
http://www.aimspress.com/journal/mbe

MBE, 20(10): 17866–17885.
DOI: 10.3934/mbe.2023794
Received: 04 July 2023
Revised: 21 August 2023
Accepted: 21 August 2023
Published: 18 September 2023

Research article

A new Monte Carlo sampling method based on Gaussian Mixture Model for
imbalanced data classification

Gang Chen*, Binjie Hou and Tiangang Lei

Department of Mathematics, Dalian Maritime University, Dalian 116026, China

* Correspondence: Email: chengang@dlmu.edu.cn.

Abstract: Imbalanced data classification has been a major topic in the machine learning community.
Different approaches can be taken to solve the issue in recent years, and researchers have given a lot
of attention to data level techniques and algorithm level. However, existing methods often generate
samples in specific regions without considering the complexity of imbalanced distributions. This can
lead to learning models overemphasizing certain difficult factors in the minority data. In this paper,
a Monte Carlo sampling algorithm based on Gaussian Mixture Model (MCS-GMM) is proposed. In
MCS-GMM, we utilize the Gaussian mixed model to fit the distribution of the imbalanced data and
apply the Monte Carlo algorithm to generate new data. Then, in order to reduce the impact of data
overlap, the three sigma rule is used to divide data into four types, and the weight of each minority
class instance based on its neighbor and probability density function. Based on experiments conducted
on Knowledge Extraction based on Evolutionary Learning datasets, our method has been proven to be
effective and outperforms existing approaches such as Synthetic Minority Over-sampling TEchnique.

Keywords: imbalanced data; Monte Carlo sampling; probability density function; oversampling
technique; Gaussian Mixture Model

1. Introduction

In recent years, imbalanced data classification has received extensive attention from scholars and
fostered many real-world applications, such as fraud detection [1], medical diagnosis [2], email
filtering [3] and so on. Generally speaking, binary classification problems are relatively common in
data classification. In an imbalanced dataset, the majority class refers to the class with the highest
number of instances, while the minority class refers to the class with the lowest number of instances.
In cases where there is an imbalance between the majority class and the minority class, traditional
classifiers often exhibit bias towards the majority class, resulting in suboptimal performance in
classifying the minority class [4]. Therefore, it is crucial to improve the accuracy of classifying the

http://http://www.aimspress.com/journal/mbe
http://dx.doi.org/10.3934/mbe.2023794

17867

minority class.

In order to address this problem, several scholars have proposed various methods, which can be
divided into two aspects: data level and algorithm level. At the data level, two main techniques are
commonly adopted: oversampling and undersampling. Undersampling involves reducing the size of
the majority class, while oversampling aims to increase the size of the minority class. However, these
techniques have limitations in preserving the inherent structure of the dataset and may discard
informative instances. Innovative techniques, such as Monte Carlo sampling, leverage random
sampling to create balanced datasets while retaining distributional characteristics [5]. Recent studies
Gaussian Mixture Undersampling (GMUS) selected the maximum of probability density function for
the minority class as the cross-edge of two classes and undersampled the majority samples near the
cross-edge, enhancing the quality of the undersampled datasets [6]. Notably, Monte Carlo sampling
algorithm based on Gaussian Mixture Model (MCS-GMM) is different from GMUS. Because GMUS
is a undersampling technique and MCS-GMM is a oversampling technique. Yan et al. [7] proposed a
spatial distribution based undersampling (SDUS) method to solve the class imbalance problem.
SDUS used a supervised construction process to learn majority-class local patterns based on spherical
neighborhood (SPN). In order to preserve the distribution pattern of the original data, two strategies,
top-down and bottom-up, were proposed to select the majority class sample subset. Sdus introduced
the integration technology to improve the learning performance by utilizing the diversity caused by
the randomness of the local pattern learning process. Zhu et al. [8] proposed a new undersampling
scheme called Noisy-Sample-Removed Undersampling Scheme (NUS) for imbalanced classification.
NUS first clusters the majority class samples and builds a hypersphere around each cluster’s center. It
then determines whether each minority sample is within the hypersphere or not, and removes noisy
samples from both the majority and minority classes. NUS was integrated with three basic classifiers.

Oversampling technique, a method are widely used for imbalanced data classification. Synthetic
Minority Over-sampling TEchnique (SMOTE) [9] was a very well-known method based on k-nearest
neighbors in which the new minority class instances are generated along the line segments joining any
or all of the k-nearest neighbors. However, the SMOTE algorithm does not consider the impact of
surrounding data on minority class instances [10]. To this end, some variants of SMOTE were
proposed. He et al. [11] proposed a adaptive synthetic sampling approach for imbalanced data
(ADASYN). This approach calculates the weight of each minority class instance based on the number
of majority class instances in its k-nearest neighbors. Han et al. [12] proposed a Borderline-SMOTE
in which the number of majority class instances and minority class instance in its k-nearest neighbors
is adopted to determine the sampling boundary. Douzas et al. [13] proposed a Kmeans-SMOTE, its
method is to generate new samples by By dividing the minority class region. Yan et al. [14]
oversampled the minority class using the local-density (LDAS) of each minority class instance.
Xie et al. [15] used the local distribution (GDO) of each minority class instance. In GDO, the
Gaussian distribution was determined and the sampling weight takes into account the influence of
surrounding data. Bhagwani et al. [16] trained the datasets to generate new samples by the generative
adversarial model. Maldonado et al. [17] proposed a feature-weighted oversampling approach for
imbalanced classification (FW-SMOTE). Kaya et al. [18] proposed a differential evolution based
oversampling approach to solve imbalanced data problems. Xie et al. [19] proposed an improved
oversampling algorithm Based on the Samples’ Selection Strategy to select samples with high
information value, which has an effective candidate individual generation mechanism. Peng et al. [20]

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17866–17885.

17868

proposed a novel approach for imbalanced data classification using data gravitation, which can
strengthen and weaken the gravitational field of the minority and majority classes. Rahmati et al. [21]
proposed proposed a method called gravitational density-based mass sharing to improve the data
quality. Koziarski et al. [22] proposed a method for oversampling imbalanced data in noisy
environments by identifying regions of interest for the minority class using a Radial-Based approach.
Bunkhumpornpat et al. [23] proposed a Safe-Level-SMOTE, which utilizes more information about
surrounding neighbors. Sun et al. [24] proposed a robust oversampling method called disjuncts-robust
oversampling (DROS) method. This novel approach shows that filling minority-class regions in data
space with new synthetic samples can be viewed as a search light illuminating real-life constrained
regions with light cones. In the first step, DROS computes a sequence of light cone structures, first
starting from the inner minority region, then passing through the boundary minority region, and
finally stopped by the majority region. In a second step, DROS generates new synthetic samples
within these light cone structures.

On the other hand, there are many ways to deal with such a problem at the algorithmic level.
Yin et al. [25] proposed a fault detection method that utilizes robust one-class support vector
machines. The algorithm’s robustness can be enhanced by adjusting the weight of samples, which can
also improve the ability of a single-class support vector machine to handle uncorrelated samples.
Scholkopf et al. [26] proposed One-Class support vector machines (OCSVM), this method creates a
decision boundary between two classes called a hyperplane. UnderBagging [27] was a technique that
involves random undersampling of the data set in each Bagging iteration, while retaining all the
minority class instances in each iteration. To effectively train a model without synthesizing minority
classes of data, it is important to make the most of the majority class data during the training process.
Li [28] proposed a method that combines under-sampling with the classical ‘Bagging’ ensemble
method. Hido et al. [29] proposed an alternative approach to the Bagging method for
imbalanced datasets.

The above oversampling methods in data level discussed in this study aim to identify specific types
of data and generate new examples to improve classifier performance, and each method has its own
advantages depending on different scenarios. However, most oversampling methods prioritize the
generation of new examples in specific regions, which may lead to possible overfitting [30] and
neglect the probability distribution of minority class. Meanwhile, recent studies suggest that class
overlap [31] can pose a challenge for traditional classifiers in distinguishing two classes. The method
is based on Generative Adversarial Networks (GANs) [16] guarantee the probability distribution of
the minority class and generate new data. Although numerous strengths exist, there are also some
shortcomings in the study. For example, the new data generated by GANs ignore surrounding
majority class samples, which will cause overlap of samples between the minority class and majority
class. For MCS-GMM, it will reduce the degree of overlap between the minority and majority class
and guarantee the distribution of the minority class to a certain extent. But MCS-GMM corrupts the
probabilistic nature of the imbalanced data.

To mitigate these problems, we propose a new oversampling algorithm (MCS-GMM) for
imbalanced data, which pay more attention to the impact of data distribution and the overlap of
minority class data. Besides, to a certain extent, MCS-GMM can consider the probability distribution
of minority class and take full advantage of probability information.

This paper is divided into three parts:

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17866–17885.

17869

1) In order to obtain statistical information, finding the optimal probability density function to
describe majority class and minority class by Gaussian Mixture Model (GMM). Besides, the
probability density is used when determining the sampling weight to set the number of samples that
more suitable for minority class.

2) Specifically, the overlap between majority class and minority class may directly affect
classification performance. So, the three sigma rule [32] is adopted to divide the degree of overlap. In
this way, the impact of class overlap on data classification will be further reduced.

3) Data generated by oversampling techniques often gathers together. To ensure the diversity of the
generated data, the variant of Monte Carlo Sampling is adopted to oversample the minority class.

The structure of this paper is as follows: Section 2 describes a detailed description of the proposed
MCS-GMM algorithm, Section 3 presents the experimental results, Section 4 presents the Time
complexity of the proposed algorithm and Section 5 concludes the paper and offers future
research directions.

2. Proposed method

The proposed MCS-GMM’s basic idea may be divided into four steps: 1) Probability Density
Estimation for imbalanced data, 2) Monte Carlo sampling, 3) The oversampling technique of minority
class, 4) An adaptive weight of minority class. The subsections that follow will describe each
component’s specific method in detail.

2.1. GMM

With the continuous development of research, GMM can approximate arbitrary probability
distribution, thus it is considered as a dominant tool for classification in such domains [33].
Consequently, more and more researchers are interested in this method. In this paper, we use k(k = 2)
Gaussian distributions f (x| µma j,Covma j) and f (x| µmin,Covmin) to fit the distribution of Tma j and Tmin.
As shown in Figure 1, blue represents the distribution of the majority class, green represents the
distribution of the minority class, we use two Gaussian distributions to describe the imbalanced data
distribution. According to GMM, the distinct Gaussian distributions with various weights. However,
the majority class tend to have larger Gaussian weight and the Gaussian weight of minority class
is smaller.

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8

-3

-2

-1

0

1

2

3

 minority
 majority

GMM-EM

Figure 1. GMM-Expectation-maximization (EM).

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17866–17885.

17870

To describe the data for a class in a given datasets, we use the formula below in binary
classification problems.

p(x| α, µ,Cov) =
∑h

i=1 αi f (x| µi,Covi) (1)

where x is an instance in T, µi is the mean vector of the i-th Gaussian distribution model, Covi is the
covariance vector of the i-th Gaussian distribution model, and f (x| µi,Covi) is the i-th component in
the mixed model, which is defined as follows:

f (x| µi,Covi) =
1

√
2π|Covi|

exp
[
1
2

(x − µi)TCovi(x − µi)
]

(2)

αi is the weight of each Gaussian distribution and satisfies the following equation:∑h
i αi = 1 (3)

The GMM [34] needs to be estimated for three unknown parameters, namely the variance, mean and
the weight of each Gaussian distribution. In our study, we intend to use the EM algorithm to optimize
these parameters, which includes two steps. First, the parameters are initialized. The initial values of
the mean (µ) and variance (Cov) in the GMM are calculated from the mean and variance of minority
set, and α is initialized to 1/k. Then, the probability function is maximized using the values calculated
in the first step. Therefore, the maximum likelihood function becomes very important. To estimate the
parameters in GMM, the maximum likelihood functions should be taked the expectation.

Q(θ) =
∑h

k=1
∑N

i=1 γ(Z
k
i)log(αk) +

∑h
k=1
∑N

i=1 γ(Z
k
i)log(f (xi| θk)) (4)

γ(Zk
i) =

αi f (xi| µk,Covk)∑h
k=1 αk f (xi| µk,Covk)

(5)

where γ(Zk
i) is the posterior probability of xi belonging to the k-th Gaussian distribution. It is presented

to simplify the EM algorithm’s use in estimating GMM parameters. θ is the three unknown parameters
for GMM. f (xi| θk) is the probability density value of xi belonging to the k-th Gaussian distribution.

By performing logarithmic transformation and derivation on Eq (4), the solution formulas of µ, Cov
and α for the derivation are as follows:

αi+1
k =

1
N
∑N

i=1 γ(Z
k
i) (6)

µi+1
k =

1∑N
i=1 γ(Z

k
i)

∑N
i=1 xiγ(Zk

i) (7)

Covi+1
k =

1∑N
i=1 γ(Z

k
i)

∑N
i=1 γ(Z

k
i)(xi − µ

i+1
k)(xi − µ

i+1
k)T (8)

2.2. Monte Carlo Sampling

Conventional Monte Carlo simulations are stochastic and sample based on the probability
distribution. The method [35] samples from a uniform distribution and the random values are
independently drawn from a uniform distribution on [0, 1]. At the same time, cumulative distribution

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17866–17885.

17871

function plays a very important role [36] in Monte Carlo simulations. Combining the cumulative
distribution function, the final value of the sample value can be obtained.

f (x| µ, σ) =
1

(2π)1/2σ
exp(−

1
2

(x − µ)2

σ2) (9)

F(y) = p(Y ≤ y) =
∫ y

−∞

f (x| µ, σ)dx (10)

rand = ui ∼ uni f orm(0, 1) (11)

s = F−1(rand) (12)

where f (x| µ, σ) is the probability density function of minority set in one-dimensional space, F−1(y)
is the inverse cumulative distribution function of minority set in one-dimensional space and s is the
sampling sample. The pseudocode of Monte Carlo Sampling algorithm is given in algorithm 1.

Algorithm 1: Monte Carlo sampling
Input: input parameters: µ, σ, r = [], s = []
Output: Sample set s

1 Initialize f (x| µ, σ), F(y) ;
2 for ui ∼ uni f orm(0, 1) do
3 r← ui;
4 end
5 for rand in r do
6 s← F−1(rand);
7 end

2.3. Dividing minority data and generating new minority data

The imbalanced data distribution have an impact on the performance of detection and
classification, leading to classifier results that are biased toward the majority class. The performance
of single classifier is poor when there are count overlaps between minority class and majority class.
For example, for many variants of SMOTE, it will be less effective for the datasets with high degree
of overlap. Therefore, it becomes extremely important for the newly generated dataset to prevent
overlap of samples between the minority class and the majority class.

For a binary classification problem, let T be a given dataset composed of Tma j and Tmin, that is
T = Tma j ∪ Tmin, where Tma j and Tmin represent the majority class and minority class. Respectively,
N is the number of examples in T, Nma j is the number of examples in Tma j and Nmin is the number
of examples in Tmin. At the same time, µma j is the mean of majority class and calculated by GMM,
σma j is the standard deviation of majority class and calculated by GMM. µmin and σmin are the relevant
parameters for minority class.

In order to divide the degree of overlap, we introduce three sigma rule to divide overlap area. The
probability density function of majority class are presented on the left, the probability density function

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17866–17885.

17872

of minority set are presented on the right. For the majority class, the boundaries in majority clss data,
denoted by Bma j, is defined as follows:

Bma j = µma j + 2σma j (13)

For the minority set, the boundaries in minority class data, denoted by Bl
min and Br

min, is defined
as follows:

Bl
min = µmin − 2σmin (14)

Br
min = µmin + 2σmin (15)

We classify the minority class data into four categories: A, B, C and D, according to their degree
of overlap. Figure 2 is a representation of the probability density function for majority and minority
class. Among them, blue is probability density function of the majority class, green is probability
density function of the minority class.

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16

0.00

0.05

0.10

0.15

0.20

 minority
 majority

(a) A

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16

0.00

0.05

0.10

0.15

0.20

 minority
 majority

(b) B

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16

0.00

0.05

0.10

0.15

0.20

 minority
 majority

(c) C

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16

0.00

0.05

0.10

0.15

0.20

 minority
 majority

(d) D

Figure 2. Different types of data.

1) Minority class data of category A must satisfie the condition Bma j ≤ Bl
min, and shown in Eq (16).

For category A data, we apply the SMOTE algorithm to oversample the minority class data and balance
the skewed class distribution.

A =
{

Bma j ≤ Bl
min & xi ∈ Tmin

}
(16)

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17866–17885.

17873

2) Minority class data of category B must satisfie the conditions Bma j>Bl
min and Bma j ≤ µmin, and

are shown in Eq (17). To improve the quality of generated data, we limit the range of sampled data in
minority class data. In this regard, three significant situations are to be addressed, namely B1, B2 and
B3, which are defined as follows:

B =
{

Bma j>Bl
min & Bma j ≤ µmin & xi ∈ Tmin

}
(17)

B1 =
{
xi| xi ≤ Bma j & xi ∈ Tmin

}
(18)

B2 =
{
xi| xi>Bma j & xi ≤ µmin & xi ∈ Tmin

}
(19)

B3 = {xi| xi>µmin & xi ∈ Tmin} (20)

where B1 is a data set, which contains the data that not exceed Bma j in minority class, B2 contains the
data that not exceed µmin and exceed Bma j, B3 contains the data that exceed µmin.

For any data xi in B1, we aim to find a symmetry point of it in a Gaussian distribution which is
defined as x∗i . Symmetry is utlized to reduce overlap between majority data when utilizing Monte Carlo
Sampling to oversample the data. Subsequently, a random value r1 is generated within the sampling
interval

[
0.5, F(x∗i)

]
and the newly generated data is denoted as xnew.

x∗i = 2 µmin − xi (21)

r1 =
[
0.5, F(x∗i)

]
(22)

xn = F−1(r1) (23)

It should be noted that the number of B1 should be chosen neither too small nor too large. To
achieve this, we set the range of the number of B1 to be 0 to Nmin/5. If the number falls outside this
range, Eq (27) is applied to generate new data.

For any data xi in B2, we adopt a different sampling interval for improved quality and enhanced
diversity of generated data. To this end, we generate a random value r2 within in the sampling interval
[F(xi), 0.5]. Different of those of B1 and B2, the sampling interval for xi in B3 is set as [0.5, F(xi)]
with random value r3.

3) Minority class data of category C shall satisfy conditions Bma j>µmin and Bma j ≤ Br
min, shown in

Eq (24). In this case, the amount of majority class data exceeds half of the minority class data, which
readily causes the generated data to overalp with the majority class. Hence, it is important to consider
how to mitigate the extent of overlapping. Given the above considerations, we divide minority class
data into two classes: C1 and C2. C1 contains data that do not exceed Bma j and the rest are in C2.

C =
{

Bma j>µmin & Bma j ≤ Br
min & xi ∈ Tmin

}
(24)

C1 =
{
xi| xi ≤ Bma j & xi ∈ Tmin

}
(25)

C2 =
{
xi| xi>Bma j & xi ∈ Tmin

}
(26)

For xi in C1, we employ a new method for data generation. For each minority class instance, its
k-nearest (k=2) neighbors are identified, and interpolation is conducted between the minority class
instance and each identified neighbor xk

i to alleviate the class imbalance. Figure 3 describes new data
xn and is defined as follows:

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17866–17885.

17874

xn = xi + rand(0, 1) × (xk − xi) (27)

Figure 3 visualizes the neighbors of a minority class instance and illustrates the sampled neighbor xk
i

of our method. In Figure 3(a), we can see that the minority class instance has two different neighbors:
the minority neighbor and the majority neighbour. In this case, we generate new minority class data
by interpolation with the minority class neighbor among the two neighbors via the k-nearest neighbors
algorithm. In Figure 3(b), the neighbor that is closer to the minority class instance contains more
essential information when both neighbors of the minority class instance are minority class neighbors.
In Figure 3(c), when both neighbors are majority neighbors, our method selects the closer neighbor for
the minority class instance to avoid new data that overlaps in the feature space with the majority class.

For xi in C2, the sampling interval is set as
[
F(Bma j), F(xi)

]
for the generation of the random value

as well as data using Eq (23).

 majority
 minority

(a)

 minority

(b)

 majority
 minority

(c)

Figure 3. Different sample instances for each minority class instance.

4) For minority class data of category D, they must satisfy the condition Bma j>Br
min, shown in

Eq (28). Nevertheless, there exists a significant overlap between minority and majority classes. In this
case, we generate data using Eq (27).

D =
{

Bma j>Br
min & xi ∈ Tmin

}
(28)

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17866–17885.

17875

2.4. Weighting sampling instance

In previous sections, we divided minority class data into several types according to Bma j and
generated minority class instances. More important, not all of the minority class instances will be
equally important, and some might offer more insight into how to synthetic minority class instances
than others. Hence, it is necessary to assign greater weights to instances that carry more important
information. Existing weighting schemes in the literature are primarily based on the k-nearest
neighbors of the majority and minority classes, which may be less efficient if the probability of certain
minority class data is large. As such, we adopt a novel way of assigning geometric weights for the
minority class distribution, exploiting the information contained in the minority class. Concretely, we
assign the weights via:

pi = f (xi| µmin,
∑

min) (29)

Di =
Dmin

i

Dma j
i

(30)

Wi = pi · Di (31)

where pi is the i-th value that satisfy the Gaussian distribution of minority class calculated by GMM,
Di is the proportion of average Euclidean distance, Wi is the weight of sampling instance of the i-th
minority class instance.

Dmin
i =

dmin
i

|kmin
i |

(32)

dmin
i =

∑
j∈kmin

i
d(xi, x j) (33)

d(xi, x j) =
√∑m

k=1(xik − x jk)2 (34)

where Dmin
i is the average Euclidean distance of minority class neighbors on the k-nearest (k=5)

neighbors, |kmin
i | is the number of minority class neighbors, d(xi, x j) is the euclidean distance between

xi and x j and m is the number of features of the given data T.

The pseudocode of MCS-GMM algorithm is given in algorithm 2.

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17866–17885.

17876

Algorithm 2: MCS-GMM
Input: training set T, µ, σ, α.
Output: new training set Tnew.

1 Input parameters: Calculate µmin, µma j, σmin, σma j by GMM, Tg = [] ;
2 Calculate Bma j, Br

min, Bl
min and normalized sampling weights using Eq (31);

3 if Bma j ≤ Bl
min then

4 Synthesize new data using by SMOTE;
5 Tg ← xn;
6 end
7 if Bma j ≤ µmin & Bma j>Br

min then
8 for xi in Tmin do
9 if xi ≤ Bma j & |B1| ≤ Nmin/5 then

10 Synthesize new data using Eq (23);
11 end
12 if xi ≤ Bma j & |B1|>Nmin/5 then
13 Synthesize new data using Eq (27);
14 end
15 if xi ≤ µmin & xi>Bma j then
16 Get a random value from the sampling interval [F(xi), 0.5] ;
17 end
18 if xi>µmin then
19 Get a random value from the sampling interval [0.5, F(xi)] ;
20 end
21 Tg ← xn;
22 end
23 end
24 if Bma j>µmin then
25 for xi in Tmin do
26 if xi ≤ Bma j then
27 Synthesize new data using Eq (27);
28 end
29 if xi>Bma j then
30 Get a random value from the sampling interval

[
F(Bma j), F(xi)

]
;

31 end
32 Tg ← xn;
33 end
34 end
35 if Bma j>Br

min then
36 Synthesize new data using Eq (27);
37 Tg ← xn;
38 end
39 Tnew ← Tma j ∪ Tmin ∪ Tg

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17866–17885.

17877

3. Experimental study

3.1. Basic settings

Datasets: Table 1 in the paper presents the comprehensive characteristics of the nine Knowledge
Extraction based on Evolutionary Learning (KEEL) datasets. It includes the total number of instances
(Size), the number of attributes (Attribute), and the Imbalanced Ratio (IR) for each dataset. IR is the
most commonly used measurement for the imbalance degree of imbalanced data, which is defined
as follows:

IR =
Nma j

Nmin
(35)

where Nma j and Nmin are the number of majority and minority class instances. As can be seen from
Table 1, we chose different kinds of datasets. It is important to note that preprocessing was done
on every datasets in this investigation. Nominal or categorical attributes were encoded as numerical
attributes after the attributes were standardized to a range of [0,1].

Table 1. Description of KEEL Datasets.

Datasets Size Attribute IR
glass1 214 9 1.82
glass6 214 9 6.38
yeast1 1484 8 2.46
yeast4 1484 8 28.1
yeast6 1484 8 39.15
yeast-1 vs 7 459 7 14.3
yeast-2 vs 4 514 8 9.08
vehicle0 846 18 3.23
wisconsin 683 9 1.86

Evaluation metric: accuracy. An evaluation metric is based on balanced datasets. In imbalanced
data classification, we have selected G-mean, F-measure and AUC as the evaluation metrics. These
metrics are frequently employed to evaluate how well algorithms work with imbalanced data. To
calculate them, the confusion matrix is used to determine evaluation metrics for classification models,
as illustrated in Table 2.

Table 2. Confusion matrix.

Actual value
Predicted value

Minority class Majority class
Minority class True Positive (TP) False Negative (FN)
Majority class False Positive (FP) True Negative (TN)

In order to evaluate the performance of a classification model, we use a confusion matrix. This
matrix helps us calculate the number of TP, FN, FP and TN. Using these values, we can calculate
various metrics to assess the model’s performance.

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17866–17885.

17878

G-mean consists of two parts: Recall and Specificity, which measures the classification accuracy of
the classifier for the minority class and the majority class. They are defined as follows:

Recall =
T P

T P + FN
(36)

S peci f icity =
T N

T N + FP
(37)

G − mean =
√

Recall × S peci f icity (38)

F − measure =
2 ∗ Recall ∗ Precision

Recall + Precision
(39)

The area under curve (AUC) is also an important evaluation metric of predictive ability. It means
that the predicted probability of positive samples exceeds the number of predicted probabilities for
negative samples. Therefore, they are often used to measure the performance of imbalanced
learning models.

3.2. Experiment on KEEL Datasets

In this section, we demonstrate the effectiveness of the proposed MCS-GMM on KEEL data. To
conveniently show the performance, we only display the data corresponding to two dimensions, which
includes the minority class, majority class and generated data.

The first experiment compares BL1SMOTE and ADASYN using KEEL data to demonstrate the
importance of MCS-GMM. For full appreciation, two aspects of first experiment need specific
attention: firstly, the instances of the informative minority class are suitably chosen; secondly, the
overlapping area around the minority class instances should be avoided as much as possible. In this
experiment, the datasets contains 13 minority class instances and 201 majority class instances, and the
parameters for the minority class data are µmin = (1.52, 13.6), σmin = (0.004, 1.09).

As shown in Figure 4, comparing with BL1SMOTE and ADASYN, the proposed MCS-GMM
selects informative minority class instances and generates more samples in the region where there is
little or no overlap between the majority class instances. While both BL1SMOTE and ADASYN fail
to find out overlapping area and generates noisy data in subsequent instances generation, which will
reduce the discriminative ability of the data and cause overfitting of data. Based on MCS-GMM,
BL1SMOTE and ADASYN, we used a decision tree classifier and kept the default parameters of the
classifier. The G-mean and AUC is 0.930, 0.935, which shows the superiority of proposed
MCS-GMM.

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17866–17885.

17879

1.510 1.515 1.520 1.525 1.530 1.535
10

11

12

13

14

15

16

17

18 majority
 minority

(a)

1.510 1.515 1.520 1.525 1.530 1.535
10

11

12

13

14

15

16

17

18 majority
 minority
 synthetic

(b)

1.510 1.515 1.520 1.525 1.530 1.535
10

11

12

13

14

15

16

17

18 majority
 minority
 synthetic

(c)

1.510 1.515 1.520 1.525 1.530 1.535
10

11

12

13

14

15

16

17

18
 majority
 minority
 synthetic

(d)

Figure 4. Data visualization of different sampling methods.

3.3. Comparison results by Decision Tree classifier

In addition, we compared our proposal with nine sampling algorithms, namely, SMOTE,
Borderline1-SMOTE (BL1SMOTE), Borderline2-SMOTE (BL2SMOTE), Safe-level-SMOTE
(SafeSMOTE), ADASYN (ADA), LoRAS [37] and Bagging. Table 3 displays the algorithms that
were compared and their specific parameter settings.

In this section, the performance of MCS-GMM is compared with seven other data-level
approaches. At the same time, we evaluate classification models using 10-fold cross-validation
techniques. Tables 4–6 display the AUC, F-measure and G-mean results. The best results for the
datasets are highlighted, and the histogram is used to demonstrate the superiority of the proposed
method. To evaluate the algorithm’s performance, we count the number of datasets on which it
obtains the highest AUC, F-measure and G-mean in comparison to other algorithms. The algorithm’s
‘winning times’ are referred to as this total.

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17866–17885.

17880

Table 3. Parameter settings of the related algorithms.

Programming language python 3.8.8
Types of decision trees criterion=“gini”, splitter=“best”
MCS-GMM number of Gaussian components=2
SMOTE neighbors=5, sampling strategy=“auto”
Borderline1-SMOTE n neighbors=5, m neighbors=10
Borderline2-SMOTE n neighbors=5, m neighbors=10
Safe-level-SMOTE n neighbors=5, n jobs=1
ADASYN n neighbors=5, sampling strategy=“auto”
LoRAS sigma=0.005, sampling strategy=‘auto’
Bagging base estimator=DecisionTreeClassifier()

n estimators=10, sampling strategy=‘auto’

Table 4. Decision Tree results for G-mean on KEEL datasets.
MCS-GMM SMOTE BL1SMOTE BL2SMOTE SafeSMOTE ADA LoRAS Bagging

glass1 0.664 ± 0.132 0.711 ± 0.058 0.742 ± 0.058 0.758 ± 0.029 0.550 ± 0.094 0.743 ± 0.072 0.642 ± 0.100 0.743 ± 0.109
glass6 0.938 ± 0.070 0.903 ± 0.045 0.937 ± 0.072 0.876 ± 0.105 0.740 ± 0.146 0.806 ± 0.098 0.813 ± 0.082 0.792 ± 0.290
yeast1 0.699 ± 0.196 0.686 ± 0.089 0.678 ± 0.012 0.648 ± 0.110 0.534 ± 0.067 0.655 ± 0.102 0.643 ± 0.159 0.554 ± 0.057
yeast4 0.968 ± 0.056 0.930 ± 0.024 0.947 ± 0.026 0.931 ± 0.022 0.905 ± 0.122 0.868 ± 0.043 0.912 ± 0.040 0.786 ± 0.086
yeast6 0.972 ± 0.037 0.940 ± 0.024 0.975 ± 0.017 0.948 ± 0.025 0.849 ± 0.256 0.893 ± 0.069 0.930 ± 0.027 0.860 ± 0.122
yeast-1 vs 7 0.928 ± 0.128 0.870 ± 0.069 0.906 ± 0.050 0.825 ± 0.103 0.795 ± 0.089 0.822 ± 0.078 0.807 ± 0.046 0.515 ± 0.272
yeast-2 vs 4 0.937 ± 0.110 0.899 ± 0.055 0.915 ± 0.051 0.846 ± 0.087 0.865 ± 0.110 0.857 ± 0.077 0.878 ± 0.038 0.845 ± 0.154
vehicle0 0.795 ± 0.170 0.789 ± 0.032 0.810 ± 0.030 0.728 ± 0.061 0.656 ± 0.046 0.770 ± 0.043 0.779 ± 0.161 0.680 ± 0.029
wisconsin 0.947 ± 0.047 0.946 ± 0.022 0.914 ± 0.031 0.870 ± 0.059 0.936 ± 0.033 0.884 ± 0.079 0.948 ± 0.047 0.938 ± 0.039

Table 5. Decision Tree results for F-measure on KEEL datasets.
MCS-GMM SMOTE BL1SMOTE BL2SMOTE SafeSMOTE ADA LoRAS Bagging

glass1 0.662 ± 0.153 0.722 ± 0.058 0.754 ± 0.052 0.766 ± 0.034 0.562 ± 0.127 0.761 ± 0.065 0.619 ± 0.099 0.679 ± 0.130
glass6 0.937 ± 0.079 0.906 ± 0.044 0.936 ± 0.078 0.875 ± 0.109 0.636 ± 0.178 0.800 ± 0.118 0.821 ± 0.074 0.633 ± 0.254
yeast1 0.674 ± 0.255 0.671 ± 0.120 0.661 ± 0.138 0.624 ± 0.149 0.491 ± 0.076 0.622 ± 0.133 0.610 ± 0.211 0.407 ± 0.065
yeast4 0.966 ± 0.062 0.929 ± 0.025 0.946 ± 0.028 0.930 ± 0.023 0.832 ± 0.142 0.860 ± 0.049 0.910 ± 0.043 0.262 ± 0.046
yeast6 0.971 ± 0.039 0.944 ± 0.022 0.975 ± 0.017 0.948 ± 0.026 0.760 ± 0.285 0.887 ± 0.078 0.929 ± 0.029 0.324 ± 0.094
yeast-1 vs 7 0.921 ± 0.153 0.866 ± 0.075 0.907 ± 0.053 0.815 ± 0.114 0.707 ± 0.106 0.813 ± 0.087 0.800 ± 0.055 0.188 ± 0.109
yeast-2 vs 4 0.931 ± 0.131 0.900 ± 0.055 0.913 ± 0.057 0.836 ± 0.101 0.775 ± 0.138 0.850 ± 0.089 0.872 ± 0.043 0.625 ± 0.166
vehicle0 0.733 ± 0.213 0.805 ± 0.037 0.817 ± 0.035 0.726 ± 0.082 0.592 ± 0.057 0.784 ± 0.045 0.754 ± 0.202 0.503 ± 0.030
wisconsin 0.946 ± 0.050 0.948 ± 0.022 0.917 ± 0.027 0.870 ± 0.067 0.928 ± 0.036 0.881 ± 0.089 0.946 ± 0.050 0.912 ± 0.044

According to Tables 4–6, our proposed method exhibits slightly higher AUC, F-measure and G-
mean values compared to the other methods. Table 4 provides the G-mean results of the experimental
study. Our method outperforms in five out of nine datasets in terms of G-mean, is not significantly
different in two datasets, and performs significantly worse in two datasets, when considering only 2D
information. In addition, our method demonstrates superior performance in certain high IR datasets,
specifically ‘glass6’ and ‘yeast4’. Furthermore, MCS-GMM outperforms its strongest competitor,

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17866–17885.

17881

BL1SMOTE, in two out of the nine datasets. This is because BL1SMOTE tends to select boundary
data for generating minority examples. It is important to highlight that BL2SMOTE, LoRAS, also
yield favorable outcomes.

Table 5 shows the F-measure results of different algorithms using Decision Tree classifier on the
KEEL datasets. From the results in Table 5, the F-measure results of the eight algorithms on the nine
datasets are all different. Among them, MCS-GMM performs best on six datasets, and the performance
of SMOTE, BL1SMOTE and BL2SMOTE is not as good as MCS-GMM. It performs best on only one
dataset of nine datasets. The rest of the algorithms perform even worse on KEEL datasets.

The AUC results are presented in Table 6. For AUC, MCS-GMM performs best for six of the nine
datasets. In this case, BL1SMOTE and BL2SMOTE still obtained an excellent result. The winning
times of BL1SMOTE and BL2SMOTE has reached one times. Meanwhile, we note that the AUC
results for BL1SMOTE does not much different from the values of MCS-GMM. Besides, the
performance of SMOTE is not as good as BL1SMOTE, this may be caused by the sampling area.
According to the description above, MCS-GMM is better than the six oversampling techniques and
generate minority examples in low overlap area and high density function area.

Table 6. Decision Tree results for AUC on KEEL datasets.
MCS-GMM SMOTE BL1SMOTE BL2SMOTE SafeSMOTE ADA LoRAS Bagging

glass1 0.677 ± 0.127 0.715 ± 0.073 0.748 ± 0.059 0.766 ± 0.030 0.592 ± 0.090 0.752 ± 0.068 0.655 ± 0.100 0.792 ± 0.093
glass6 0.942 ± 0.061 0.905 ± 0.043 0.937 ± 0.071 0.878 ± 0.104 0.755 ± 0.015 0.823 ± 0.082 0.818 ± 0.078 0.927 ± 0.108
yeast1 0.751 ± 0.164 0.714 ± 0.091 0.714 ± 0.103 0.693 ± 0.099 0.571 ± 0.073 0.699 ± 0.101 0.688 ± 0.127 0.587 ± 0.053
yeast4 0.970 ± 0.050 0.931 ± 0.023 0.949 ± 0.025 0.932 ± 0.021 0.915 ± 0.098 0.875 ± 0.036 0.913 ± 0.040 0.861 ± 0.073
yeast6 0.974 ± 0.034 0.945 ± 0.021 0.975 ± 0.016 0.949 ± 0.025 0.890 ± 0.163 0.900 ± 0.062 0.933 ± 0.026 0.885 ± 0.129
yeast-1 vs 7 0.938 ± 0.098 0.873 ± 0.066 0.908 ± 0.048 0.833 ± 0.099 0.839 ± 0.083 0.826 ± 0.079 0.809 ± 0.044 0.627 ± 0.182
yeast-2 vs 4 0.946 ± 0.088 0.899 ± 0.056 0.918 ± 0.048 0.853 ± 0.082 0.861 ± 0.092 0.864 ± 0.070 0.880 ± 0.037 0.900 ± 0.125
vehicle0 0.873 ± 0.103 0.852 ± 0.031 0.855 ± 0.028 0.800 ± 0.048 0.753 ± 0.048 0.824 ± 0.028 0.867 ± 0.102 0.761 ± 0.045
wisconsin 0.974 ± 0.031 0.980 ± 0.014 0.964 ± 0.019 0.943 ± 0.034 0.975 ± 0.020 0.958 ± 0.032 0.973 ± 0.030 0.977 ± 0.019

In addition, MCS-GMM considered two effects: spatial and statistical features. Based on
surrounding neighbors of minority example and the distribution of minority class, a new way of
weighting is determined. Thus, our method can generate higher quality data and shows high
performance on the nine imbalanced datasets, especially for the high imbalanced datasets.

As shown in Figure 5, it describes the winning times of seven different oversampling methods and
orange represents the number of winning times for AUC, yellow represents the number of winning
times for F-measure, green represents the number of winning times for G-mean. It can be seen from
Figure 5, MCS-GMM has more winning times than other oversampling techniques in AUC,
F-measure and G-mean. The winning times of MCS-GMM has reached 17 times. The second place is
BL1SMOTE, which also has good performance and its winning times has reached 4 times. The rest of
the oversampling algorithm achieved a lower number of winning times compared to the new
algorithm. These results indicate that our new method is more effective in imbalanced
data classification.

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17866–17885.

17882

5

0

2

1

0 0

1

0

6

1 1 1

0 0 0 0

6

1 1 1

0 0 0 0

MCS-GMM
SMOTE

BL1SMOTE

BL2SMOTE

SafeS
MOTE

ADASYN
LoRAS

Bagging
0

1

2

3

4

5

6

wi
nn

ing
 tim

es

 G-mean
 F-measure
 AUC

Figure 5. Comparison of winning times.

4. Time complexity of the proposed algorithm

Time complexity of the proposed algorithm: In MCS-GMM, the time complexity of the EM
algorithm is O(n2 + n), the time complexity of normalization and calculation of weights is O(m).
Besides, the time complexity of k-nearest neighbor algorithm is O(n ∗ M ∗ log(k)). Finally, the time
complexity of the proposed algorithm is O(n2 + n + m + n ∗ M ∗ log(k)), where n is the number of
dataset, m is the number of minority class, k is the number of nearest neighbors used in the k-nearest
neighbors algorithm, M is the number of features.

5. Conclusions

This paper proposes a new sampling method based on Gaussian distribution which can extract
better features by combining statistical and spatial features, and the distribution of imbalanced data is
guaranteed. In addition, MCS-GMM generates less samples in overlapping regions by designing new
weights and tries to make use of as many instances that contain further information as possible. tries
to make use of as many instances that contain further information as possible. A sample is selected
to generate new instances and prevent any overfitting of the following model learning. Besides, our
proposed method is beneficial for small datasets with high degree of overlap and can be applied to
protein classification.

The results of the experiment show that the proposed method is effective in completing classification
tasks, while also effectively preventing overfitting. Furthermore, the method is versatile and can be
applied to different tasks. Particularly, in terms of overlapping area, our method can generate higher
quality data to improve classification performance. Compared to other oversampling techniques, MCS-
GMM has a higher value in AUC, but BL1SMOTE outperforms MCS-GMM on some datasets with
lower overlapping ratios in terms of AUC. However, it should be pointed that, BL1SMOTE has also
shown good performance in our experiments as it generates new minority in border regions.

Although the method proposed in this paper performed well, it still has some limitations. First,
the probability density function of the imbalanced data is not accurate enough, and in the future, a
multilayer neural network approach can be chosen get a more accurate probability density function.

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17866–17885.

17883

Second, the information of neighbors for each minority sample not get enough. In future research, we
will pay more attention to these limitations.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Conflict of interest

The authors declare there is no conflict of interest.

References

1. C. Phua, D. Alahakoon, V. Lee, Minority report in fraud detection: classification of skewed data,
ACM SIGKDD Explor. Newsl., 6 (2004), 50–59. https://doi.org/10.1145/1007730.1007738

2. B. Krawczyk, M. Galar, L. Jelen, F. Herrera, Evolutionary undersampling boosting for
imbalanced classification of breast cancer malignancy, Appl. Soft Comput., 38 (2016), 714–726.
https://doi.org/10.1016/j.asoc.2015.08.060

3. J. Alqatawna, H. Faris, K. Jaradat, M. Al-Zewairi, O. Adwan, Improving knowledge based spam
detection methods: The effect of malicious related features in imbalance data distribution, Int. J.
Commun. Network Syst. Sci., 8 (2015), 118–129. https://doi.org/10.4236/ijcns.2015.85014

4. N. Japkowicz, S. Stephen, The class imbalance problem: A systematic study, Intell. Data Anal., 6
(2002), 429–449. https://doi.org/10.3233/IDA-2002-6504

5. X. Fan, H. Yu, GAMC: An oversampling method based on genetic algorithm and monte
carlo method to solve the class imbalance issue in industry, in 2022 International
Conference on Industrial IoT, Big Data and Supply Chain (IIoTBDSC), (2022), 127–132.
https://doi.org/10.1109/IIoTBDSC57192.2022.00033

6. F. Zhang, G. Liu, Z. Li, C. Yan, C. Jang, GMM-based undersampling and its application for credit
card fraud detection, in 2019 International Joint Conference on Neural Networks (IJCNN), (2019),
1–8. https://doi.org/10.1109/IJCNN.2019.8852415

7. Y. Yan, Y. Zhu, R. Liu, Y. Zhang, Y. Zhang, L. Zhang, Spatial distribution-based
imbalanced undersampling, IEEE Trans. Knowl. Data Eng., 35 (2023), 6376–6391.
https://doi.org/10.1109/TKDE.2022.3161537

8. H. Zhu, M. Zhou, G. Liu, Y. Xie, S. Liu, C. Guo, NUS: Noisy-sample-removed undersampling
scheme for imbalanced classification and application to credit card fraud detection, IEEE Trans.
Comput. Soc. Syst., (2023), 1–12. https://doi.org/10.1109/TCSS.2023.3243925

9. N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P. Kegelmeyer, SMOTE: Synthetic minority over-
sampling technique, J. Artif. Intell. Res., 16 (2002), 321–357. https://doi.org/10.1613/jair.953

10. A. Fernández, S. Garcia, F. Herrera, N. V. Chawla, SMOTE for learning from imbalanced data:
progress and challenges, marking the 15-year anniversary, J. Artif. Intell. Res., 61 (2018), 863–905.
https://doi.org/10.1613/jair.1.11192

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17866–17885.

http://dx.doi.org/https://doi.org/10.1145/1007730.1007738
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2015.08.060
http://dx.doi.org/https://doi.org/10.4236/ijcns.2015.85014
http://dx.doi.org/https://doi.org/10.3233/IDA-2002-6504
http://dx.doi.org/https://doi.org/10.1109/IIoTBDSC57192.2022.00033
http://dx.doi.org/https://doi.org/10.1109/IJCNN.2019.8852415
http://dx.doi.org/https://doi.org/10.1109/TKDE.2022.3161537
http://dx.doi.org/https://doi.org/10.1109/TCSS.2023.3243925
http://dx.doi.org/https://doi.org/10.1613/jair.953
http://dx.doi.org/https://doi.org/10.1613/jair.1.11192

17884

11. H. He, Y. Bai, E. A. Garcia, S. Li, ADASYN: Adaptive synthetic sampling approach
for imbalanced learning, in 2008 IEEE International Joint Conference on Neural
Networks (IEEE World Congress on Computational Intelligence), (2008), 1322–1328.
https://doi.org/10.1109/IJCNN.2008.4633969

12. H. Han, W. Wang, B. Mao, Borderline-SMOTE: A new over-sampling method in imbalanced
data sets learning, in International Conference on Intelligent Computing, 3644 (2005), 878–887.
https://doi.org/10.1007/11538059 91

13. G. Douzas, F. Bacao, F. Last, Improving imbalanced learning through a heuristic
oversampling method based on k-means and SMOTE, Inf. Sci., 465 (2018), 1–20.
https://doi.org/10.1016/j.ins.2018.06.056

14. Y. Yan, Y. Jiang, Z. Zheng, C. Yu, Y. Zhang, Y. Zhang, LDAS: Local density-based
adaptive sampling for imbalanced data classification, Expert Syst. Appl., 191 (2022), 116213.
https://doi.org/10.1016/j.eswa.2021.116213

15. Y. Xie, M. Qiu, H. Zhang, L. Peng, Z. Chen, Gaussian distribution based oversampling
for imbalanced data classification, IEEE Trans. Knowl. Data Eng., 34 (2022), 667–669.
https://doi.org/10.1109/TKDE.2020.2985965

16. H. Bhagwani, S. Agarwal, A. Kodipalli, R. J. Martis, Targeting class imbalance
problem using GAN, in 2021 5th International Conference on Electrical, Electronics,
Communication, Computer Technologies and Optimization Techniques (ICEECCOT), (2021),
318–322. https://doi.org/10.1109/ICEECCOT52851.2021.9708011

17. S. Maldonado, C. Vairetti, A. Fernandez, F. Herrera, FW-SMOTE: A feature-weighted
oversampling approach for imbalanced classification, Pattern Recognit., 124 (2022), 108511.
https://doi.org/10.1016/j.patcog.2021.108511

18. E. Kaya, S. Korkmaz, M. A. Sahman, A. C. Cinar, DEBOHID: A differential evolution based
oversampling approach for highly imbalanced datasets, Expert Syst. Appl., 169 (2021), 794–801.
https://doi.org/10.1016/j.eswa.2020.114482

19. W. Xie, G. Liang, Z. Dong, B. Tan, B. Zhang, An improved oversampling algorithm based on
the samples’ selection strategy for classifying imbalanced data, Math. Probl. Eng., 2019 (2019),
3526539. https://doi.org/10.1155/2019/3526539

20. L. Peng, H. Zhang, B. Yang, Y. Chen, A new approach for imbalanced data classification based on
data gravitation, Inf. Sci., 288 (2014), 347–373. https://doi.org/10.1016/j.ins.2014.04.046

21. F. Rahmati, H. Nezamabadi-Pour, B. Nikpour, A gravitational density-based mass sharing method
for imbalanced data classification, SN Appl. Sci., 2 (2020). https://doi.org/10.1007/s42452-020-
2039-2

22. M. Koziarski, B. Krawczyk, M. Wozniak, Radial-Based oversampling for
noisy imbalanced data classification, Neurocomputing, 343 (2019), 19–33.
https://doi.org/10.1016/j.neucom.2018.04.089

23. C. Bunkhumpornpat, K. Sinapiromsaran, C. Lursinsap, Safe-Level-SMOTE: Safe-Level-
Synthetic Minority Over-Sampling TEchnique for handling the class imbalanced problem, in
Pacific-Asia Conference on Knowledge Discovery and Data Mining, 5476 (2009), 475–482.
https://doi.org/10.1007/978-3-642-01307-2 43

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17866–17885.

http://dx.doi.org/https://doi.org/10.1109/IJCNN.2008.4633969
http://dx.doi.org/https://doi.org/10.1007/11538059_91
http://dx.doi.org/ https://doi.org/10.1016/j.ins.2018.06.056
http://dx.doi.org/ https://doi.org/10.1016/j.ins.2018.06.056
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2021.116213
http://dx.doi.org/https://doi.org/10.1109/TKDE.2020.2985965
http://dx.doi.org/https://doi.org/10.1109/ICEECCOT52851.2021.9708011
http://dx.doi.org/https://doi.org/10.1016/j.patcog.2021.108511
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2020.114482
http://dx.doi.org/https://doi.org/10.1155/2019/3526539
http://dx.doi.org/https://doi.org/10.1016/j.ins.2014.04.046
http://dx.doi.org/https://doi.org/10.1007/s42452-020-2039-2
http://dx.doi.org/https://doi.org/10.1007/s42452-020-2039-2
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2018.04.089
http://dx.doi.org/https://doi.org/10.1007/978-3-642-01307-2_43

17885

24. Y. Sun, L. Cai, B. Liao, W. Zhu, J. Xu, A robust oversampling approach for class
imbalance problem with small disjuncts, IEEE Trans. Knowl. Data Eng., 35 (2023), 5550–5562.
https://doi.org/10.1109/TKDE.2022.3161291

25. S. Yin, X. Zhu, C. Jing, Fault detection based on a robust one class support vector machine,
Neurocomputing, 145 (2014), 263–268. https://doi.org/10.1016/j.neucom.2014.05.035

26. B. Scholkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, R. C. Williamson, Estimating
the support of a high-dimensional distribution, Neural Comput., 13 (2001), 1443–1471.
https://doi.org/10.1162/089976601750264965

27. R. Barandela, R. M. Valdovinos, J. S. Sánchez, New applications of ensembles of classifiers,
Pattern Anal. Appl., 6 (2003), 245–256. https://doi.org/10.1007/s10044-003-0192-z

28. C. Li, Classifying imbalanced data using a bagging ensemble variation (BEV), in
Proceedings of the 45th annual southeast regional conference, (2007), 203–208.
https://doi.org/10.1145/1233341.1233378

29. S. Hido, H. Kashima, Y. Takahashi, Roughly balanced bagging for imbalanced data, Stat. Anal.
Data Min., 2 (2009), 412–426. https://doi.org/10.1002/sam.10061

30. B. Chen, S. Xia, Z. Chen, B. Wang, G. Wang, RSMOTE: A self-adaptive robust
SMOTE for imbalanced problems with label noise, Inf. Sci., 553 (2021), 397–428.
https://doi.org/10.1016/j.ins.2020.10.013

31. H. K. Lee, S. B. Kim, An overlap-sensitive margin classifier for imbalanced and overlapping data,
Expert Syst. Appl., 98 (2018), 72–83. https://doi.org/10.1016/j.eswa.2018.01.008

32. J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, G. Zhang, Learning under concept drift: A review, IEEE
Trans. Knowl. Data Eng., 31 (2019), 2346–2363. https://doi.org/10.1109/TKDE.2018.2876857

33. M. K. Paul, B. Pal, Gaussian mixture based semi supervised boosting for imbalanced
data classification, in 2016 2nd International Conference on Electrical, Computer &
Telecommunication Engineering (ICECTE), (2016).

34. Y. Xie, L. Peng, Z. Chen, B. Yang, H. Zhang, H. Zhang, Generative learning for
imbalanced data using the Gaussian mixed model, Appl. Soft Comput., 79 (2019), 439–451.
https://doi.org/10.1016/j.asoc.2019.03.056

35. A. Shapiro, Monte carlo sampling methods, Handb. Oper. Res. Manage. Sci., 10 (2003), 353–425.
https://doi.org/10.1016/S0927-0507(03)10006-0

36. D. P. Kroese, T. Brereton, T. Taimre, Z. I. Botev, Why the Monte Carlo method is so important
today, WIREs Comput. Stat., 6 (2014), 386–392. https://doi.org/10.1002/wics.1314

37. S. Bej, N. Davtyan, M. Wolfien, M. Nassar, O. Wolkenhauer, LoRAS: An oversampling approach
for imbalanced datasets, Mach. Learn., 110 (2021), 279–301. https://doi.org/10.1007/s10994-020-
05913-4

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 20, Issue 10, 17866–17885.

http://dx.doi.org/https://doi.org/10.1109/TKDE.2022.3161291
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2014.05.035
http://dx.doi.org/https://doi.org/10.1162/089976601750264965
http://dx.doi.org/https://doi.org/10.1007/s10044-003-0192-z
http://dx.doi.org/https://doi.org/10.1145/1233341.1233378
http://dx.doi.org/https://doi.org/10.1002/sam.10061
http://dx.doi.org/https://doi.org/10.1016/j.ins.2020.10.013
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2018.01.008
http://dx.doi.org/ https://doi.org/10.1109/TKDE.2018.2876857
http://dx.doi.org/ https://doi.org/10.1016/j.asoc.2019.03.056
http://dx.doi.org/ https://doi.org/10.1016/j.asoc.2019.03.056
http://dx.doi.org/https://doi.org/10.1016/S0927-0507(03)10006-0
http://dx.doi.org/https://doi.org/10.1002/wics.1314
http://dx.doi.org/https://doi.org/10.1007/s10994-020-05913-4
http://dx.doi.org/https://doi.org/10.1007/s10994-020-05913-4
http://creativecommons.org/licenses/by/4.0

	Introduction
	Proposed method
	GMM
	Monte Carlo Sampling
	Dividing minority data and generating new minority data
	Weighting sampling instance

	Experimental study
	Basic settings
	Experiment on KEEL Datasets
	Comparison results by Decision Tree classifier

	Time complexity of the proposed algorithm
	Conclusions

