achieve this, we provide the following new
flocking dynamics of (1.2) as the main result of this section.

Theorem 3.1. Assume that there exists a nonnegative constant X∞ satisfying

∥X(0)∥ +
∥V(0)∥

ψ(
√

2X∞)
≤ X∞ (3.2)

and let (X,V) be a solution to (1.2) on [0, τ) with the initial data (X(0),V(0)). Then, we have the global
well-posedness of (1.2) and the following asymptotic flocking estimate holds:

τ = ∞, and ∥X(t)∥ ≤ X∞, ∥V(t)∥ ≤ ∥V(0)∥Eα,1(−ψ(
√

2X∞)tα), ∀t ∈ R+.
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For the detailed proof of Theorem 3.1, using the first assertion of Proposition 2.7, we reformulate
the fractional CS system (3.1) as

Dc
αX(t) = V(t), Dc

αV(t) = −V(t) + Ψ̃(X(t))V(t),

where

(Ψ̃(X(t)))i j =
1
N


(
ψ(∥xi − x j∥) − 1

)
, if i , j,

−
∑
k,i

(ψ(∥xi − xk∥) − 1) , if i = j, for i, j ∈ [N].

Then, we use (2.2) and Proposition 2.5 to yield

X(t) = X(0) +
1
Γ(α)

∫ t

0
(t − s)α−1V(s)ds,

V(t) = Eα,1(−tα)V(0) +
∫ t

0
(t − s)α−1Eα,α(−(t − s)α)Ψ̃(X(s))V(s)ds.

(3.3)

Now, we set

S =: {t ∈ (0, τ] | ∥X(s)∥ ≤ X∞, ∀s ∈ [0, t)} , (3.4)

where the set S is nonempty due to the condition for X∞ in (3.2) and the continuity of X. Then, we
claim that

supS =: τ̄ = τ. (3.5)

If we prove (3.5), by employing Proposition 2.6, the Cauchy–Lipschitz theory for the fractional system,
we can immediately obtain τ = ∞. For the proof by contradiction, suppose that

supS = τ̄ < τ.

Based on the iterative method employed in [36], we construct the following sequence {V (i)}∞i=0 from the
second equation of (3.3):

V (0) = 0, i ∈ N ∪ {0},

V (i+1) = Eα,1(−tα)V(0) +
∫ t

0
(t − s)α−1Eα,α(−(t − s)α)Ψ̃(X(s))V (i)(s)ds.

(3.6)

As a preparatory lemma, we estimate the operator norm ∥ · ∥op of the aforementioned matrix Ψ̃(X(t))
on t ∈ [0, τ̄] to investigate the recurrence relation (3.6).

Lemma 3.1. Ψ̃(X) ∈ RN×N is a positive semi-definite matrix and moreover,

∥Ψ̃(X)∥op ≤ 1 − ψ(
√

2X∞),

where ∥ · ∥op denotes the operator norm of a matrix.
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Proof. We recall Ψ̃(X(t)) ∈ RN×N as

(Ψ̃(X(t)))i j =
1
N


(
ψ(∥xi − x j∥) − 1

)
, if i , j,

−
∑
k,i

(ψ(∥xi − xk∥) − 1) , if i = j for i, j ∈ [N].

We note that Ψ̃(X) is symmetric and 1 := (1, · · · , 1)T ∈ RN×1 is the eigenvector of Ψ̃(X) corresponding
to an eigenvalue 0. For any vector v = (v1, · · · , vN)T ∈ 1⊥, where vi ∈ R, i ∈ [N], one has

⟨Ψ̃(X)v, v⟩ =
N∑

i=1

N∑
j=1

(Ψ̃(X))i j⟨vi, v j⟩

=

N∑
i=1

N∑
j=1

(Ψ̃(X))i j⟨vi − v j, v j⟩ +

N∑
i=1

N∑
j=1

(Ψ̃(X))i j∥v j∥
2

=

N∑
i=1

N∑
j=1

(Ψ̃(X))i j⟨vi − v j, v j⟩ = −

N∑
i=1

N∑
j=1

(Ψ̃(X))i j
∥vi − v j∥

2

2
≥ 0.

Therefore, Ψ̃(X) becomes a positive semi-definite matrix. Since Ψ̃(X) is symmetric and positive semi-
definite, the operator norm of Ψ̃(X) is bounded by its maximum eigenvalue. Hence, it follows from∑N

i=1 vi = 0, ∥xi − x j∥ ≤
√

2∥X∥ ≤
√

2X∞, and monotonicity of ψ that

⟨Ψ̃(X)v, v⟩ ≤
1

2N

N∑
i=1

N∑
j=1

(1 − ψ(
√

2X∞))∥vi − v j∥
2 = (1 − ψ(

√
2X∞))∥v∥2,

which implies the desired inequality. □

Motivated from the proof of Lemma 3.4 in the previous literature [36], we present the following
useful lemma estimating ∥V (i+1) − V (i)∥:

Lemma 3.2. For t ∈ [0, τ̄], the following assertion holds for i ∈ N ∪ {0}.

∥V (i+1) − V (i)∥ ≤
(
1 − ψ(

√
2X∞)

)i
∥V(0)∥

∞∑
j=0

(
( j+i)C j · (−1) j

Γ(α( j + i) + 1)

)
· tα( j+i)

=

1 − ψ(
√

2X∞)
−1

i

∥V(0)∥
∞∑
j=i

(
jCi · (−1) j

Γ(α j + 1)

)
· tα j,

where nCr is the number of r-combinations from a given set of n elements.

Proof. We employ an inductive method to prove this lemma.

• (The case of i = 0): Definition 2.3 and (3.6) imply

∥V (1) − V (0)∥ ≤ ∥V(0)∥Eα,1(−tα) = ∥V(0)∥
∞∑
j=0

(
(−1) j

Γ(α j + 1)

)
· tα j.
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• (The case of i > 0): Assume that the desired assertion holds for all k ≤ i, k ∈ N∪{0}. Then, it follows
from the inductive assumption, Definition 2.3, and Lemma 3.1 that

∥V (i+2) − V (i+1)∥

≤ (1 − ψ(
√

2X∞))i+1∥V(0)∥

×

∫ t

0
(t − s)α−1Eα,α(−(t − s)α)

∞∑
j=0

(
( j+i)C j · (−1) j

Γ(α( j + i) + 1)

)
· sα( j+i)ds

= (1 − ψ(
√

2X∞))i+1∥V(0)∥

×

∞∑
k=0

∞∑
j=0

(
( j+i)C j · (−1)k+ j

Γ(α(k + 1))Γ(α( j + i) + 1)

)
·

∫ t

0
(t − s)α(k+1)−1sα( j+i)ds.

Using the Beta function of Definition 2.2 with the second assertion of Remark 2.1, we can obtain that
for z,w ∈ C satisfying Re(z) > 0 and Re(w) > 0,

Γ(z)Γ(w)
Γ(z + w)

= B(z,w) =:
∫ 1

0
tz−1(1 − t)w−1dt =

∫ t

0

(t − s)w−1sz−1

tz+w−1 ds. (3.7)

This yields the following equations:

(1 − ψ(
√

2X∞))i+1∥V(0)∥

×

∞∑
k=0

∞∑
j=0

(
( j+i)C j · (−1)k+ j

Γ(α(k + 1))Γ(α( j + i) + 1)

)
·

∫ t

0
(t − s)α(k+1)−1sα( j+i)ds

= (1 − ψ(
√

2X∞))i+1∥V(0)∥

×

∞∑
k=0

∞∑
j=0

(
( j+i)C j · (−1)k+ j · Γ(α(k + 1))Γ(α( j + i) + 1)

Γ(α(k + 1))Γ(α( j + i) + 1)Γ(α(k + j + i + 1) + 1)

)
· tα(k+ j+i+1)

= (1 − ψ(
√

2X∞))i+1∥V(0)∥
∞∑

k=0

∞∑
j=0

(
( j+i)C j · (−1)k+ j

Γ(α(k + j + i + 1) + 1)

)
· tα(k+ j+i+1)

= (1 − ψ(
√

2X∞))i+1∥V(0)∥
∞∑
j=0

∞∑
l= j

(
( j+i)C j · (−1)l

Γ(α(l + i + 1) + 1)

)
· tα(l+i+1)

= (1 − ψ(
√

2X∞))i+1∥V(0)∥
∞∑

l=0

l∑
j=0

( j+i)C j

(
(−1)l

Γ(α(l + i + 1) + 1)

)
· tα(l+i+1)

= (1 − ψ(
√

2X∞))i+1∥V(0)∥
∞∑

l=0

(
(l+i+1)Cl · (−1)l

Γ(α(l + i + 1) + 1)

)
· tα(l+i+1)

= (1 − ψ(
√

2X∞))i+1∥V(0)∥
∞∑
j=0

(
( j+i+1)C j · (−1) j

Γ(α( j + i + 1) + 1)

)
· tα( j+i+1),

where we used the following relation:
l∑

j=0
( j+i)C j = (l+i+1)Cl.
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Indeed, for a moment, we assume that the following summation,

∞∑
k=0

∞∑
j=0

(
( j+i)C j · (−1)k+ j

Γ(α(k + j + i + 1) + 1)

)
· tα(k+ j+i+1),

is absolutely convergent in the second equation to obtain

∞∑
j=0

∞∑
l= j

(
( j+i)C j · (−1)l

Γ(α(l + i + 1) + 1)

)
· tα(l+i+1)

=

∞∑
l=0

l∑
j=0

( j+i)C j

(
(−1)l

Γ(α(l + i + 1) + 1)

)
· tα(l+i+1).

This will be rigorously verified in the proof of Theorem 3.1. Therefore, we have the desired result by
the above inductive arguments. □

Finally, we are ready to demonstrate the asymptotic flocking result in Theorem 3.1 with technical
estimates and continuous argument.

Proof of Theorem 3.1. Employing Lemma 3.2 and Definition 2.3 with the following relation,

jCi ≤ jC[ j
2 ] ≤ 2 j−1, for j ≥ i, i, j ∈ N, (3.8)

leads to the following estimates:

∥V (i+1) − V (i)∥

≤
(
1 − ψ(

√
2X∞)

)i
∥V(0)∥

∞∑
j=0

(
( j+i)C j · (−1) j

Γ(α( j + i) + 1)

)
· tα( j+i),

≤
(
1 − ψ(

√
2X∞)

)i
∥V(0)∥

∞∑
j=0

(
( j+i)C j

Γ(α( j + i) + 1)

)
· tα( j+i)

≤
1
2

(
1 − ψ(

√
2X∞)

)i
∥V(0)∥

∞∑
j=0

(
(2tα) j+i

Γ(α( j + i) + 1)

)

≤
1
2

(
1 − ψ(

√
2X∞)

)i
∥V(0)∥

∞∑
j=0

(
(2tα) j

Γ(α j + 1)

)
=

1
2

(
1 − ψ(

√
2X∞)

)i
∥V(0)∥Eα,1(2tα),

where we used the definition of the Mittag-Leffler function offered in Definition 2.3. Herein, we
observe that Eα,1(2tα) is continuous on [0, τ̄] to get the following estimate for some positive constant
C =: C(τ̄, ψ, X∞,V(0)):

sup
0≤t≤τ̄
∥V (i+1) − V (i)∥ ≤ C(1 − ψ(

√
2X∞))i. (3.9)
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This implies that {V (i)}∞i=0 is a Cauchy sequence on [0, τ̄] because

|1 − ψ(
√

2X∞)| = 1 − ψ(
√

2X∞) < 1.

Hence, there exists a unique continuous solution V∞ satisfying the second equation of (3.3). Moreover,
due to Proposition 2.6, V∞ is also unique continuous solution to (1.2) on [0, τ̄]. In addition, we note
that (3.9) makes the proof of Lemma 3.2 rigorous.

Next, because ∥V∥ can be estimated as follows:

∥V∥ = lim
i→∞
∥V (i)∥ ≤

∞∑
i=0

∥V (i+1) − V (i)∥,

if we combine this with Lemma 3.2, then we attain that

∞∑
k=0

∥V (k+1) − V (k)∥

≤ ∥V(0)∥
∞∑

i=0

∞∑
j=i

1 − ψ(
√

2X∞)
−1

i (
jCi · (−1) j

Γ(α j + 1)

)
· tα j

= ∥V(0)∥
∞∑
j=0

(−1) j tα j

Γ(α j + 1)

j∑
i=0

1 − ψ(
√

2X∞)
−1

i

jCi

= ∥V(0)∥
∞∑
j=0

(−1) j tα j

Γ(α j + 1)

1 − ψ(
√

2X∞)
−1

+ 1
 j

= ∥V(0)∥
∞∑
j=0

(−1) j tα j

Γ(α j + 1)
·

(−ψ(
√

2X∞)) j

(−1) j

= ∥V(0)∥
∞∑
j=0

(
−ψ(
√

2X∞)tα
) j

Γ(α j + 1)
= ∥V(0)∥Eα,1

(
−ψ(
√

2X∞)tα
)
,

where we used Definition 2.3. Then, we employ the first and second results of Proposition 2.1 with
(3.2) and (3.4) to obtain that for t ∈ [0, τ̄],

∥X(t)∥ ≤ ∥X(0)∥ +
1
Γ(α)

∫ ∞

0
(t − s)α−1∥V(s)∥ds

≤ ∥X(0)∥ +
∥V(0)∥
Γ(α)

∫ ∞

0
(t − s)α−1Eα,1(−ψ(

√
2X∞)sα)ds

= ∥X(0)∥ + ∥V(0)∥tαEα,α+1(−ψ(
√

2X∞)tα)

= ∥X(0)∥ +
∥V(0)∥

ψ(
√

2X∞)

(
1 − Eα,1

(
−ψ(
√

2X∞)tα
))
< ∥X(0)∥ +

∥V(0)∥

ψ(
√

2X∞)
≤ X∞.

Hence,
lim
t→τ̄−
∥X(t)∥ = ∥X(τ̄)∥ < X∞.
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However, the above estimate gives a contradiction to the definition of τ̄ because the definition of τ̄
yields

lim
t→τ̄−
∥X(t)∥ = ∥X(τ̄)∥ = X∞.

Consequently, one has τ̄ = τ. Finally, we reach

∥X(t)∥ ≤ X∞, ∥V(t)∥ ≤ ∥V(0)∥Eα,1(−ψ(
√

2X∞)tα), ∀t ∈ [0, τ).

Besides, from Proposition 2.6, the Cauchy–Lipschitz theory for fractional ODE, we can demonstrate
the desired assertion, that is, τ = ∞. □

4. Flocking dynamics of fractional TCS model

In this section, we provide several sufficient frameworks to guarantee the asymptotic flocking of
the fractional TCS system (1.4). For this, we first present the following definition of the asymptotic
flocking of (1.4):

Definition 4.1. Let Z =: (X,V,T ) be a solution to the fractional TCS system (1.4). Then, the
configuration Z exhibits asymptotic flocking if the following assertions hold:

(i) (Group formation) ⇐⇒ sup
t∈R+

max
i, j∈[N]

∥xi(t) − x j(t)∥ < ∞.

(ii) (Velocity alignment) ⇐⇒ lim
t→∞

max
i, j∈[N]

∥v j(t) − vi(t)∥ = 0.

(iii) (Temperature equilibrium) ⇐⇒ lim
t→∞

max
i, j∈[N]

|T j(t) − Ti(t)| = 0.

Subsequently, we reformulate (1.4) using matrix representation in terms of X, V and T̄ to derive its
asymptotic flocking estimate:

Dc
αX(t) = V(t), t > 0,

Dc
αV(t) = Φ(X(t),T (t))V(t),

Dc
αT̄ (t) = Z(X(t),T (t))T̄ (t), Ti(0) ∈ R+ − {0}, i ∈ [N], 1T T̄ (0) = 0 ∈ R,

(4.1)

where 1 := (1, · · · , 1)T ∈ RN×1, T̄ =: (T1 − T∞, · · · ,TN − T∞)T , and Φ and Z are defined as follows. To
represent the following matrices concretely,

Φ(X(t),T (t)) ∈ RN×N , Z(X(t),T (t)) ∈ RN×N ,

we set each (i, j)-th element of Φ(X(t),T (t)), (Φ(X(t),T (t)))i j ∈ R, as

(Φ(X(t),T (t)))i j =
1
N


ϕ(∥xi − x j∥)

T j
, if i , j,

−
∑
k,i

ϕ(∥xi − xk∥)
Ti

, if i = j,
for i, j ∈ [N],
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and each (i, j)-th element of Z(X(t),T (t)), (Z(X(t),T (t)))i j ∈ R, as

(Z(X(t),T (t)))i j =
1
N


ζ(∥xi − x j∥)

T jTi
, if i , j,

−
∑
k,i

ζ(∥xi − xk∥)
TkTi

, if i = j,
for i, j ∈ [N].

Then, we present the desired main result on the asymptotic flocking dynamics of (1.4).

Theorem 4.1. Suppose that there is a a nonnegative constant X∞ such that ζ(
√

2X∞) > 0,

ϕ∞ :=
1

T∞m
−

(2N − 2)
√

N

 1
T∞m
−
ϕ(
√

2X∞)
T∞M

 > 0, and ∥X(0)∥ +
∥V(0)∥
ϕ∞

≤ X∞, (4.2)

where we set two positive constants T∞M and T∞m as

T∞M := T∞ + ∥T̄ (0)∥ > 0, T∞m := T∞ − ∥T̄ (0)∥ > 0.

Let (X,V,T ) be a solution to (1.4) on [0, τ) with the initial data (X(0),V(0),T (0)). Then, the global
well-posedness of (1.4) holds, that is, τ = ∞. Furthermore, we have the following asymptotic flocking
estimate for t ∈ R+:

∥X(t)∥ ≤ X∞, ∥V(t)∥ ≤ ∥V(0)∥Eα,1(−ϕ∞tα), ∥T̄ (t)∥ ≤ ∥T̄ (0)∥Eα,1

−ζ(
√

2X∞)
T∞M

 .
Note that the sufficient conditions of Theorem 4.1 are admissible if T∞M − T∞m is somewhat close

to 0 and ϕ(
√

2X∞) is close to 1. To rigorously verify Theorem 4.1, we reorganize the fractional TCS
system (4.1) as a matrix representation to get the flocking dynamics of (1.4) as follows:

Dc
αX(t) = V(t),

Dc
αV(t) = −

V(t)
T∞m
+ Φ̃(X(t),T (t))V(t),

Dc
αT̄ (t) = −

T̄ (t)
(T∞m )2 + Z̃(X(t),T (t))T̄ (t),

where

(Φ̃(X(t),T (t)))i j =
1
N


(
ϕ(∥xi − x j∥)

T j
−

1
T∞m

)
, if i , j,

−
∑
k,i

(
ϕ(∥xi − xk∥)

Ti
−

1
T∞m

)
, if i = j,

for i, j ∈ [N],

(Z̃(X(t),T (t)))i j =
1
N


(
ζ(∥xi − x j∥)

T jTi
−

1
(T∞m )2

)
, if i , j,

−
∑
k,i

(
ζ(∥xi − xk∥)

TkTi
−

1
(T∞m )2

)
, if i = j,

for i, j ∈ [N].
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Then, we apply Proposition 2.5 to express X(t), V(t) and T (t) as the following integral equations:

X(t) = X(0) +
1
Γ(α)

∫ t

0
(t − s)α−1V(s)ds,

V(t) = Eα,1

(
−

tα

T∞m

)
V(0) +

∫ t

0
(t − s)α−1Eα,α

(
−

(t − s)α

T∞m

)
Φ̃(X(s),T (s))V(s)ds,

T̄ (t) = Eα,1

(
−

tα

(T∞m )2

)
T̄ (0) +

∫ t

0
(t − s)α−1Eα,α

(
−

(t − s)α

(T∞m )2

)
Z̃(X(s),T (s))T̄ (s)ds.

(4.3)

As in the same method studied in Section 3, we construct the following set S:

S =:
{
t ∈ (0, τ] | ∥X(s)∥ ≤ X∞ and T∞m ≤ Ti(s) ≤ T∞M , i ∈ [N], ∀s ∈ [0, t)

}
,

where it is nonempty due to the continuity of X(s) and (4.2). Then, we first claim that

supS =: τ̄ = τ. (4.4)

For the proof by contradiction, suppose that

supS = τ̄ < τ.

If we prove (4.4), then the Cauchy–Lipschitz theory for fractional ODE (see Proposition 2.6) with
asymptotic flocking estimates leads to τ = ∞.

Based on the iterative method used in Section 3, we can consider the following sequence {T̄ (i)}∞i=0
from the third equation of (4.3).

T̄ (0) = 0, i ∈ N ∪ {0},

T̄ (i+1) = Eα,1

(
−

tα

(T∞m )2

)
T̄ (0) +

∫ t

0
(t − s)α−1Eα,α

(
−

(t − s)α

(T∞m )2

)
Z̃(X(s),T (s))T̄ (i)(s)ds.

(4.5)

To obtain a temperature equilibrium estimate from (4.5), we need to estimate the operator norm of
Z̃(X(t),T (t)), ∥Z̃(X(t),T (t))∥op, on t ∈ [0, τ̄] as in Lemma 3.1.

Lemma 4.1. Z̃(X,T ) ∈ RN×N is a positive semi-definite matrix satisfying

∥Z̃(X,T )∥op ≤
1

(T∞m )2 −
ζ(
√

2X∞)
(T∞M)2 .

Proof. We omit this rigorous proof because it can be proved in the same way as Lemma 3.1. We
observe that Z̃(X,T ) is symmetric and 1 := (1, · · · , 1)T ∈ RN×1 is the eigenvector of Z̃(X,T ) having
eigenvalue 0. Then, we see that for any vector v = (v1, · · · , vN)T ∈ 1⊥, where vi ∈ R, i ∈ [N],

⟨Z̃v, v⟩ ≥ 0.

Hence, Z̃(X,T ) is a positive semi-definite matrix. Moreover,

⟨Z̃(X)v, v⟩ ≤
1

2N

N∑
i=1

N∑
j=1

 1
(T∞m )2 −

ζ(
√

2X∞)
(T∞M)2

 ∥vi − v j∥
2 =

 1
(T∞m )2 −

ζ(
√

2X∞)
(T∞M)2

 ∥v∥2.
We get the desired assertion. □
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In what follows, we concern the upper bound of ∥T̄ (i+1) − T̄ (i)∥.

Lemma 4.2. For t ∈ [0, τ̄], the following assertion holds for i ∈ N ∪ {0}.

∥T̄ (i+1) − T̄ (i)∥ ≤

 1
(T∞m )2 −

ζ(
√

2X∞)
(T∞M)2

i

∥T̄ (0)∥
∞∑
j=0

 ( j+i)C j ·
(
− 1

(T∞m )2

) j

Γ(α( j + i) + 1)

 · tα( j+i)

=

 (T∞m )2ζ(
√

2X∞)
(T∞M)2 − 1

i

∥T̄ (0)∥
∞∑
j=i

 jCi ·
(
− 1

(T∞m )2

) j

Γ(α j + 1)

 · tα j.

Proof. We again employ inductive argument used in the proof of Lemma 3.2 to prove the desired result.

• (The case of i = 0): It follows from (4.5) and Definition 2.3 that

∥T̄ (1) − T̄ (0)∥ ≤ ∥T̄ (0)∥Eα,1

(
−

tα

(T∞m )2

)
= ∥T̄ (0)∥

∞∑
j=0


(
− 1

(T∞m )2

) j

Γ(α j + 1)

 · tα j.

• (The case of i > 0): Suppose that the desired result holds for all k ≤ i, k ∈ N ∪ {0}. Then, using the
inductive assumption, Definition 2.3, Lemma 4.1, and (3.7) yields

∥T̄ (i+2) − T̄ (i+1)∥

≤

 1
(T∞m )2 −

ζ(
√

2X∞)
(T∞M)2

i+1

∥T̄ (0)∥

×

∫ t

0
(t − s)α−1Eα,α

(
−

(t − s)α

(T∞m )2

) ∞∑
j=0

 ( j+i)C j ·
(
− 1

(T∞m )2

) j

Γ(α( j + i) + 1)

 · sα( j+i)ds

=

 1
(T∞m )2 −

ζ(
√

2X∞)
(T∞M)2

i+1

∥T̄ (0)∥

×

∞∑
k=0

∞∑
j=0

 ( j+i)C j ·
(
− 1

(T∞m )2

)k+ j

Γ(α(k + 1))Γ(α( j + i) + 1)

 ·
∫ t

0
(t − s)α(k+1)−1sα( j+i)ds

=

 1
(T∞m )2 −

ζ(
√

2X∞)
(T∞M)2

i+1

∥T̄ (0)∥
∞∑

k=0

∞∑
j=0

 ( j+i)C j ·
(
− 1

(T∞m )2

)k+ j

Γ(α(k + j + i + 1) + 1)

 · tα(k+ j+i+1).

For the same reason as the proof of Theorem 3.1, one can show that the following term is absolutely
convergent:

∞∑
k=0

∞∑
j=0

 ( j+i)C j ·
(
− 1

(T∞m )2

)k+ j

Γ(α(k + j + i + 1) + 1)

 · tα(k+ j+i+1).

Then, we can obtain 1
(T∞m )2 −

ζ(
√

2X∞)
(T∞M)2

i+1

∥T̄ (0)∥
∞∑

k=0

∞∑
j=0

 ( j+i)C j ·
(
− 1

(T∞m )2

)k+ j

Γ(α(k + j + i + 1) + 1)

 · tα(k+ j+i+1)
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=

 1
(T∞m )2 −

ζ(
√

2X∞)
(T∞M)2

i+1

∥T̄ (0)∥
∞∑
j=0

∞∑
l= j

 ( j+i)C j ·
(
− 1

(T∞m )2

)l

Γ(α(l + i + 1) + 1)

 · tα(l+i+1)

=

 1
(T∞m )2 −

ζ(
√

2X∞)
(T∞M)2

i+1

∥T̄ (0)∥
∞∑

l=0

l∑
j=0

( j+i)C j


(
− 1

(T∞m )2

)l

Γ(α(l + i + 1) + 1)

 · tα(l+i+1)

=

 1
(T∞m )2 −

ζ(
√

2X∞)
(T∞M)2

i+1

∥T̄ (0)∥
∞∑

l=0

 (l+i+1)Cl ·
(
− 1

(T∞m )2

)l

Γ(α(l + i + 1) + 1)

 · tα(l+i+1),

where we used

l∑
j=0

( j+i)C j = (l+i+1)Cl.

In conclusion, we reach the desired assertion. □

Thus, the above Lemma 4.2, (4.5) and (3.8) induce that

∥T̄ (i+1) − T̄ (i)∥

≤

 1
(T∞m )2 −

ζ(
√

2X∞)
(T∞M)2

i

∥T̄ (0)∥
∞∑
j=0

 ( j+i)C j ·
(
− 1

(T∞m )2

) j

Γ(α( j + i) + 1)

 · tα( j+i)

≤

(
1

(T∞m )2 −
ζ(
√

2X∞)
(T∞M )2

)i

(
1

(T∞m )2

)i ∥T̄ (0)∥
∞∑
j=0

 ( j+i)C j ·
(

1
(T∞m )2

) j+i

Γ(α( j + i) + 1)

 · tα( j+i)

≤
1
2

(
1

(T∞m )2 −
ζ(
√

2X∞)
(T∞M )2

)i

(
1

(T∞m )2

)i ∥T̄ (0)∥
∞∑
j=0


(

2tα
(T∞m )2

) j+i

Γ(α( j + i) + 1)


=

1
2

1 − (T∞m )2ζ(
√

2X∞)
(T∞M)2

i

∥T̄ (0)∥E
(

2tα

(T∞m )2

)
,

where we employed the definition of the Mittag-Leffler stated in Definition of 2.3. Hence, one can
obtain a unique continuous solution T̄∞ satisfying the third equation of (4.3) in the same way as the
proof of Theorem 3.1. Moreover, T̄∞ is a also unique continuous solution to (1.4) on [0, τ̄] because of
Proposition 2.6 and the uniform boundedness of Ti.

Then, we have from Definition 2.3 that for t ∈ [0, τ̄],
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∥T̄∥ = lim
i→∞
∥T̄ (i)∥ ≤

∞∑
i=0

∥T̄ (i+1) − T̄ (i)∥

≤

∞∑
i=0

∞∑
j=i

 (T∞m )2ζ(
√

2X∞)
(T∞M)2 − 1

i

∥T̄ (0)∥

 jCi ·
(
− 1

(T∞m )2

) j

Γ(α j + 1)

 · tα j

= ∥T̄ (0)∥
∞∑
j=0

(
− 1

(T∞m )2

) j
tα j

Γ(α j + 1)

j∑
i=0

 (T∞m )2ζ(
√

2X∞)
(T∞M)2 − 1

i

jCi

= ∥T̄ (0)∥
∞∑
j=0

(
− 1

(T∞m )2

) j
tα j

Γ(α j + 1)

 (T∞m )2ζ(
√

2X∞)
(T∞M)2

 j

= ∥T̄ (0)∥
∞∑
j=0

(
−ζ(
√

2X∞)
(T∞M )2

) j
tα j

Γ(α j + 1)
= ∥T̄ (0)∥Eα,1

−ζ(
√

2X∞)
(T∞M)2 tα

 .

(4.6)

Finally, we move on to study estimates regarding ∥V (i+1)−V (i)∥ to conclude the proof of Theorem 4.1.
To do this, we consider the following sequence {V (i)}∞i=0 in the third equation of (4.3) to estimate ∥V∥:

V (0) = 0, i ∈ N ∪ {0},

V (i+1) = Eα,1

(
−

tα

T∞m

)
V(0) +

∫ t

0
(t − s)α−1Eα,α

(
−

(t − s)α

T∞m

)
Φ̃(X(s),T (s))V (i)(s)ds,

(4.7)

where we crucially notice that Φ̃(X(s),T (s)) on t ∈ [0, τ̄] can not be estimated in the same way as
the proof of Lemma 3.1 and Lemma 4.1. Indeed, Φ̃(X(s),T (s)) is not symmetric (thus, not positive
semi-definite matrix). Therefore, we have to use a different method.

Lemma 4.3. Φ̃(X,T ) ∈ RN×N satisfies the following inequality:

∥Φ̃(X,T )∥op ≤
(2N − 2)
√

N

 1
T∞m
−
ϕ(
√

2X∞)
T∞M

 .
Proof. We use the following well-known fact that for a matrix A contained in RN×N ,

∥A∥op ≤
√

N∥A∥∞ :=
√

N max
i∈[N]

N∑
j=1

|Ai j|,

to find that

∥Φ̃(X,T )∥op

≤
1
√

N
max
i∈[N]

 ∑
j∈[N], j,i

∣∣∣∣∣∣ϕ(∥xi − x j∥)
T j

−
1

T∞m

∣∣∣∣∣∣ +∑
k,i

∣∣∣∣∣∣ϕ(∥xi − xk∥)
Ti

−
1

T∞m

∣∣∣∣∣∣
 .

Here, we use the definition of S to lead to

∥Φ̃(X,T )∥op ≤
(2N − 2)
√

N

 1
T∞m
−
ϕ(
√

2X∞)
T∞M

 ,
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where we applied the following estimate:∣∣∣∣∣∣ϕ(∥xi − x j∥)
T j

−
1

T∞m

∣∣∣∣∣∣ ≤ 1
T∞m
−
ϕ(
√

2X∞)
T∞M

.

We conclude the desired lemma. □

Next, we provide the following lemma to deal with ∥V (i+1) − V (i)∥:

Lemma 4.4. For t ∈ [0, τ̄], the following assertion holds for i ∈ N ∪ {0}.

∥V (i+1) − V (i)∥

≤

 (2N − 2)
√

N

 1
T∞m
−
ϕ(
√

2X∞)
T∞M

i

∥V(0)∥
∞∑
j=0

 ( j+i)C j ·
(
− 1

T∞m

) j

Γ(α( j + i) + 1)

 · tα( j+i)

=

− (2N − 2)
√

N

1 − ϕ(
√

2X∞)T∞m
T∞M

i

∥V(0)∥
∞∑
j=i

 jCi ·
(
− 1

T∞m

) j

Γ(α j + 1)

 · tα j.

Proof. We use induction to obtain the desired estimate.

• (The case of i = 0): It follows from (4.7) and Definition 2.3 that

∥V (1) − V (0)∥ ≤ ∥V(0)∥Eα,1

(
−

tα

T∞m

)
= ∥V(0)∥

∞∑
j=0


(
− 1

T∞m

) j

Γ(α j + 1)

 · tα j.

• (The case of i > 0): We assume that the desired estimate holds for all k ≤ i, k ∈ N ∪ {0}. Then, we
apply the same way as in Lemma 3.2 and Lemma 4.2 to have that

∥V (i+2) − V (i+1)∥

≤

 (2N − 2)
√

N

 1
T∞m
−
ϕ(
√

2X∞)
T∞M

i+1

∥V(0)∥

×

∫ t

0
(t − s)α−1Eα,α

(
−

(t − s)α

T∞m

) ∞∑
j=0

 ( j+i)C j ·
(
− 1

T∞m

) j

Γ(α( j + i) + 1)

 · sα( j+i)ds

=

 (2N − 2)
√

N

 1
T∞m
−
ϕ(
√

2X∞)
T∞M

i+1

∥V(0)∥

×

∞∑
k=0

∞∑
j=0

 ( j+i)C j ·
(
− 1

T∞m

)k+ j

Γ(α(k + j + i + 1) + 1)

 · tα(k+ j+i+1).

Hence, using the same arguments as in the proofs of Lemma 3.2 and Lemma 4.2, we get that (2N − 2)
√

N

 1
T∞m
−
ϕ(
√

2X∞)
T∞M

i+1

∥V(0)∥
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×

∞∑
k=0

∞∑
j=0

 ( j+i)C j ·
(
− 1

T∞m

)k+ j

Γ(α(k + j + i + 1) + 1)

 · tα(k+ j+i+1)

=

 (2N − 2)
√

N

 1
T∞m
−
ϕ(
√

2X∞)
T∞M

i+1

∥V(0)∥
∞∑

l=0

 (l+i+1)Cl ·
(
− 1

T∞m

)l

Γ(α(l + i + 1) + 1)

 · tα(l+i+1).

Thus, we acquire the desired result. □

Then, we verify Theorem 4.1 for the asymptotic flocking of (1.4) employing the previous lemmas
and propositions.

Proof of Theorem 4.1. We use (3.8), (4.7), Lemma 4.3, and Lemma 4.4 to estimate that

∥V (i+1) − V (i)∥

≤

− (2N − 2)
√

N

1 − ϕ(
√

2X∞)T∞m
T∞M

i

∥V(0)∥
∞∑
j=i

 jCi ·
(
− 1

T∞m

) j

Γ(α j + 1)

 · tα j,

≤

− (2N − 2)
√

N

1 − ϕ(
√

2X∞)T∞m
T∞M

i

∥V(0)∥
∞∑
j=0

 ( j+i)C j ·
(

1
T∞m

) j+i

Γ(α( j + i) + 1)

 · tα( j+i)

≤
1
2

 (2N − 2)
√

N

1 − ϕ(
√

2X∞)T∞m
T∞M

i

∥V(0)∥Eα,1

(
2tα

T∞m

)
.

Due to the continuity of Eα,1

(
2tα
T∞m

)
on [0, τ̄], there exists a positive real number C =: C(τ̄,T (0), ϕ, X∞)

such that

sup
0≤t≤τ̄
∥V (i+1) − V (i)∥ ≤ C

 (2N − 2)
√

N

1 − ϕ(
√

2X∞)T∞m
T∞M

i

,

which yields that {V (i)}∞i=0 is a Cauchy sequence on [0, τ̄] from (4.2), that is,

0 ≤
(2N − 2)
√

N

1 − ϕ(
√

2X∞)T∞m
T∞M

 < 1.

Then, there exists a unique continuous solution V∞ satisfying the third equation of (4.3). Therefore,
V∞ is a also the unique continuous solution to (1.4) on [0, τ̄] by Proposition 2.6. Moreover, we can
estimate ∥V∥ as follows:

∥V∥ = lim
i→∞
∥V (i)∥ ≤

∞∑
i=0

∥V (i+1) − V (i)∥,

≤ ∥V(0)∥
∞∑

i=0

∞∑
j=i

− (2N − 2)
√

N

1 − ϕ(
√

2X∞)T∞m
T∞M

i
 jCi ·

(
− 1

T∞m

) j

Γ(α j + 1)

 · tα j
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= ∥V(0)∥
∞∑
j=0

(
− 1

T∞m

) j
tα j

Γ(α j + 1)

j∑
i=0

− (2N − 2)
√

N

1 − ϕ(
√

2X∞)T∞m
T∞M

i

jCi

= ∥V(0)∥
∞∑
j=0

(
− 1

T∞m

) j
tα j

Γ(α j + 1)

1 − (2N − 2)
√

N

1 − ϕ(
√

2X∞)T∞m
T∞M

 j

= ∥V(0)∥Eα,1

−  1
T∞m
−

(2N − 2)
√

N

 1
T∞m
−
ϕ(
√

2X∞)
T∞M

 tα


= ∥V(0)∥Eα,1 (−ϕ∞tα) .

Accordingly, the first and second assertions of Proposition 2.1, (4.2), and the definition of S imply
that

∥X(t)∥ ≤ ∥X(0)∥ +
1
Γ(α)

∫ ∞

0
(t − s)α−1∥V(s)∥ds

≤ ∥X(0)∥ +
∥V(0)∥
Γ(α)

∫ ∞

0
(t − s)α−1Eα,1(−ϕ∞sα)ds

= ∥X(0)∥ + ∥V(0)∥tαEα,α+1(−ϕ∞tα)

= ∥X(0)∥ +
∥V(0)∥
ϕ∞

(
1 − Eα,1 (−ϕ∞tα)

)
< ∥X(0)∥ +

∥V(0)∥
ϕ∞

≤ X∞, t ∈ [0, τ̄].

Hence, we can reach

lim
t→τ̄−
∥X(t)∥ = ∥X(τ̄)∥ < X∞. (4.8)

Subsequently, we observe from (4.6) that

lim
t→τ̄−
∥T̄ (t)∥ = ∥T̄ (τ̄)∥ ≤ ∥T̄ (0)∥Eα,1

−ζ(
√

2X∞)
(T∞M)2 τ̄α

 < ∥T̄ (0)∥.

Then, because
Ti(τ̄) − T∞ ≤ ∥T̄ (τ̄)∥ and T∞ − Ti(τ̄) ≤ ∥T̄ (τ̄)∥, i ∈ [N],

we attain that for i ∈ [N],

Ti(τ̄) < T∞ + ∥T̄ (0)∥ = T∞M , Ti(τ̄) > T∞ − ∥T̄ (0)∥ = T∞m . (4.9)

Thus, if we combine (4.8) and (4.9), then τ̄ < τ is contradictory, and we obtain

τ̄ = τ.

Finally, we have the following estimates from the above arguments for t ∈ [0, τ):

∥X(t)∥ ≤ X∞, ∥V(t)∥ ≤ ∥V(0)∥Eα,1(−ϕ∞tα), ∥T̄ (t)∥ ≤ ∥T̄ (0)∥Eα,1

−ζ(
√

2X∞)
T∞M

 .
Using the Cauchy–Lipschitz theory for fractional ODE (see Proposition 2.6), one has τ = ∞ and
therefore, we demonstrate the desired theorem. □
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5. Flocking dynamics of fractional RCS model

In this section, we describe appropriate sufficient framework for the flocking dynamics of the
fractional RCS system (1.7). To do this, we first provide the following basic concept for the
asymptotic flocking of (1.7):

Definition 5.1. Let Z =: (X,W) be a solution to (1.7).

(i) (Group formation) ⇐⇒ sup
t∈R+

max
i, j∈[N]

∥xi(t) − x j(t)∥ < ∞.

(ii) (Relativistic velocity alignment) ⇐⇒ lim
t→∞

max
i, j∈[N]

∥w j(t) − wi(t)∥ = 0.

(iii) (Velocity alignment) ⇐⇒ lim
t→∞

max
i, j∈[N]

∥v j(t) − vi(t)∥ = 0.

If (i) and (ii) hold, then the configuration Z exhibits asymptotic flocking, and if (i) and (ii) hold, then
the configuration Z exhibits relativistic asymptotic flocking.

In fact, (ii) and (iii) in Definition 5.1 are equivalent if each speed of all particles along (1.7) is
strictly less than the speed of light, c. Indeed,

Lemma 5.1. [49] For two vectors w,w∗ ∈ Rd, let w := Fv and w∗ := F∗v∗, where

F := Γ
(
1 +
Γ

c2

)
, F∗ := Γ∗

(
1 +
Γ∗

c2

)
, Γ :=

c√
c2 − ∥v∥2

, Γ∗ :=
c√

c2 − ∥v∗∥2
.

If there exists a nonnegative constant v∞ ≥ 0 such that

∥v∥, ∥v∗∥ ≤ v∞ < c,

then ∥v − v∗∥ and ∥w − w∗∥ are equivalent. Moreover,

c2 + 1
c2 ∥v − v∗∥ ≤ ∥w − w∗∥ ≤ (g′(v∞)v∞ + g(v∞))∥v − v∗∥,

where g is defined in (1.6).

Due to the above lemma, if we can guarantee that velocity of each particle is strictly less than
c uniformly in time, then we can easily check that the relativistic velocity alignment and velocity
alignment are equivalent and furthermore, the relativistic asymptotic flocking and asymptotic flocking
are equivalent in (1.7).

Subsequently, we give the following matrix representation of (1.7) to construct suitable sufficient
framework for the asymptotic flocking of (1.7):

Dc
αX(t) = V(t), Dc

αW(t) = P(X(t))V(t), (5.1)

where P(X(t)) ∈ RN×N is a matrix whose each (i, j)-th element, (P(X(t)))i j ∈ R is as follows:

(P(X(t)))i j =
1
N


ρ(∥xi − x j∥), if i , j,

−
∑
k,i

ρ(∥xi − xk∥), if i = j, for i, j ∈ [N].

Then, the goal of this section is to prove the following asymptotic flocking of (1.7):
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Theorem 5.1. Assume that there exist two nonnegative numbers X∞ and v∞ such that

∥X(0)∥ +
c2∥W(0)∥
(c2 + 1)ρ∞

≤ X∞ and max
i∈[N]
∥wi(0)∥ +

√
2(N − 1)c2∥W(0)∥

(c2 + 1)Nρ∞
≤ g(v∞) < ∞, (5.2)

where

ρ∞ =:
c2

c2 + 1
−

(2N − 1)
√

N

 c2

c2 + 1
−
ρ(
√

2X∞)
g(v∞)

 > 0,

and let (X,W) be a solution to (1.7) on [0, τ) with the initial data (X(0),W(0)). Then, we obtain the
global well-posedness of (1.7)

τ = ∞

and moreover, the following asymptotic flocking with an algebraic decay holds:

∥X(t)∥ ≤ X∞, ∥W(t)∥ ≤ ∥W(0)∥Eα,1(−ρ∞tα), ∀t ∈ R+.

We note that the sufficient conditions described in Theorem 5.1 are admissible by taking v∞ ≪ c.
For the rigorous verification of Theorem 5.1, we transform (5.1) to the following system to obtain the
flocking dynamics with an algebraic decay:

Dc
αX(t) = V(t), Dc

αW(t) = −
c2

c2 + 1
W(t) + P̃(X(t),W(t))W(t),

where

(P̃(X(t),W(t)))i j =
1
N


(
ρ(∥xi − x j∥)

F j
−

c2

c2 + 1

)
, if i , j,

−
∑
k,i

(
ρ(∥xi − xk∥)

Fi
−

c2

c2 + 1

)
, if i = j,

for i, j ∈ [N],

Then, by Proposition 2.5, we can represent two matrix solutions X(t) and W(t) as the following
integral forms:

X(t) = X(0) +
1
Γ(α)

∫ t

0
(t − s)α−1V(s)ds,

W(t) = Eα,1

(
−

c2

c2 + 1
tα
)

W(0)

+

∫ t

0
(t − s)α−1Eα,α

(
−

c2

c2 + 1
(t − s)α

)
P̃(X(s),W(s))W(s)ds.

(5.3)

Next, we define a set S by

S =:
{

t ∈ (0, τ]
∣∣∣∣∣ ∥X(s)∥ ≤ X∞ and max

i∈[N]
∥vi(s)∥ ≤ v∞, ∀s ∈ [0, t)

}
,

where we observe that the set S is nonempty from the continuity of X(s) and (5.2). From now on, we
claim that

supS =: τ̄ = τ.
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For the proof by contradiction, we suppose supS = τ̄ < τ. Then, we can attain the desired estimates
by showing that this statement is contradictory. Based on the iterative method as in Sections 3 and 4,
we consider the following recurrence relation in terms of sequence {W (i)}∞i=0 from the second assertion
of (5.3):

W (0) = 0, i ∈ N ∪ {0},

W (i+1) = Eα,1

(
−

c2

c2 + 1
tα
)

W(0)

+

∫ t

0
(t − s)α−1Eα,α

(
−

c2

c2 + 1
(t − s)α

)
P̃(X(s),W(s))W (i)(s)ds.

(5.4)

To study the recurrence relation (5.4), we estimate the operator norm of P̃(X,W) on t ∈ [0, τ̄] as
follows:

Lemma 5.2. The operator norm of P̃(X,W) ∈ RN×N can be estimated as

∥P̃(X,W)∥op ≤
(2N − 1)
√

N

 c2

c2 + 1
−
ρ(
√

2X∞)
g(v∞)

 , (5.5)

where v∞ is defined in Theorem 5.1.

Proof. Employing the following relation that for a matrix A ∈ RN×N ,

∥A∥op ≤
√

N∥A∥∞ :=
√

N max
i∈[N]

N∑
j=1

|Ai j|,

yields that

∥P̃(X,W)∥op ≤
1
√

N
max
i∈[N]

 N∑
j=1

∣∣∣∣∣∣ρ(∥xi − x j∥)
F j

−
c2

c2 + 1

∣∣∣∣∣∣ +∑
k,i

∣∣∣∣∣∣ρ(∥xi − xk∥)
Fi

−
c2

c2 + 1

∣∣∣∣∣∣


≤
(2N − 1)
√

N

 c2

c2 + 1
−
ρ(
√

2X∞)
g(v∞)

 ,
where we used

∥xi − x j∥ ≤
√

2∥X∥ ≤
√

2X∞, 1 +
1
c2 ≤ F j = g(∥v j∥) ≤ g(v∞).

□

Subsequently, we prove the following lemma to estimate ∥W (i+1) − W (i)∥, which will be crucially
used to derive the relativistic velocity alignment of (1.7).

Lemma 5.3. For t ∈ [0, τ̄], the following assertion holds for i ∈ N ∪ {0}:

∥W (i+1) −W (i)∥
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≤

 (2N − 1)
√

N

 c2

c2 + 1
−
ρ(
√

2X∞)
g(v∞)

i

∥W(0)∥
∞∑
j=0

 ( j+i)C j ·
(
− c2

c2+1

) j

Γ(α( j + i) + 1)

 · tα( j+i)

=

− (2N − 1)
√

N

1 − (c2 + 1)ρ(
√

2X∞)
c2g(v∞)

i

∥W(0)∥
∞∑
j=i

 jCi ·
(
− c2

c2+1

) j

Γ(α j + 1)

 · tα j.

Proof. First, we use induction to have the desired result.

• (The case of i = 0): From (5.4) and Definition 2.3, we immediately obtain

∥W (1) −W (0)∥ ≤ ∥W(0)∥Eα,1

(
−

c2

c2 + 1
tα
)
= ∥V(0)∥

∞∑
j=0


(
− c2

c2+1

) j

Γ(α j + 1)

 · tα j.

• (The case of i > 0): We suppose that the desired result holds for all k ≤ i, k ∈ N ∪ {0}. Then, it
follows from (5.4), (5.5), and (3.7) that

∥W (i+2) −W (i+1)∥

≤

 (2N − 1)
√

N

 c2

c2 + 1
−
ρ(
√

2X∞)
g(v∞)

i+1

∥W(0)∥

×

∫ t

0
(t − s)α−1Eα,α

(
−

c2

c2 + 1
(t − s)α

) ∞∑
j=0

 ( j+i)C j ·
(
− c2

c2+1

) j

Γ(α( j + i) + 1)

 · sα( j+i)ds

=

 (2N − 1)
√

N

 c2

c2 + 1
−
ρ(
√

2X∞)
g(v∞)

i+1

∥W(0)∥

×

∞∑
k=0

∞∑
j=0

 ( j+i)C j ·
(
− c2

c2+1

)k+ j

Γ(α(k + j + i + 1) + 1)

 · tα(k+ j+i+1) =: I,

Here, we can show the following inequality applying the same methods as in the proofs of Lemma 3.2,
Lemma 4.2, and Lemma 4.4:

I ≤
 (2N − 1)
√

N

 c2

c2 + 1
−
ρ(
√

2X∞)
g(v∞)

i+1

∥W(0)∥

×

∞∑
l=0

 (l+i+1)Cl ·
(
− c2

c2+1

)l

Γ(α(l + i + 1) + 1)

 · tα(l+i+1).

Accordingly, we acquire the desired result. □

As a final step, we verify the main result of this section, Theorem 5.1, with preparatory frameworks
and continuous arguments.

Proof of Theorem 5.1. We employ (3.8), (5.2), (5.4), and Lemma 5.3 to deduce that

∥W (i+1) −W (i)∥

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17949–17985.



17979

≤

 (2N − 1)
√

N

 c2

c2 + 1
−
ρ(
√

2X∞)
g(v∞)

i

∥W(0)∥
∞∑
j=i

 jCi ·
(
− c2tα

c2+1

) j

Γ(α j + 1)


≤

 (2N − 1)
√

N

 c2

c2 + 1
−
ρ(
√

2X∞)
g(v∞)

i

∥W(0)∥
∞∑
j=i

 jCi ·
(

c2tα
c2+1

) j

Γ(α j + 1)


≤

 (2N − 1)
√

N

 c2

c2 + 1
−
ρ(
√

2X∞)
g(v∞)

i

∥W(0)∥
∞∑
j=i

2 j−1 ·
(

c2tα
c2+1

) j

Γ(α j + 1)


≤

1
2

 (2N − 1)
√

N

 c2

c2 + 1
−
ρ(
√

2X∞)
g(v∞)

i

∥W(0)∥Eα,1

(
2c2tα

c2 + 1

)
.

Using the continuity of Eα,1

(
2c2tα
c2+1

)
on [0, τ̄] and definition of ρ∞, i.e.,

0 ≤
(2N − 1)
√

N

 c2

c2 + 1
−
ρ(
√

2X∞)
g(v∞)

 < 1,

it follows that {W (i)}∞i=0 is a Cauchy sequence on [0, τ̄], which gives a unique existence of continuous
solution W∞ of the second equation of (5.3) and (1.7)2 due to Proposition 2.6. In addition, ∥W∥ can be
estimated as below using the methodologies employed in the proof of Theorem 3.1 and Theorem 4.1:

∥W∥ = lim
i→∞
∥W (i)∥ ≤

∞∑
i=0

∥W (i+1) −W (i)∥,

≤ ∥W(0)∥
∞∑

i=0

∞∑
j=i

− (2N − 1)
√

N

1 − (c2 + 1)ρ(
√

2X∞)
c2g(v∞)

i
 jCi ·

(
− c2tα

c2+1

) j

Γ(α j + 1)


= ∥W(0)∥

∞∑
j=0

(
− c2

c2+1

) j
tα j

Γ(α j + 1)

j∑
i=0

− (2N − 1)
√

N

1 − (c2 + 1)ρ(
√

2X∞)
c2g(v∞)

i

jCi

= ∥W(0)∥
∞∑
j=0

(
− c2

c2+1

) j
tα j

Γ(α j + 1)

1 − (2N − 1)
√

N

1 − (c2 + 1)ρ(
√

2X∞)
c2g(v∞)

 j

= ∥W(0)∥Eα,1

− c2

c2 + 1
+

(2N − 1)
√

N

 c2

c2 + 1
−
ρ(
√

2X∞)
g(v∞)

 = ∥W(0)∥Eα,1 (−ρ∞tα) .

(5.6)

From the above assertion, we apply the first and second results of Proposition 2.1 and (5.2) to
demonstrate that for t ∈ [0, τ̄],

∥X(t)∥ ≤ ∥X(0)∥ +
1
Γ(α)

∫ ∞

0
(t − s)α−1∥V(s)∥ds

≤ ∥X(0)∥ +
c2

(c2 + 1)Γ(α)

∫ ∞

0
(t − s)α−1∥W(s)∥ds

≤ ∥X(0)∥ +
c2∥W(0)∥

(c2 + 1)Γ(α)

∫ ∞

0
(t − s)α−1Eα,1(−ρ∞sα)ds
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= ∥X(0)∥ +
c2∥W(0)∥tα

(c2 + 1)
Eα,α+1(−ρ∞tα)

= ∥X(0)∥ +
c2∥W(0)∥
(c2 + 1)ρ∞

(
1 − Eα,1 (−ρ∞tα)

)
< ∥X(0)∥ +

c2∥W(0)∥
(c2 + 1)ρ∞

≤ X∞,

where we used Fi ≥ 1 + 1
c2 to estimate ∥V∥ ≤ c2

c2+1∥W∥. Therefore, one has

lim
t→τ̄−
∥X(t)∥ = ∥X(τ̄)∥ < X∞. (5.7)

Subsequently, because

c2 + 1
c2 ∥V(t)∥ ≤ ∥W(t)∥ ≤ ∥W(0)∥Eα,1 (−ρ∞tα) , t ∈ [0, τ̄],

it follows from the first and second assertions of Proposition 2.1, (1.7)2, (2.2), ρ ≤ 1 and (5.6) that for
t ∈ [0, τ̄],

∥wi(t)∥ ≤ ∥wi(0)∥ +
1

Γ(α)N

N∑
j=1

∫ ∞

0
ρ(∥xi − x j∥)(t − s)α−1∥v j(s) − vi(s)∥ds

≤ ∥wi(0)∥ +

√
2(N − 1)
Γ(α)N

∫ ∞

0
(t − s)α−1∥V(s)∥ds

≤ ∥wi(0)∥ +

√
2(N − 1)c2

(c2 + 1)Γ(α)N

∫ ∞

0
(t − s)α−1∥W(s)∥ds

≤ ∥wi(0)∥ +

√
2(N − 1)c2∥W(0)∥
(c2 + 1)Γ(α)N

∫ ∞

0
(t − s)α−1Eα,1 (−ρ∞sα) ds

< ∥wi(0)∥ +

√
2(N − 1)c2∥W(0)∥

(c2 + 1)Nρ∞
≤ g(v∞) < ∞.

Then, we get

lim
t→τ̄−

max
i∈[N]
∥vi(t)∥ < v∞. (5.8)

Hence, combining (5.7) and (5.8) implies that the assumption τ̄ < τ is contradictory. Thus, τ̄ = τ and
moreover, we see the following relativistic asymptotic flocking for t ∈ [0, τ):

∥X(t)∥ ≤ X∞, ∥W(t)∥ ≤ ∥W(0)∥Eα,1(−ρ∞tα).

In conclusion, one has τ = ∞ by Proposition 2.6, and we obtain the desired result. □

6. Conclusions

In this paper, we have provided suitable sufficient frameworks for an algebraic asymptotic flocking
of the Cucker–Smale, thermodynamic Cucker–Smale and relativistic Cucker–Smale systems with a
Caputo derivative using fractional calculus and continuous arguments with the iterative method.
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Herein, we first presented more improved sufficient framework for asymptotic flocking on the
fractional Cucker–Smale system than previous paper [36]. Using this method, we also demonstrated
appropriate sufficient frameworks for the asymptotic flocking of the fractional relativistic
Cucker–Smale and fractional thermodynamic Cucker–Smale systems. However, we still have several
topics to study as a future research. Examples include

• (Question 1): Can we improve the sufficient frameworks for the asymptotic flocking of fractional
thermodynamic Cucker–Smale and fractional relativistic Cucker–Smale systems addressed in
this paper?

• (Question 2): Can we extend the proposed fractional systems presented in this paper to
Vlasov-type kinetic systems via the mean-field limit regime?

• (Question 3): Can we establish fractional calculus theory on Riemannian manifold setting using
geometric quantities from fractional calculus on Euclidean space?

• (Question 4): If an answer to (Question 3) is affirmative, can we prove the asymptotic flocking of
fractional Cucker–Smale type systems on Riemannian manifolds?

We leave the above questions as future work.
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16. H. Ahn, S. Y. Ha, D. Kim, F. Schlöder, W. Shim, The mean-field limit of the Cucker–Smale model
on Riemannian manifolds, Q. Appl. Math., 80 (2022), 403–450. https://doi.org/10.1090/qam/1613

17. S. Y. Ha, J. G. Liu, A simple proof of Cucker–Smale flocking dynamics and mean-field limit,
Commun. Math. Sci., 7 (2009), 297–325.

18. S. Y. Ha, J. Kim, X. Zhang, Uniform stability of the Cucker–Smale model and
its application to the mean-field limit, Kinet. Relat. Models, 11 (2018), 1157–1181.
https://doi.org/10.3934/krm.2018045

19. J. A. Carrillo, M. Fornasier, J. Rosado, G. Toscani, Asymptotic flocking dynamics
for the kinetic Cucker–Smale model, SIAM. J. Math. Anal., 42 (2010), 218–236.
https://doi.org/10.1137/090757290

20. S. Y. Ha, E. Tadmor, From particle to kinetic and hydrodynamic description of flocking, Kinet.
Relat. Models, 1 (2008), 415–435.

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17949–17985.

http://dx.doi.org/https://doi.org/10.1137/S0036139903437424
http://dx.doi.org/https://doi.org/10.1109/TAC.2007.895842
http://dx.doi.org/https://doi.org/10.1007/s10955-008-9529-8
http://dx.doi.org/https://doi.org/10.1103/RevModPhys.77.137
http://dx.doi.org/https://doi.org/10.1109/TAC.2005.864190
http://dx.doi.org/https://doi.org/10.1016/S0167-2789(00)00094-4
http://dx.doi.org/https://doi.org/10.1016/S0167-2789(00)00094-4
http://dx.doi.org/https://doi.org/10.1016/j.physrep.2012.03.004
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.75.1226
http://dx.doi.org/https://doi.org/10.1090/qam/1613
http://dx.doi.org/https://doi.org/10.3934/krm.2018045
http://dx.doi.org/https://doi.org/10.1137/090757290


17983

21. A. Figalli, M. Kang, A rigorous derivation from the kinetic Cucker–Smale model to
the pressureless Euler system with nonlocal alignment, Anal. PDE., 12 (2019), 843–866.
https://doi.org/10.2140/apde.2019.12.843

22. S. Y. Ha, M. J Kang, B. Kwon, A hydrodynamic model for the interaction of Cucker–Smale
particles and incompressible fluid, Math. Models. Methods Appl. Sci., 11 (2014), 2311–2359.
https://doi.org/10.1142/S0218202514500225

23. T. K. Karper, A. Mellet, K. Trivisa, Hydrodynamic limit of the kinetic Cucker–
Smale flocking model, Math. Models Methods Appl. Sci., 25 (2015), 131–163.
https://doi.org/10.1142/S0218202515500050

24. Y. P. Choi, Z. Li, Emergent behavior of Cucker–Smale flocking particles with heterogeneous time
delays, Appl. Math. Lett., 86 (2018), 49–56. https://doi.org/10.1016/j.aml.2018.06.018

25. P. Cattiaux, F. Delebecque, L. Pedeches, Stochastic Cucker–Smale models: old and new, Ann.
Appl. Probab., 28 (2018), 3239–3286. https://doi.org/10.1214/18-AAP1400

26. J. Cho, S. Y. Ha, F. Huang, C. Jin, D. Ko, Emergence of bi-cluster flocking for
the Cucker–Smale model, Math. Models Methods Appl. Sci., 26 (2016), 1191–1218.
https://doi.org/10.1142/S0218202516500287

27. S. H. Choi, S. Y. Ha, Emergence of flocking for a multi-agent system moving with constant speed,
Commun. Math. Sci., 14 (2016), 953–972.

28. Y. P. Choi, D. Kalsie, J. Peszek, A. Peters, A collisionless singular Cucker–Smale model
with decentralized formation control, SIAM J. Appl. Dyn. Syst., 18 (2019), 1954–1981.
https://doi.org/10.1137/19M1241799

29. I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional
differential equations, to methods of their solution and some of their applications, in Mathematics
in Science and Engineering, Academic press, 198 (1999).

30. G. R. J. Cooper, D. R. Cowan, Filtering using variable order vertical derivatives, Comput. Geosci.,
30 (2004), 455–459. https://doi.org/10.1016/j.cageo.2004.03.001

31. E. Girejko, D. Mozyrska, M. Wyrwas, Numerical analysis of behaviour of the Cucker–
Smale type models with fractional operators, J. Comput. Appl. Math, 339 (2018), 111–123.
https://doi.org/10.1016/j.cam.2017.12.013

32. E. Girejko, D. Mozyrska, M. Wyrwas, On the fractional variable order Cucker–Smale type model,
IFAC-PapersOnLine, 51 (2018), 693–697. https://doi.org/10.1016/j.ifacol.2018.06.184

33. A. B. Malinowska, T. Odzijewicz, E. Schmeidel, On the existence of optimal controls for
the fractional continuous-time Cucker–Smale model, in Theory and Applications of Non-
integer Order Systems (eds. A. Babiarz, A. Czornik, J. Klamka and M. Niezabitowski), Springer
International Publishing, (2017), 227–240. https://doi.org/10.1007/978-3-319-45474-0

34. R. Almeida, R. Kamocki, A. B. Malinowska, T. Odzijewicz, On the necessary optimality
conditions for the fractional Cucker–Smale optimal control problem, Commun. Nonlinear Sci.
Numer. Simul., 96 (2021), 105678. https://doi.org/10.1016/j.cnsns.2020.105678

35. R. Almeida, R. Kamocki, A. B. Malinowska, T. Odzijewicz, On the existence of optimal consensus
control for the fractional Cucker-Smale model, Arch. Control Sci., 30 (2020), 625–651.

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17949–17985.

http://dx.doi.org/https://doi.org/10.2140/apde.2019.12.843
http://dx.doi.org/https://doi.org/10.1142/S0218202514500225
http://dx.doi.org/https://doi.org/10.1142/S0218202515500050
http://dx.doi.org/https://doi.org/10.1016/j.aml.2018.06.018
http://dx.doi.org/https://doi.org/10.1214/18-AAP1400
http://dx.doi.org/https://doi.org/10.1142/S0218202516500287
http://dx.doi.org/https://doi.org/10.1137/19M1241799
http://dx.doi.org/https://doi.org/10.1016/j.cageo.2004.03.001
http://dx.doi.org/https://doi.org/10.1016/j.cam.2017.12.013
http://dx.doi.org/https://doi.org/10.1016/j.ifacol.2018.06.184
http://dx.doi.org/https://doi.org/10.1007/978-3-319-45474-0
http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2020.105678


17984

36. S. Y. Ha, J. Jung, P. Kuchling, Emergence of anomalous flocking in the fractional Cucker–Smale
model, Discrete Contin. Dyn. Syst., 39 (2019), 5465–5489. https://doi.org/10.3934/dcds.2019223

37. J. G. Dong, S. Y. Ha, D. Kim, Emergent behaviors of continuous and discrete thermomechanical
Cucker–Smale models on general digraphs, Math. Models. Methods Appl. Sci., 29 (2019), 589–
632. https://doi.org/10.1142/S0218202519400013

38. J. G. Dong, S. Y. Ha, J. Jung, D. Kim, On the stochastic flocking of the Cucker–Smale
flock with randomly switching topologies, SIAM J. Control. Optim., 58 (2020), 2332–2353.
https://doi.org/10.1137/19M1279150

39. S. Y. Ha, T. Ruggeri, Emergent dynamics of a thermodynamically consistent particle model, Arch.
Ration. Mech. Anal., 223 (2017), 1397–1425.

40. S. Y. Ha, J. Kim, T. Ruggeri, Emergent behaviors of thermodynamic Cucker-Smale particles,
SIAM J. Math. Anal., 50 (2019), 3092–3121. https://doi.org/10.1137/17M111064X

41. S. Y. Ha, J. Kim, C. Min, T. Ruggeri, X. Zhang, Uniform stability and mean-field
limit of a thermodynamic Cucker–Smale model, Quart. Appl. Math., 77 (2019), 131–176.
https://doi.org/10.1090/qam/1517

42. S. Y. Ha, M. J Kang, J. Kim, W. Shim, Hydrodynamic limit of the kinetic thermomechanical
Cucker–Smale model in a strong local alignment regime, Commun. Pure Appl. Anal., 19 (2019),
1233–1256. https://doi.org/10.3934/cpaa.2020057

43. H. Cho, J. G. Dong, S. Y. Ha, Emergent behaviors of a thermodynamic Cucker–Smale flock
with a time delay on a general digraph, Math. Methods Appl. Sci., 45 (2021), 164–196.
https://doi.org/10.1002/mma.7771

44. H. Ahn, S. Y. Ha, W. Shim, Emergent dynamics of a thermodynamic Cucker–Smale
ensemble on complete Riemannian manifolds, Kinet. Relat. Models, 14 (2021), 323–351.
https://doi.org/10.3934/krm.2021007

45. S. Y. Ha, J. Kim, T. Ruggeri, From the relativistic mixture of gases to the relativistic Cucker–Smale
flocking, Arch. Rational Mech. Anal., 235 (2020), 1661–1706. https://doi.org/10.1007/s00205-
019-01452-y

46. H. Ahn, S. Y. Ha, J. Kim, Uniform stability of the relativistic Cucker–Smale model and
its application to a mean-field limit, Commun. Pure Appl. Anal., 20 (2021), 4209–4237.
https://doi.org/10.3934/cpaa.2021156

47. H. Ahn, S. Y. Ha, M. Kang, W. Shim, Emergent behaviors of relativistic flocks on Riemannian
manifolds, Phys. D., 427 (2021), 133011. https://doi.org/10.1016/j.physd.2021.133011

48. J. Byeon, S. Y. Ha, J. Kim, Asymptotic flocking dynamics of a relativistic Cucker–
Smale flock under singular communications, J. Math. Phys., 63 (2022), 012702.
https://doi.org/10.1063/5.0062745

49. H. Ahn, S. Y. Ha, J. Kim, Nonrelativistic limits of the relativistic Cucker–Smale model and its
kinetic counterpart, J. Math. Phys., 63 (2022), 082701. https://doi.org/10.1063/5.0070586

50. H. Ahn, Asymptotic flocking of the relativistic Cucker–Smale model with time delay, Netw.
Heterog. Media, 18 (2023), 29-47. https://doi.org/10.3934/nhm.2023002

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17949–17985.

http://dx.doi.org/https://doi.org/10.3934/dcds.2019223
http://dx.doi.org/https://doi.org/10.1142/S0218202519400013
http://dx.doi.org/https://doi.org/10.1137/19M1279150
http://dx.doi.org/https://doi.org/10.1137/17M111064X
http://dx.doi.org/https://doi.org/10.1090/qam/1517
http://dx.doi.org/https://doi.org/10.3934/cpaa.2020057
http://dx.doi.org/https://doi.org/10.1002/mma.7771
http://dx.doi.org/https://doi.org/10.3934/krm.2021007
http://dx.doi.org/https://doi.org/10.1007/s00205-019-01452-y
http://dx.doi.org/https://doi.org/10.1007/s00205-019-01452-y
http://dx.doi.org/https://doi.org/10.3934/cpaa.2021156
http://dx.doi.org/https://doi.org/10.1016/j.physd.2021.133011
http://dx.doi.org/https://doi.org/10.1063/5.0062745
http://dx.doi.org/https://doi.org/10.1063/5.0070586
http://dx.doi.org/https://doi.org/10.3934/nhm.2023002


17985

51. S. Y. Ha, J. Kim, T. Ruggeri, Kinetic and hydrodynamic models for the relativistic Cucker–Smale
ensemble and emergent dynamics, Commun. Math. Sci., 19 (2021), 1945–1990.

52. M. Merkle, Completely monotone functions, A digest, in Analytic Number theory, Approximation
Theory, and Special Functions (eds. G. V. Milovanovic̀ and M. Th. Rassias), Springer New York,
(2014), 577–621.

53. W. R. Schneider, Completely monotone generalized Mittag-Leffler functions, Expo. Math., 14
(1996), 3–16.

54. K. Diethelm, Monotonocity of functions and sign changes of their Caputo derivatives, Fract. Calc.
Appl. Anal., 19 (2016), 561–566.

55. B. Bonilla, M. Rivero, J. J. Trujillo, On systems of linear fractional differential
equations with constant coefficients, Appl. Math. Comput., 187 (2007), 68–78.
https://doi.org/10.1016/j.amc.2006.08.104

56. L. Bourdin, Cauchy–Lipschitz theory for fractional multi-order dynamics: State-transition
matrices, Duhamel formulas and duality theorems, Differ. Integral Equation, 31 (2018), 559–594.
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